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RELATIONS NOT DETERMINING THE
STRUCTURE OF L

JOHN ROSENTHAL

A relation S is said to be determined up to isomorphism
by relations R with respect to a theory K if for all models
%u 2ί2 of K, 2ϊi restricted to R is isomorphic to 2ί2 restricted
to R implies % is isomorphic to %. In this paper simple
necessary conditions for S to be determined up to isomorphism
by R are given. These are applied in set theory to show
there are (nonstandard) models of set theory with isomorphic
ordinals and nonisomorphic constructible sets. The isomor-
phism on the ordinals may be taken to preserve many familiar
arithmetic functions on the ordinals as addition, multiplica-
tion and exponentiation.

In this paper we show that the structure of the constructible
sets of a model of set theory is not determined by the order-type of
its ordinals, or, in fact, by its ordinals with various familiar arithmetic
functions. This is shown by exhibiting (nonstandard) models of set
theory with isomorphic ordinals and nonisomorphic constructible sets.
The isomorphism on the ordinals may be taken to preserve familiar
arithmetic functions.

These results are obtained by the use of certain simple general
model-theoretic results developed in § 2. We define a relation S to
be determined up to isomorphism by a set of relations R with respect
to a theory K if <A, RA, SA> t= K, <β, RB, SB> N K, <A, RA> ** <B, RB>

implies (A, RΛi SAy ^ ζβ, RB, SBy. We then give two simple sufficient
conditions for S not to be determined up to isomorphism by R wrt
K. Firstly, by a modification of a model-theoretic proof of Beth's
theorem relating implicit and explicit definability, we show S is not
determined up to isomorphism by R if there is a sentence σ such
that the consequences about R of K, K[j{σ), K{j{-\σ) are all the
same. Using this, we show S is not determined up to isomorphism
by R wrt K if there is a model 21 of K in which the truth set of
2t is not Turing-reducible to K join the truth set of 21 restricted to
R.

After illustrating simple applications of these results in § 2, we
turn to the main set theory results in § 3. We observe that for any
model 2ί of set theory, ζθn%, <^> = ζωω, <> which has recursive
truth set [9] and that the truth set of (On^, <^, έ^, =^> is not re-
cursive (where F is the map defined up Godel from On —> L, aεβ if
F(a)eF(β), a ^ β if F(a) = F(β) [8; 16]. Using this we may by
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our model-theoretic results immediately construct models of set theory
with isomorphic ordinals and nonisomorphic constructible sets. This
result is extended to include various functions on the ordinals by
generalizing the above approach.

2* Notation and model theory results* Our notation will
generally follow that suggested in [1] with the following additions
and modifications: Capital italic letters will denote either relations
and operations, or sets of relations and operations. Capital italic
letters will also denote either relation and operation symbols, or sets of
relations and operation symbols. Of course, we will use certain stand-
ard relation or operation symbols such as <, + , x etc.

Say A is a set of operation and relation symbols. Then Σ(A) is
the sentences of the first-order language with relation and operations
symbols the set A. We let Th% be the set of all sentences true of
91 in the object language of 21. We let Tr%(A) be Th% Π Σ(A). Fin-
ally Cn(K) — {σ\K (= σ). For certain special subsets of Σ(A) we use
standard symbols, e.g., ZF for the axioms of Zermelo-Fraenkel set
theory.

In general given an ω-enumeration of A, a set of relation and
operation symbols, we use this to define godel numbers of elements
of Σ(A). We denote the godel numbers of sentences by the sentences
themselves, and similarly the set of godel numbers of a set of sent-
ences by the set of sentences.

Let K be a theory in Σ(A, B) (where A, B are sets of relation
and operation symbols). We say B is determined up to & by A with
respect to (wrt) K if for every models (Cu Au B^, <(C2, A2, J52)> (= K,
ζCly A^} f& <(C2, A2> implies ζCly A19 B^ &* <C2, A2, S2)> (or equivalently
if for every models <C, A, B>, <C, A, Bf> N K, <C, A, £> ~ <C, A, £ ' » .
We say B is determined up to = by A with respect to K if for
every models <d, Al9 B^), <C2, A2, B2> \= K, <Clf Ax> ̂  <C2, A2> implies
<Ci, A19 !?!> = <C2, A3, B2y. In general we omit mention of K when it
is clear.

