STRUCTURE OF NOETHER LATTICES WITH JOIN-PRINCIPAL MAXIMAL ELEMENTS

E. W. JOHNSON AND J. P. LEDIAEV

In this paper we explore the structure of Noether lattices with join-principal maximal elements.

Results which completely specify the structure of certain special classes of Noether lattices, and relate them to lattices of ideals of Noetherian rings, have been obtained in [1], [2], [3], [4], [7], and [8]. For example, in [7] we showed that if every maximal element of a Noether lattice \mathcal{L} is meet-principal, then \mathcal{L} is distributive and can be represented as the lattice of ideals of a Noetherian ring. Moreover, for distributive Noether lattices, the condition that every maximal element is meet-principal is equivalent to representability. In a more recent paper [8], we began considering the complementary case of a Noether lattice in which every maximal element is join-principal in order to determine the extent of the relationship between the two situations. There we showed that if 0 is prime in \mathcal{L} (and every maximal element is join-principal), then \mathcal{L} is distributive and representable. Hence, if 0 is prime, the assumptions that every maximal element is meet-principal and that every maximal element is joinprincipal are equivalent, and either implies representability.

In this paper, we continue the investigation begun in [8]. Our results extend the class of Noether lattices for which embedding and structure theorems are known, and also introduce a construction process for Noether lattices which leads to new examples.

In §1, we show that in a local Noether lattice (\mathscr{L}, M) in which M is join-principal and not a prime of 0, the maximal element M has a minimal base E_1, \dots, E_k of independent principal elements (i.e., $E_i \wedge (E_1 \vee \cdots \vee \hat{E_i} \vee \cdots \vee E_k) = 0$ for $i = 1, \dots, k$). And we use this result to show that if M is join-principal and not a prime of 0, then \mathscr{L} is distributive. In §2, we obtain structure and embedding theorems for distributive local Noether lattices with join-principal maximal elements. In §3, we investigate some of the consequences of our results outside of the local case.

We adopt the terminology of [5].

1. Let (\mathscr{L}, M) be a local Noether lattice and let $B \in \mathscr{L}$. The quotient B/MB is a finite dimensional complemented modular lattice and the number of elements in any minimal set of principal elements with join B is the dimension of the quotient B/MB ([4], [6]). Hence

if E_1, \dots, E_s is any set of principal elements with the property that the elements $E_i \vee MB$ are independent in B/MB, then E_1, \dots, E_s can be extended to a minimal base for B. We will have occasion to use these observations in what follows.

In this section we show that if (\mathcal{L}, M) is a local Noether lattice in which M is join-principal and not a prime of 0, then \mathcal{L} is distributive.

We begin with a lemma.

LEMMA 1.1. Let (\mathscr{L}, M) be a local Noether lattice in which M is join-principal and not a prime of 0. Let E_1, \dots, E_k be a minimal base for M and, for each $i = 1, \dots, k$, set $C_i = E_1 \vee \dots \vee \hat{E_i} \vee \dots \vee E_k$. Then each of the elements $C_i(i = 1, \dots, k)$ is prime.

Proof. Since M is principal in \mathscr{L}/C_i $(i = 1, \dots, k)$, each of the elements C_i is either prime or M-primary [7]. Assume that C_r is M-primary. And let n be the least positive integer such that $E_r^{n+1} \leq C_r$. Then $E_r^{n+1} \leq MC_r$. For, if not, there exist principal elements F_1, \dots, F_s among $E_1, \dots, \widehat{E}_r, \dots, E_k$ such that $E_r^{n+1}, F_1, \dots, F_s$ is a minimal base for C_r . But then E_r, F_1, \dots, F_s is a minimal base for $M = E_r \vee C_r$. Since C_r , by definition, has fewer elements in a minimal base than M, this is a contradiction. Hence $E_r^{n+1} \leq MC_r$, as claimed. Consequently, $M^{n+1} \leq MC_r$, and therefore

$$E_r^n \leq M^n \lor (0:M) = M^{n+1}: M = MC_r: M = C_r \lor (0:M) = C_r$$
 ,

since M is join-principal and not a prime of 0. Since $E_r^n \leq C_r$, this leads to a contradiction. Hence, each of the elements C_i is prime.

LEMMA 1.2. Let (\mathscr{L}, M) be a local Noether lattice in which M is join-principal and not a prime of 0. Then, in the notation of Lemma 1.1, $C_1 \wedge \cdots \wedge C_k = 0$.

