THE TRANSCENDENTAL RANK OF A THEORY

ALISTAIR H. LACHLAN

Morley has associated with each countable complete theory T an ordinal $\alpha_T < (2^{\aleph_0})^+$. It is shown that in fact $\alpha_T \leq \omega_1$ and that this bound is best possible.

We shall use the notation and terminology of Morley [1], where α_T is defined to be the least ordinal α such that for all $A \in N(T)$ and all $\beta > \alpha$, $S^{\alpha}(A) = S^{\beta}(A)$. As in [1] T denotes a complete theory in a countable language L, T has an infinite model, and there is a theory Σ such that $T = \Sigma^*$. If $A \in N(T)$ and $p \in S(A)$, let $r(p) = \alpha$ if p is transcendental in rank α and let r(p) be undefined otherwise. Also, if $A \in N(T)$ and $\psi \in F(A)$ define

$$r(\psi, A) = egin{cases} -1 & ext{if} & U_{\psi} = arnothing \ \sup\left\{lpha \mid p \in U_{\psi} \ \& \ r(p) = lpha
ight\} & ext{otherwise.} \end{cases}$$

LEMMA. Let $A \in N(T)$, $\psi \in F(A)$, and $r(\psi, A) = \alpha$. Then for each $\beta < \alpha$ there exists $B \in N(T)$, $A \subseteq B$, and $q \in S(B)$ such that $r(q) = \beta$ and $\psi \in q$.

Proof. Assume the hypothesis and for contradiction that no B and q exist satisfying the conclusion. Then for every $B \in N(T)$, $A \subseteq B$, we have $i_{AB}^{*-1}(U_{\psi}) \cap Tr^{\beta}(B) = \emptyset$. Thus for all such B, $i_{AB}^{*-1}(U_{\psi}) \cap (S^{\beta+1})(B) - S^{\beta}(B)) = \emptyset$. Suppose $q' \in Tr^{\beta+1}(B)$ then for every $C \in N(T)$, $B \subseteq C$, $i_{BC}^{*-1}(q') \cap S^{\beta+1}(C)$ is a set of isolated points in $S^{\beta+1}(C)$. Thus, if $\psi \in q'$, $i_{BC}^{*-1}(q') \cap S^{\beta}(C)$ is a set of isolated points in $S^{\beta}(C)$ for all such C, whence $q' \in Tr^{\beta}(B)$. We conclude that $i_{AB}^{*-1}(U_{\psi}) \cap Tr^{\beta+1}(B) = \emptyset$ for all $B \in N(T)$, $A \subseteq B$. By induction $i_{AB}^{*-1}(U_{\psi}) \cap Tr^{\gamma}(B) = \emptyset$ for all $\gamma \geq \beta$. This contradicts the hypothesis and completes the proof of the lemma.

From 2.3(b) and 2.4 of [1] it is possible to choose B in the conclusion of the lemma such that $\kappa(B-A) = \aleph_0$; we shall make use of this fact below.

Before proceeding further we need some more definitions. A language L_1 is said to be a simple extension of a language L_0 if it is obtained by adjoining \aleph_0 individual constants to L_0 . For any language L' let F(L') denote the set of formulas of L' which have no free variable other than v_0 . For each $n \in \omega$ let S_n denote the set of all sequences of 0's and 1's of length $\leq n$; the empty sequence \emptyset is allowed. For $s \in S_n$ and $i \leq 1, s*\langle i \rangle$ denotes the member of S_{n+1}

obtained by juxtaposing *i* to the right of *s*. A map $\psi: S_n \to F(L)$ is called *admissible* if either n = 0, or n > 0 and for each $s \in S_m$, $0 \leq m < n$ there exists $\varphi \in F(L)$ such that $\psi(s*\langle 0 \rangle) = \psi(s) \& \varphi$ and $\psi(s*\langle 1 \rangle) = \psi(s) \& \neg \varphi$. The main step in our proof is:

PROPOSITION. Let $A \in N(T)$, $\kappa(A) \leq \aleph_0$, and $n \in \omega$. Let $\psi_n : S_n \to F(L_n)$ be an admissible map, where L_n is a simple extension of L(A), such that for every $\alpha < \omega_1$ there exists $B_n^{\alpha} \in N(T)$ with $A \subseteq B_n^{\alpha}$ and $L(B_n^{\alpha}) = L_n$ such that for all $s \in S_n$ $r(\psi_n(s), B_n^{\alpha}) \geq \alpha$. Then there exists a language L_{n+1} , which is a simple extension of L_n and an admissible map $\psi_{n+1} : S_{n+1} \to F(L_{n+1})$ extending ψ_n such that for every $\alpha < \omega_1$ there exists $B_{n+1}^{\alpha} \in N(T)$ with $A \subseteq B_{n+1}^{\alpha}$ and $L(B_{n+1}^{\alpha}) = L_{n+1}$ such that for all $s \in S_{n+1}$, $r(\psi_{n+1}(s), B_{n+1}^{\alpha}) \geq \alpha$.