Trivially, B is not determined up to = by A implies B is not
determined up to ^ by A.

Let K be a theory in Σ(A). We say K is complete wrt Σ' £ Σ(A)
if for every σ e Σ', K \= σ or K \= -\σ.

THEOREM 1. The following 4 are equivalent
(a) For every model 21 of K, K (J Tr^(A) is complete wrt Σ(A, B).
(b) i^or βvβr̂ y σeΣ(A, B), there is a τeΣ(A) such that

(c) B is determined up to = by A wrt K.
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(d) For all models <CU Al9 B^ and <C2, A2, £ 2 > of K,

<clf A,> = <c2, A 2 > -> <cu AU B,y = <c 2, A2,

Proof. We show (b) => (a) =- (d) =- (c) => (b). The first three im-
plications are trivial and left to the reader, (c) => (b) is a routine ap-
plication of the Robinson Joint Consistency Theorem [11]. Assume
(3σeΣ(A, JB))(VreΣ(A))(-.jfiΠ= (σ<-+τ)). Let σ0 be such a σ. So K U
{σ0}, if U {—ιθ"o} are consistent and —i (3rεΣ(A)) (τeCn(K (j W ) and

Relabel the symbols of B preserving arity so as to be symbols
not in A{J B. Call this new set B'. Let φf in general be φ with
symbols in B replaced by the corresponding ones in B'. So

-π (lτeΣ(A))(τεCn(K (j W ) and (-. rJeCniX' U {^σ'o})),

i.e., the hypotheses of the joint consistency theorem. So there is a
e = <C, A, 5, 5'> such that K μ ί U K} U ^ U {-i σ[}. So <C, A, £> f=
ίΓ U W , <C, A, β'> N K U {^ σ0}. So

i.e., ΰ is not determined up to = by A.

Let if be a theory in Σ(A, B). We say B is Turing determined
by A wrt K if for every model Si of iΓ, Tr%(A, B) ^τ K join Tr^A).
Note—we are here assuming ^-enumerations of A, B have been given
and that the derived godel numbers of sentences are abusively de-
noted by the sentences themselves. Also if K is recursive, then this
is equivalent to Trsχ(A, B) ^τ Tr^(A). (^τ is Turing reducible.)

THEOREM 2. B is determined up to = by A wrt K implies B is
Turing determined by A wrt K.

Proof. By Theorem 1, if B is determined up to = by A, then
K U Tr^(A) is complete wrt Σ(A, B) for every model Sΐ of K. But
hence Tr%{A, B) ^TK join Tr%(A).

REMARK. We see, thus, that B Turing determined by A wrt JKΓ —>
B determined up to = by A wrt K—>B determined up to ^ by A
wrt K—+B determined up to = by A wrt K (i.e., B is implicitly de-
finable in terms of A wrt K). The converses of these do not hold.
We give examples

(1) Let F, G be unary relation symbols. Let K g Σ(F, G) be
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{3! xF(x), HxG(x), -i(F(x)ΛG(x))}. Then G is not determined up to =
by F wrt K. But G is determined up to ^ by F wrt K.

(2) Let < be a binary relation symbol, F be a unary relation
symbol. Let KQ Σ(<, F) be 77<Q, <, 0>.

Then F is not determined up to ^ by < wrt K.

(e.g., <(Qn(-co,o))uθκn[o, -)) , <, _i>

Φ <(Q n (- co, o)) u (R n [o, oo)), <, i>.)

But F is determined up to Ξ by < wrt K (as i£ complete).
(3) Let < be a binary relation symbol, F a unary relation

symbol. Let K £ Σ ( < , F) be theory of dense linear order without
endpoints U {lχly(F(x) Λ F(y) Λ {Vz){F(z) — x = z V y = z))}. Then F
is not determined up to Ξ by < wrt K (as 3! xF(x) is undecided).
Yet in any model 31: Tr%(<, F) is recursive and hence ^r Γr^(<).
So F is Turing determined by < wrt K.