Proof. Let E_1, \dots, E_k and C_1, \dots, C_k be as in Lemma 1.1. We first show that for $1 \leq r < s \leq k$, $E_rE_s = 0$. Hence, suppose that $E_rE_s \neq 0$, and let n be a positive integer such that $E_rE_s \leq M^n$ and $E_rE_s \leq M^{n+1}$. Then E_rE_s can be used in a minimal base for M^n . Now, since M is join-principal and not a prime of 0, it follows from the relation $M^{nk+n} = M^{nk}(E_1^n \vee \cdots \vee E_k^n)$ that the elements E_1^n, \dots, E_k^n form a minimal base for M^n . Hence, for some $i, 1 \leq i \leq k, M^n =$ $E_rE_s \vee E_1^n \vee \cdots \vee E_k^n \vee \cdots \vee E_k^n$. But then $M^n \leq C_i$, which contradicts Lemma 1.1. It now follows that, for each s $(1 \leq s \leq k), C_s \wedge E_s =$ $(C_s: E_s)E_s = C_sE_s = 0$, since C_s is prime and $E_s \leq C_s$. Hence by modularity $C_1 \wedge \cdots \wedge C_s = E_{s+1} \vee \cdots \vee E_k$ for $s \leq k$, so that $C_1 \wedge \cdots \wedge C_k = 0$.

102

We are now in a position to establish the main result of the section.

THEOREM 1.3. Let (\mathcal{L}, M) be a local Noether lattice in which M is a join-principal and not a prime of 0. Then \mathcal{L} is distributive.

Proof. Let $E_1, \dots E_k$ and C_1, \dots, C_k be as in Lemma 1.1. A simple inductive argument using modularity proves that

$$(ee E_i^{j(i)}) \wedge (ee E_i^{k(i)}) = ee E_i^{\max(j(i),k(i))}$$

with the convention that E_i^{∞} means 0. Thus it suffices to show that the only principal elements in \mathscr{L} are 0, I and the powers E_i^n of the elements E_1, \dots, E_k . If k = 1, the result is immediate, so assume $k \geq 2$. Let E be any principal element of \mathscr{L} different from 0 and I. We assume that the elements E_1, \dots, E_k are arranged so that $E \leq C_i$ for i > r and $E \leq C_i$ for $i \leq r$. Set $C = C_1 \wedge \dots \wedge C_r$ and consider \mathscr{L}/C . Since M is principal in each of the local Noether lattices \mathscr{L}/C_i $(i = 1, \dots, k)$, it follows by Lemmas 1.1 and 1.2 that the primes of \mathscr{L}/C are just M and C_1, \dots, C_r . Hence, by the choice of E, the element $E \vee C$ is M-primary in \mathscr{L}/C , and therefore also in \mathscr{L} . Let n be a positive integer such that $M^{n+1} \leq E \vee C$ and $M^n \leq E \vee C$, then, by modularity,

$$egin{aligned} M^{n+1} ee C &= C \lor ((M^{n+1} \lor C) \land E) \ &= C \lor ((M^{n+1} \lor C) \colon E)E \,. \end{aligned}$$

Hence, either $M^{n+1} \leq C \vee ME$ or $(M^{n+1} \vee C): E = I$. In the first case, however,

$$M^n \leq M^{n+1}$$
 : $M \leq (C \lor ME)$: $M = (C \colon M) \lor E = C \lor E$,

which contradicts the choice of n. Hence $(M^{n+1} \vee C): E = I$ and $E \leq M^{n+1} \vee C$. Then $E \vee C = M^{n+1} \vee C$, so by the join-irreducibility of principal elements in a local Noether lattice, it follows that $E \vee C = E_1^{\varphi(1)} \cdots E_k^{\varphi(k)} \vee C$, for some nonnegative integers $\varphi(1), \dots, \varphi(k)$. On the other hand, $E_i \leq C$ for i > r and $E \leq C$, so $\varphi(i) = 0$ for i > r. Now, if $i \neq j$ and $1 \leq j \leq r$, then $E_i \vee C \leq C_j$. It follows that $r \leq 1$, and hence that $E \leq C_2 \wedge \cdots \wedge C_k$. Then by the proof of Lemma 1.2, $C_2 \wedge \cdots \wedge C_k = E_1$ and $ME_1^n = E_1^{n+1}$, for all n. Hence, there exists a positive integer u such that $E \leq E_1^u$ and $E \leq ME_1^u = E_1^{u+1}$. Since E_1 is principal, it is now immediate that $E = E_1^u$.