Form L_{n+1} by adjoining a countable number of new Proof. individual constants to L_n . Consider a fixed ordinal $\alpha < \omega_1$. By 2^{n+1} applications of the lemma we can find $C^{\alpha} \in N(T)$ with $B_{n}^{\alpha+2} \subseteq C^{\alpha}$ and $L(C^{\alpha}) = L_{n+1}$ such that for each $s \in S_n - S_{n-1}$ there exist $p_0(s), p_1(s) \in$ $S(C^{\alpha})$ both containing $\psi_n(s)$ such that $r(p_0(s)) = \alpha$ and $r(p_1(s)) = \alpha + 1$. For each $s \in S_n - S_{n-1}$ choose $\varphi^{\alpha}(s) \in p_0(s) - p_1(s)$. Define $\psi^{\alpha}: S_{n+1} \rightarrow \varphi^{\alpha}$ $F(L_{n+1})$ to be the extension of ψ_n such that for each $s \in S_n - S_{n-1}$, $\psi^{\alpha}(s*\langle 0 \rangle) = \psi_n(s) \& \varphi^{\alpha}(s) \text{ and } \psi^{\alpha}(s*\langle 0 \rangle) = \psi_n(s) \& \neg \varphi^{\alpha}(s).$ Letting $\psi_{n+1} = \psi_n(s) \& \neg \varphi^{\alpha}(s)$ ψ^{α} and $B_{n+1}^{\alpha} = C^{\alpha}$ the conclusion of the lemma holds for α . Perform the construction of ψ^{α} for each $\alpha < \omega_1$. Since L_{n+1} is countable the set $\{\psi^{\alpha} \mid \alpha < \omega_i\}$ is countable. Hence there is a cofinal subset Γ of ω_1 such that ψ^{γ} is independent of γ for $\gamma \in \Gamma$. Let ψ_{n+1} be the common value of ψ^{γ} for $\gamma \in \Gamma$. For each $\alpha < \omega_1$ let γ be the least member of Γ such that $\alpha < \gamma$ and define $B_{n+1}^{\alpha} = C^{\gamma}$. This completes the proof of the proposition.

Let S_{ω} denote the set of all finite sequences of 0's and 1's. A sequence $\langle s_i \rangle_{i < \omega}$ of members of S_{ω} is called *regular* if $s_0 = \emptyset$ and for all $i < \omega$, s_{i+1} is either $s_i * \langle 0 \rangle$ or $s_i * \langle 1 \rangle$. Now let $A \in N(T)$ with $\kappa(A) \leq \aleph_0$, and let $p \in S(A)$ with $r(p) = \omega_1$. Choose $\varphi \in F(A)$ such that $U_{\varphi} \cap S^{\omega_1}(A) = \{p\}$. Let L_0 be L(A) and define $\psi_0 : S_0 \to F(L_0)$ by $\psi_0(\emptyset) = \varphi$ then φ_0 is admissible. Apply the proposition repeatedly to form L_1, L_2, \cdots and ψ_1, ψ_2, \cdots . Let $L_{\omega} = U_{n < \omega} L_n$ and let $\psi = \lim_{n < \omega} \psi_n$ where ψ maps S_{ω} into $F(L_{\omega})$. By the compactness theorem there exists $B \in N(T)$ such that $A \subseteq B$, $\kappa(B) = \aleph_0$, $L(B) = L_{\omega}$, and such that if $\langle s_i \rangle_{i < \omega}$ is a regular sequence in S_{ω} then $\{\psi(s_i) | i < \omega\} \subseteq q$ for some $q \in S(B)$. Let $s \in S_{\omega}$ then it is clear that the basic open set $U_{\psi(s)}$ of S(B) has power 2^{\aleph_0} . Also, since $\kappa(B) = \aleph_0$, for every $\alpha S^{\alpha+1}(B) - S^{\alpha}(B)$ is countable. Thus $U_{\psi(s)} \cap S^{\alpha}(B) \neq \emptyset$ for all $\alpha < \omega_1$. Since $S^{\alpha}(B)$ is closed and decreasing with α , $U_{\psi(s)} \cap S^{\omega_1}(B) \neq \emptyset$. It follows immediately that $\kappa(U'_{\varphi} \cap S^{\omega_1}(B)) \geq \aleph_0$ where U'_{φ} denotes the basic open set of S(B) determined by φ . From 2.3(b) of [1] $i^*_{AB}(S^{\omega_1}(B)) = S^{\omega_1}(A)$. Since $i^*_{AB}(U'_{\varphi}) = U_{\varphi}$ it follows that $i^{*-1}_{AB}(p) = U'_{\varphi} \cap S^{\omega_1}(B)$. But this contradicts $r(p) = \omega_1$ because $U'_{\varphi} \cap S^{\omega_1}(B)$ having power $\geq \aleph_0$ is not a set of isolated points.