REMARK. We give several simple well-known examples illustrat-
ing the use of Theorem 2.

(1) Let K = ENT (elementary number theory). Then x is not
determined up to = by <, +-

Proof. Let 9ΐ = (ω, <, +, x>. So Γ ^ Tr^(<, +) is recursive,
T2 = Thsβ is not. So T2 ̂ τ !Z\. So by Theorem 2, x is not determined
up to Ξ by <, + . In fact, this result also holds for K — any other
arithmetic set of formulae true about ϋJi. Similar results hold for
arithmetic theories with £1 = ζQ, <, +, x ) as a model.

(2) Add to the standard symbols (<, +, x, 0, 1) of real closed
fields an additional unary relation symbol ί which is intended just to
apply to integers.

Let K = RCF (the theory of real closed fields)

U {i(0), i(x) -> i(x + 1) Λ ί(x - 1), -i (3α)(0 < x < 1 Λ i{x)\

U any arithmetic set of formulae true about 31 relativized to

Then i is not determined up to ^ by <, +, x, 0, 1.

Proof. As if 9ΐ = <iϊ, <, +, x, i>, then Trrs-R(<, +, x) join i ί is
arithmetic, but Th^ is not and hence not ^ Γ jrr^(<, +, x) join iΓ.
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Similar results are obtained for algebraically closed fields.

3* Applications to set theory* We show in this chapter that
the structure of the constructible sets is not determined up to isomor-
phism by the order type of the ordinals, nor in fact, by certain fairly
large classes of functions on the ordinals. We proceed as follows:

Let F be the map of On (the ordinals) onto L (the constructible
sets) defined by Godel [8]. Let

e(α, β) = dfF(a)eF(β)', = (a, β) - dfF(a) = F(β) .

Takeuti defines [16] a theory of primitive recursive functions and re-
lations on the ordinals, which we will call ONT (Ordinal number
theory). In particular he shows:

LEMMA 1. (a) έ, ~ are primitive recursive relations

(b) if φn, <, PRy N ONT, then φn, έ, ~> \= ZF, V = L and

φn, <, PR} ~ <On<o»fϊ,s>, < < 0 ,Ϊ,S>, PR<on,i,*>>
(c) if % N ZF, then φn%, <%, PR%> N ONT (if 3t N ZF, then

On% are its ordinals, <^ the < relation on its ordinals and PR<% the
primitive recursive functions on the ordinals.)

Furthermore = is definable in terms of ε.

Proofs. Omitted.

So if έ is not determined up to ^ (or Ξ ) by < (i.e., if there are
models φn, <, PR,}, <On, <, PR2} (= ONT such that (On, <,~e^<&
(or =έ) (On, <, έ2»; then by Lemma lb % = (On, εi9 -^^ ZF, V= L.
Furthermore by Lemma lb, (On%, <^y ^ (On, <y and hence

But by assumption (On, e^ ^ (or ^ ) (On, έ2>, and so 2ίx 9̂  (or ^ ) 2I2.
As 91, t= V = L, 21, = <L^V ε^.). So there are models %u 3I2 1= ̂ F such
that <0% x, < 5 ί l > ^ < 0 % 2 , <^2> and <LS l, ε^,) & (or =£) <L^2, ε 2̂> if έ
is not determined up to ^ (or =) by <.

We usually will show έ is not determined up to Ξ by < by
showing it is, in fact, not Turing determined by <. Similarly and
more generally we have

PROPOSITION 2. If έ is not Turing determined by < and some
class of primitive recursive functions, then the structure of L is not
determined up to = by the structure of the ordinals with that class
of primitive recursive functions on them.
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Let 21 be any arbitrary model of ZF, V — L. Then as is well
known Th% is not recursive. As 21 h V = L,

21 ̂  <L^, ε^>

So ThM ̂ τ Γ r < 0 ^ r < ^ > P ^ > ( < , έ). So Tr<On^t<^PR^(<, έ) is not recursive.