We note that if (\mathscr{L}, M) is a local Noether lattice in which $M^2 = 0$, then M is join-principal. Since such a Noether lattice need not be distributive, the statement of Theorem 1.3 need not be valid without the assumption that M is not a prime of 0. On the other hand, if \mathscr{L} is an arbitrary Noether lattice in which every maximal element is join-principal, then the number of maximal primes associated with 0 is finite. Hence, at most finitely many of the localizations $\mathscr{L}_{\mathcal{M}}$ (*M* maximal) are nondistributive.

2. Let (\mathscr{L}_1, M_1) and (\mathscr{L}_2, M_2) be local Noether lattices, and let $\mathscr{L} = \{(A, B) \in \mathscr{L}_1 \oplus \mathscr{L}_2; A = I \text{ if and only if } B = I\}$. It is clear that \mathscr{L} is a sub-multiplicative-lattice of $\mathscr{L}_1 \oplus \mathscr{L}_2$. Moreover, if E_1 and E_2 are principal elements of \mathscr{L}_1 and \mathscr{L}_2 , respectively, with $E_1 \neq I$ and $E_2 \neq I$, then the elements $(E_1, 0)$ and $(0, E_2)$ are principal in \mathscr{L} . Hence \mathscr{L} is a local Noether lattice with maximal element (M_1, M_2) . We refer to \mathscr{L} as the local direct sum of \mathscr{L}_1 and \mathscr{L}_2 . An alternative characterization is given by $\mathscr{L} = (M_1 \mid 0 \oplus M_2 \mid 0) \cup \{(I, I)\}$.

In this section we continue our investigation of a local Noether lattice (\mathscr{L}, M) with join-principal maximal element. However, we drop the hypothesis that M is not a prime of 0 and consider, instead, the general distributive case. Our main result is that a distributive local Noether lattice (\mathscr{L}, M) , in which M is join-principal, is the local direct sum of local Noether lattices with principal maximal elements. We begin with an extension of Lemma 1.2.

LEMMA 2.1. Let (\mathscr{L}, M) be a distributive local Noether lattice in which M is join-principal. Let E_1, \dots, E_k be a minimal base for M. Then $E_i \wedge E_j = 0$ for all $i \neq j$.

Proof. For each $i = 1, \dots, k$, set $C_i = E_1 \vee \dots \vee \hat{E}_i \vee \dots \vee E_k$. Then

$$M=M^2$$
 : $M=(MC_i\vee E_i^2)$: $M=C_i\vee (E_i^2$: $M)$

and

$$E_i \lor (E_i^2:M) = (ME_i \lor E_i^2): M = ME_i: M = E_i \lor (0:M)$$

so because

$$(E_{i}^{2}:M) = (E_{i}^{2}:M) \wedge (E_{i} \vee 0:M) = 0: M \vee ((E_{i}^{2}:M) \wedge E_{i})$$

by modularity, we have that

$$M = C_i \lor (0:M) \lor ((E_i^2:M) \land E_i) = C_i \lor (0:M) \lor (E_i^2:ME_i)E_i$$

 $i = 1, \dots, k$. Since principal elements are join-irreducible in a local Noether lattice, since \mathscr{L} is distributive, and since $E_i \leq C_i$, it follows that either $E_i \leq 0: M$ or $E_i \leq (E_i^2: ME_i)E_i$, $i = 1, \dots, k$.

Assume that $E_r \leq (E_r^2: ME_r)E_r$. Then $E_r^2: ME_r = I$, so $ME_r = E_r^2$. Hence $M = ME_r: E_r = E_r^2: E_r = E_r \lor (0:E_r)$. It follows that $E_i \leq E_r \lor (0:E_r)$ for all *i*, and that $E_i \leq 0:E_r$ for $i \neq r$ since \mathscr{L} is distributive and E_i is join-irreducible. Therefore $C_iE_i = 0$ $(i = 1, \dots, k)$. Now, assume that $1 \leq i < j \leq k$ and let E be a principal element such that $E \leq E_i \wedge E_j$. Suppose that $E \neq 0$ and choose integers uand v such that $E \leq E_i^u \wedge E_j^v$, $E \leq E_i^{u+1}$ and $E \leq E_j^{v+1}$. Then $E \leq E_i^u$ and $E \leq ME_i^u$, so $E = E_i^u$. Similarly $E = E_j^v$, so $E_i^u = E = E_j^v$. Then u > 1 and v > 1, so $ME_i^{u-1} = ME_j^{v-1}$. It follows that $E_i^{u-1} \vee (0:M) =$ $E_j^{v-1} \vee (0:M)$, so that either $E_i^{u-1} \leq E_j^{v-1}$ or $E_i^{u-1} \leq 0:M$. In either case, $E_i^u = 0$. Hence E = 0 and $E_i \wedge E_j = 0$.