Since $Tr^{\alpha}(A) \neq \emptyset$ for some finite $A \in N(T)$ if for any $A \in N(T)$, we have shown that $Tr^{\omega_1}(A) = \emptyset$ for every $A \in N(T)$. It follows easily that $S^{\beta}(A) = S^{\omega_1}(A)$ for every $\beta > \omega_1$ and every $A \in N(T)$. Thus $\alpha_T \leq \omega_1$ and our main theorem is proved.

We shall now construct a theory T such that $\alpha_T = \omega_1$.¹ In Example III of § 2 of [1] Morley showed how to construct a theory T_{β} for any $\beta < \omega_1$ such that $\alpha_{T_{\beta}} = \beta + 1$ and such that $L(T_{\beta}) =$ $\{R_n \mid n < \omega\}$ where each R_n is a unary relation symbol. For $\beta < \omega_1$ let A_{β} be a model of T_{β} . Suppose without loss that the sets $|A_{\beta}|$, $\beta < \omega_1$, are pairwise disjoint and each disjoint from ω_1 . Now let Abe the relational system such that $|A| = \omega_1 \cup_{\beta < \omega_1} |A_{\beta}|$ and define relations R^A , R_0^A , R_1^A , \cdots as follows: for all $x, y \in |A|$

$$egin{aligned} R^{\scriptscriptstyle A}(x,\,y) & \longleftrightarrow x \in \omega_{\scriptscriptstyle 1}\,\&\, y \in |\,A_x\,| \ & R^{\scriptscriptstyle A}_{\scriptscriptstyle n}(y) & \longleftrightarrow \,igVamma x(x \in \omega_{\scriptscriptstyle 1}\,\&\, y \in R^{\scriptscriptstyle A}_{\scriptscriptstyle n})\,. \end{aligned}$$

and

and

If T is the theory of the system A then it is easy to see that $\alpha_{\scriptscriptstyle T} = \omega_{\scriptscriptstyle 1}.$

In fact α_r can have as its value any ordinal $\leq \omega_1$ other than 0. From the examples to be found above it is sufficient to treat the case in which β is a limit ordinal $<\omega_1$. Let $\langle\beta_n\rangle_{n<\omega}$ be a strictly increasing sequence with limit β . Let T^* be the theory with the same language as T_{β} above such that if A is any model of T^* and F, G are disjoint finite subsets of ω then

$$\bigcap \{R_n^A \mid n \in F\} \cap \bigcap \{|A| - R_n^A \mid n \in G\} \neq \emptyset.$$

Choose axioms ψ_0, ψ_1, \cdots for T^* which are all existential, this is easy to do. For each n modify the theory T_{β_n} to obtain a theory T'_n whose transcendental rank is $\beta_n + 1$ and which has $\psi_0, \psi_1, \cdots, \psi_{n-1}$ amongst its theorems. For each $n < \omega$ let A_n be a model of T_n . Suppose that the sets $|A_n|, n < \omega$, are pairwise disjoint and disjoint from ω . Now let A be the relational system such that $|A| = \omega \cup \bigcup_{n < \omega} |A_n|$ with relations $R^A, R_0^A, R_1^A, \cdots$ defined by

$$R^{\scriptscriptstyle A}(x, y) \longleftrightarrow x \in \omega \ \& \ y \in |A_x|$$
 $R^{\scriptscriptstyle A}_n(y) \longleftrightarrow igVee x(x \in \omega \ \& \ y \in R^{\scriptscriptstyle A_x}_n)$.

¹ The referee informs me that similar examples have been found independently by several people.

ALISTAIR H. LACHLAN

If T is the theory of the system A then it is easy to see that $\alpha_{\scriptscriptstyle T}=\beta$.

References

1. M. Morley, *Categoricity in power*, Trans. Amer. Math. Soc., **114** (1965), 514-538. Received April 23, 1970.

SIMON FRASER UNIVERSITY