THEOREM 3. Tr<Onw< p^iO is recursive.

Proof. Omitted. We recommend the interested reader examine
the proof in [7].

Hence T r < 0 ^ , % , P ^ > ( < , έ) ̂ τ Tr<On^<%yPR^{<). So έ is not Turing

determined by < . So by the above arguments we have

COROLLARY 4. If ZF is consistent, then there are models 21, 21' t=
ZF with <On^, <^> ~ <Onw, < r > but <L^, ε^> =£ < L r , ew>.

To extend this result to preserve various functions on the ordin-
als in the isomorphism, we need results similar to Theorem 3 in order
to conclude -^(Tr<On^<wPR^(<, A, ε) ̂ τ Tr<0%w<wPR^<, A)) for ap-
propriate classes A of primitive recursive functions. Also we will
wish to consider nonprimitive-recursive functions in A. So we will
have to expand PR%, i.e., we will have to change it to ARITH^, the
arithmetic functions on the ordinals of 2ί which we will shortly define.

Theorem 3 will be extended by application of

LEMMA 5. Let A be a set of primitive recursive functions.
If there is a model 2ΐ of ZF and an ordinal a^εOn^ such that
1. <On^, <2j, A?p = <(%, <2j, A^> and
2 Tr^^^pK^yiK, A, έ) ^ τ T

r<^,<^pR^y(<i ^)

then the structure of L is not determined up to = by the struzture
of the ordinals with the class A of primitive recursive functions on
them.

Proof. For by 1, 2 above we have έ is not Turing determined
by A. So by Proposition 2 we are done.

We will show results of the form (On^y <^, A^} = ζa^
by use of a technique of Ehrenfeucht [7]. Given models 2^, 2I2 he
defines 2 person finite games Gn(l\^ 2X2), Hn(%u 2l2) and shows that if
for all n the second player has a winning strategy in GJ^LU 2 )̂ then
2IX = 2I2. A similar slightly stronger result holds for HJK%, 2X2). So
to generalize Corollary 4 we must merely by the above argument meet
the hypothesis of the following lemma:
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LEMMA 6. Let A be a set of primitive recursive functions.
If there is a model 21 of ZF and an ordinal a^sOn^ such that
1. Player II has a winning strategy in

2. As in Lemma 5,
then the same conclusions as in Lemmia 5 hold.

In particular, Ehrenfeucht has shown by these techniques that

THEOREM 7.

Proof. [7].
Let 21 be an arbitrary co-model of ZF, i.e., an arbitrary model of

ZF such that ω^ = ω. One can readily show that

< W > <w +%> %>^< ω ω ω < ϋ > <. +» χ >
which has a zίί-truth set. On the other hand,

Thn ^ τ Tr<On^<wPE^«, +, x, έ)

and Th% is not Δ\ (for any ω-model of ZF includes a definable co-
model of analysis whose truth set is well-known to be not A\).

So Tr<On^<%,PR^{<, +, x,έ) SτTr<Onψ<^PR^(<, +, x ) .

COROLLARY 8. // Z.P has ω-models there are models %, 212 \= ZF
with <On^, < S Ϊ 1 , + 5 ί l , x ? f ]> ^ < O ^ ί 2 , <s^ί2, + 5 ( 2 , x S ί 2 > but

Further extensions of these results involve the use of non primi-
tive recursive functions. So we now define arithmetic functions and
give certain elementary properties of them that are needed. A more
detailed exposition, including the proofs of the elementary properties
is presented in our dissertation [14].

A predicate A(aλ an) of ONT is called arithmetic if and only
if there is a primitive recursive predicate B(aι anx1 xm) and
quantifiers Q : Qm such that

loNriAidi O — (QiXj) (Qmxm)B(a,i anx, xm)) .