THEOREM 2.2. Let (\mathcal{L}, M) be a distributive local Noether lattice. Then M is join-principal if, and only if, \mathcal{L} is the (finite) local direct sum of local Noether lattices with principal maximal elements.

Proof. Assume that (\mathscr{L}, M) is a distributive local Noether lattice in which M is join-principal. Let E_1, \dots, E_k be a minimal base for M. And for each $i = 1, \dots, k$, let (\mathscr{L}_i, M_i) be a local Noether lattice such that M_i is principal and $M_i^n = 0$ if, and only if, $E_i^n = 0$. Since \mathscr{L} is distributive, it follows by Lemma 2.1 and [2] that every element $A \in \mathscr{L}$ has a unique minimal basis consisting of powers of the elements E_1, \dots, E_k . If we set $E_i^\infty = 0$ and $E_i^0 = I$, then it is clear that the map $E_1^{n_1} \vee \cdots \vee E_k^{n_k} \to (M_1^{n_1}, \dots, M_k^{n_k})$ is a multiplicative lattice isomorphism of \mathscr{L} onto the local direct sum of $\mathscr{L}_1, \dots, \mathscr{L}_k$.

The converse is clear.

COROLLARY 2.3. Let (\mathcal{L}, M) be a distributive local Noether lattice in which M is join-principal. Then \mathcal{L} is Noether-lattice-embeddable in the lattice of ideals of a homomorphic image of a regular local ring.

Proof. By Corollary 2.2, \mathscr{L} is the local direct sum of local Noether lattices $(\mathscr{L}_1, M_1), \dots, (\mathscr{L}_k, M_k)$, where, for each i, M_i is principal in \mathscr{L}_i . If M_i is nilpotent in \mathscr{L}_i , let n_i be the least positive integer such that $M_i^{n_i} = 0$; otherwise, let $n_i = \infty$. Let RL_k be the regular local Noether lattice introduced in [1], and let X_1, \dots, X_k be the minimal base for the maximal element of RL_k . Let A be the join of the elements $X_i X_j$ and $X_i^{n_i}$ (where $X_i^{\infty} = 0$). Then \mathscr{L} is clearly isomorphic to RL_k/A . Since RL_k is Noether-lattice-embeddable in the lattice of ideals of a regular local ring, [1], it follows that RL_k/A and \mathscr{L} are embeddable in the lattice of ideals of a homomorphic image of a regular local ring.

3. In this section we interpret some of the implications of the results of §§1 and 2 outside of the local case.

We begin with a new characterization of the representable distributive Noether lattices. THEOREM 3.1. Let \mathscr{L} be a Noether lattice. Then \mathscr{L} is distributive and representable as the lattice of ideals of a Noetherian ring if, and only if, for each maximal element M of \mathscr{L} , M is join-principal and O_M is meet-irreducible.

Proof. If \mathscr{L} is distributive and representable, then each maximal element M is principal [7]. Consequently, \mathscr{L}_M is a quotient of a regular local Noether lattice of altitude 1, and O_M is meet-irreducible.

Now, assume that \mathscr{L} is a Noether lattice such that, for every maximal element M, M is join-principal and O_M is meet-irreducible. Fix M and consider \mathscr{L}_{M} . If $\{M\}$ is not a prime of 0 in \mathscr{L}_{M} , then by Lemma 2.1, O_M is meet-irreducible if, and only if, $\{M\}$ is principal. On the other hand, if $\{M\}$ is a prime of 0 in \mathscr{L}_{M} , then $\{M\}$ is the only prime of 0. In this case, let E be any principal element such that $E \leq 0: \{M\}$. Then $\{M\}E = 0$, so E is a point in $\mathscr{L}_{\mathcal{M}}$. Since the meet of any two points is 0 and O_M is irreducible by assumption, it follows that $0: \{M\}$ is itself a point and that $0: \{M\} \leq A$, for every A
eq 0. Now, assume that $\{M\} \neq 0: \{M\}$, and let F be a principal element such that $F \leq \{M\}, F \leq \{M\}^2$ and $\{M\}F \neq 0$. Then F is $\{M\}$ primary, so there is a nonnegative integer n such that $\{M\}^n \leq F$ and $\{M\}^{n+1} \leq F$. Hence $\{M\}^{n+1} = \{M\}^{n+1} \wedge F = (\{M\}^{n+1} : F)F$, and therefore either $\{M\}^{n+1}: F = I$ or $\{M\}^{n+1} \leq \{M\}F$. In the first case, $\{M\}^{n+1} = F$, so $\{M\} = F$ by the choice of F. In the second case,

$$\{M\}^n \leq \{M\}^{n+1} \colon \{M\} = \{M\}F \colon \{M\} = F \lor (0 \colon \{M\}) = F$$

a contradiction. Hence $\{M\}$ is principal in \mathscr{L}_M . It now follows by [7] that \mathscr{L} is distributive and representable.