The constant, relation and function symbols of ONT' (theory of
arithmetic functions on the ordinals) are those of ONT and the arithmetic
function symbols described below. For each arithmetic predicate
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A{aι ••• an+1) such that \IONT(H an+ι)A(aL ••• an+1) we introduce a func-
tion symbol fA whose intended meaning is to be the function defined
by Λ(α, an) = αw + 1 if and only if A(a, αw + 1).

The axioms of ONT' are those of ONT allowing, however, in all
schema arithmetic function symbols together with the "definitions" of
the arithmetic function symbols, i.e., if fA is an arithmetic function
such that |OΪVF(3! an+ι)A(at ••• αΛ+1), then

fJs*>i * an) = Un+i <-* A(at an+1)

is an axiom of ONT'.
A predicate A{ax an) of ONT' is called arithmetic if there is

an arithmetic predicate B(aL an) of ONT such that

. . . αw) «-> £(αL αw)) .

A predicate A(ax an+1) of ONT' is called a function if

lό^pίalα^JAία! ••• αn+1) .

It is called an arithmetic function if

\όχT,A{aι αn + 1) - ^ / ( t t ! αw) = αTO+1

for some arithmetic function symbol /.
One can readily show using results and techniques of Takeuti

for primitive recursive functions.

LEMMA 9a. Every primitive recursive function is arithmetic.

LEMMA 9b. Every predicate of ONT' is arithmetic, i.e., every
predicate consisting only of arithmetic function symbols, constant,
relation and function symbols of ONT', = , —i, Λ, V, 3, V is arithmetic.

LEMMA 9C. // A^α), •••, AΛ(α) are arithmetic predicates such
that lόNF'A^a) V V An(a) and \OWF>—'(^(α) Λ Aj(a)) for i Φ j and
if /ι(α) ' fn(

a) a r e arithmetic functions, then there exists an arithmetic
function f(a) such that

\owr, A (A ί (α)-»Λα)=/ ί (α)) .

As the arithmetic functions are definable in terms of the primi-
tive recursive predicates and in terms of the primitive recursive func-
tions we have that the results in Lemma lb, lc of Takeuti continue
to hold, i.e.,
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LEMMA 9d. If (On, <,AritK) |= ONT', then 21 = <(M, έ, => μ ZF,
V = L and ζθn, <, AritK) ρ& ζθn

LEMMA 9e. // 21 h ^ F , £Aew <O%, <s>ί, Arith%> \= ONT'.
Hence as with ONT we may conclude by use of ONT' that

LEMMA 10. Let A be a set of arithmetic functions.
If there is a model 21 of ZF and an ordinal a^eOn^ such that

(1), (2) as in Lemma 5

then the structure of L is not determined up to = by the structure
of the ordinals with the class A of arithmetic functions on it.

The above completes the necessary treatment of arithmetic func-
tions. In the following extensions of Corollary 4, we will encounter
cases where although ζθnn, <^, As^ = (a^ < a , A^} for an appropri-
ate ordinal <%, it is not the case that ^ < ^ r < 9 ,;%> *s ^ί o r another
similarly classified set which we can show Th^ is not. Hence to
handle this situation we put restrictions on the model 21 in the hypo-
thesis of Lemma 10; we require 21 to be a nameable standard model of
ZF [10]. (A nameable model is one all of whose sets are definable.
If ZF is a "nice", e.g., finite or recursive, extension of ZF, then
the minimal standard model of ZF is nameable.)

LEMMA 11. Let A be a set of arithmetic functions.
If there is a nameable standard model 21 of ZF and an ordinal

a^ G On% such that
1. as in Lemma 10

then the same conclusion as in Lemma 10 holds.

Proof. As 21 is nameable, Th% £ 21 (or else it would be definable
contradicting the Tarski theorem on the definability of truth predica-
tes [11]).

Th% = Γr< O n s ( f < 2 ϊ f i l r ί ί Λ a >(ε) ^ Γ Tr{On^<^Arith^{<, έ) .

So as standard models are closed under ^ Γ , Tr<On < Arith Λ(< , έ) g 21.
Hence this last set is ^,τTr<a < Arith y(<, A), i.e., condition 2 of
Lemma 10 is met.