Recall that a Noether lattice \mathscr{L} satisfies the weak union condition if, given elements A, B and C such that $A \leq B$ and $A \leq C$, it follows that there exists a principal element $E \leq A$ such that $E \leq B$ and $E \leq C$. This concept was used in [7] to characterize the distributive Noether lattices which are representable. It is easy to see that if \mathscr{L} is a Noether lattice which satisfies the weak union condition, then every localization \mathscr{L}_M has the (weaker) property that, given primes P_1, \dots, P_k and an element A such that $A \leq P_i$ $(i = 1, \dots, k)$, there exists a principal element $E \leq A$ such that $E \leq P_i$ $(i = 1, \dots, k)$. We say that a Noether lattice with this latter property satisfies the union condition on primes.

THEOREM 3.2. Let \mathscr{L} be a distributive Noether lattice such that, for every maximal element M, \mathscr{L}_{M} satisfies the union condition on primes. If 0 has no embedded primes and if every maximal element is join-principal, then \mathscr{L} is Noether-lattice-embeddable in the lattice of ideals of a Noetherian ring. **Proof.** Let $0 = Q_1 \wedge \cdots \wedge Q_k$ be a normal decomposition in which Q_i is P_i -primary. And let M be a maximal element of \mathscr{L} . If M is a prime of 0, then M is a minimal prime. On the other hand, by Lemma 1.1, if M is not a prime of 0, then 0 is prime in \mathscr{L}_M . Hence, if we assume that P_1, \cdots, P_s are nonmaximal primes and that P_{s+1}, \cdots, P_k are maximal primes, we have that

$$\mathscr{L} \cong \mathscr{L} / P_1 \oplus \cdots \oplus \mathscr{L} / P_s \oplus \mathscr{L} / Q_{s+1} \oplus \cdots \oplus \mathscr{L} / Q_k$$
.

Then each of the summands \mathscr{L}/P_i $(i = 1, \dots, s)$ is isomorphic to the lattice of ideals of some Noetherian ring [8], and each of the summands \mathscr{L}/Q_i $(i = s + 1, \dots, k)$ is Noether-lattice-embeddable in the lattice of ideals of a Noetherian ring (Corollary 2.3). The conclusion is now immediate.

By the results of [9], it is easy to see that any Noether lattice of the type described in Theorem 3.2 has the property that every element has a unique normal decomposition. On the other hand, a Noether lattice with this latter property is the direct sum of local Noether lattices with nilpotent maximal elements and one-dimensional Noether lattices in which 0 is prime [9]. These observations lead to the following, the proof of which is similar to the proof of Theorem 3.2:

THEOREM 3.3. Let \mathscr{L} be a Noether lattice in which each maximal element is join-principal. Then the following are equivalent:

- (i) Each element has a unique normal decomposition.
- (ii) *S* satisfies the union condition on primes and 0 has no embedded primes.
- (iii) *I* is the (finite) direct sum of Noether lattices with principal maximal elements and local Noether lattices with nilpotent maximal elements.

If, in addition, \mathscr{L} is distributive, then each of the above implies that \mathscr{L} is Noether-lattice-embeddable in the lattice of ideals of a Noetherian ring.

References

- 1. K. P. Bogart, Structure theorems for regular local Noether lattices, Michigan Math. J., **15** (1968), 167-176.
- 2. -----, Distributive local Noether lattices, Michigan Math. J., 16 (1969), 215-223.
- 3. _____, Idempotent Noether lattices, Proc. Amer. Math. Soc., 22 (1969), 127-128.

6. E. W. Johnson, A-transforms and Hilbert functions in local lattices, Trans. Amer. Math. Soc., 137 (1969), 125-139.

^{4. ——,} Nonimbeddable Noether lattices, Proc. Amer. Math. Soc., 22 (1969), 129-133.

^{5.} R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math., **12** (1962), 481-498.

7. E. W. Johnson, and J. P. Lediaev, Representable distributive Noether lattices, Pacific J. Math., 28 (1969), 561-564.

8. ____, ___, Join-principal elements and the Principal Ideal Theorem, Michigan Math. J., to appear.

9. ____, ____, and J. A. Johnson, Structure and embedding theorem for unique normal decomposition lattices, Fund. Math., to appear.

Received February 17, 1970.

THE UNIVERSITY OF IOWA