The restriction in Lemma 11 to nameable models will often be
unessential as we see in Lemma 12 and its applications.

LEMMA 12. Let A be a set of arithmetic functions.
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// there is a formula F with 1 free variable such that

(1) there is a standard model SI of ZF,(1\ x)(F(x) Λ Ord(x))9

V = L (call this ZF)

(2) Vw, ~£f Player II has a winning strategy in

for aeOn such that F(a), then the structure of L is not determined
up to = by the structure of the ordinals with the class A of arithmetic
functions on it.

Proof. As ZF has a standard model, it has a nameable model
S3. [io].

So S3 |= (3! χ)(F(x) A Ord(x)). Let βεθn,3 such that S3 N F[β].
By assumption 2, S3 \= Player II has a winning strategy in

Hn(ζ0n, <, Ay, ζβ, <, Ay) .

So condition 1 of Lemma 11 is true in 33.

REMARK. This lemma also holds for finite extensions of ZF.
Doner and Tarski (Doner and Tarski 67) define higher exponential

functions 01 as follows:
(1) aθ-β = a + β if 7 - 0.
( 2 ) aθrβ = lim,<^<7 {(aθtη)θζa) if 7 ^ 1.
Let O(a, β, 7) = aθrβ

\0(ayβ,7) if 7 ^δ
0 (a, β, 7) = \

(0 otherwise .

LEMMA 13. O(a, β, 7) is arithmetic.

Proof. We, in fact, illustrate a general method of proving that
the arithmetic functions are closed under recursion. The approach is
to realize that given έ, = we have a model of ZF in ζθn, AritK) in
which we can by suitable means define the higher exponential func-
tions on ordinals of this model of set theory. Then by means of the
isomorphism of

we can convert these into the functions on On.
First we give several predicates needed in the discussion of ζθn,

έ, ~y and the map from On<On~ε>=> to On. The reader may readily
confirm that these are all arithmetic (usually by the use of some
of the previous ones):
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M(x) = df—\{^ar)<a(a' ~ a), {a is a set of (On, έ, = y. We, thus,
successfully isolate a singll representative for each member of the model
(On, έ, — y of ZF. We let M denote {xeOn\M(x)}. In particular
= Π Λf x M is = ) .

ε* = dfe Π l x Λf, = * = df = DM x Af (= ordinary = ) .
UP(x) =dfx is an unordered pair in sense of (M, ε*, = *]>.

% = {2Λ ^}* =d/^ = {V, A i n sense of M, ε*, =*>.
OP2(x) = d / β is an ordered pair in sense of (M, ε*, = *)>.

8 = <2Λ «>* =df x = <!/, ^> in sense of <M, ε;:<, =*>.

OPn(x) =dfti is an ordered w-tuple in sense of <(M, ε*, =*>.

a = <[#! . . . α;Λ>* =dfχ = (xx xny in sense of <ikf, ε*, = *>.

Reln(x) =dfx is a ^-ary relation in sense of <̂ M, ε*, =*)>-

Fcnn{x) =dfx is a ^-ary function in sense of (M, ε*, =*>.

•τ = /(2/i Vn)* =dfX = /(2/i 2/») in sense of <ikf, ε*, = *>.
The following is primitive recursive

Ord(x) =d/M(x) Λ (V2/)<jB(Vz)<β(2/ε*α Λ ίδ£

— (ye*z V ^ε*7/ v » = 2/)) Λ (V2/)

(2/ε*« V zε*y-+zε*x) ,

i.e., Ord(x) if and only if a; is an ordinal of (M, ε*, =*)> in sense of
<ikf, ε*, =*>. As a result by a standard application of primitive
recursion h(x) defined on (M, ε*, =*> ordinals as follows is primitive
recursive:

h(x) = faa)<x,((Vy)(v*ex->h(y) < a)) .

That is h is the map of <Λf, ε*, =*>-ordinals isomorphically to On.

Hence as + on On is primitive recursive, + for (M, ε*, =*> is
also primitive recursive. We denote it as + * . So let Exp(f) be the
predicate expressing that / is an initial piece of higher exponential
functions on <(Af, ε*, =*)> with all needed induction information to
compute any of /'s values, i.e., let Exp(f) =df

Fcn3(f) — / is a 3-ary function

Λ (yz)Ord{z)(>fx)υrd{x)(yy)Ord{y)((^w)Ord{w)

(w = f(x, y, z)*) - * (Vy')t*y{Vz')εφw%rW){lw")Ord{w,,)

(wf = f(x, y\ z)* Λ w" = / ( ^ r , x, 2')*)) — initial segment clause

Λ (Vx)(Vy)Vz)(Vw)(w = f(x, y, z)* -> Ord(x) A Ord(y)

A Ord(z) A Ord{w)) — range and domains in ordinals

Λ (Vx)θrd<x)(Vy)θrdw(lw)(W = /(», 1/, 0) * -> W = X + * 7/)

for z = 0, (x, y, z) = x + y
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Λ (Vx)θrd(X)(Vy)θrd(y)(Vz)θrd(z)Λ*θ(Vw)(W = f(%, V, «) *

- ((Vz%.(W'U(f(f(x, V', *)*, a, *Tε*™ V = w)

A - . (3w'). «(V2'). .(V2//). ,(/(/(», 1/', «)*, &, z')*ε*™' V - w')))

for 2 Φ 0, /(α, 2/, 2) = lim /(/(«, #', 2), x, zr) .
y' <y,z' <z

Clearly this is arithmetic.

So O(a, β, 7) = δ - (3/)(3a?)(32/)(3«)(3w)(Exp(/) Λ Λ(») = « Λ
9̂ /\ ^ ) — 7 /\ /i,(tι;) = d A w = f(x, y, z)*) is arithmetic.

Hence by Lemma 9c, Oδ is arithmetic if δ is definable.

THEOREM 14. [5]. <On, <, O;> = </^(ωω, Or), <, Or>

Proof. [5]. (j"(α, O;) is defined as

MO, Or) - 0

μ(a + 1, Or) = (μβ)>μ{ttfor)(^1)(yδi)(δl9 δ2 <β->Or(δι, δ2) < β)

μ(X, Or) = lim μ(a, Or) ,

i.e., μ(a, O7) is the α-th critical (or main) value of Or).

COROLLARY 15. Sα?/ there is a standard model of

ZF, (3! x)(F(x) A Ord{x))y V= L .

Then there are models %, 2I2 \= ZF, (3! x){F{x) A Ord(x)), and at e 21̂

such that:

( i ) 21, μ F(α4) Λ Ord(α,).

(ii) ? ?
(iii)

Proo/. Let Z F * = Zi^U {(3! x)(F(x) A Ord(x))}. We reason as

follows in ZF* \J {V = L).

Let a be the unique ordinal satisfying F. So there is a unique

ordinal β satisfying the predicate x — μ(ωω, Oa), i.e., satisfying the

predicate (3τ)(F(7) Λ x = μ(ωω, Or)) - G(α).

Furthermore, given n-Player II has a winning strategy in

by proof of Theorem 14.

So U,.u lr= L,(3! *)(G(a;) Λ Ord(x)). So if
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Z F = ZF* U {V = L, 3! ίc(G(α;) Λ Ord(a ))}

then Z ί 7 has a standard model.
Also Vn, \ZF*U{V=L) player II has a winning strategy in

Hn«0n, <, O β >, <p{ω», Oβ), <, O«»

where i^(α) and Ord(a).

So Vn, ££, this fact. These are the hypotheses of Lemma 12.

REMARK. Corollary 15 may be improved for Oζ, ζ < 7 where 7 is
a recursive ordinal. (The subsequent notation and results in recursion
theory to be used in this remark all appear in [13].) In that event
we may weaken the hypothesis of Corollary 15 to the assumption of
the existence of an ω-model of ZF.

As 7 is recursive, there exists <R, a recursive linear order order-
isomorphic to < \ a. In particular as <R is recursive, < f = <R for
every ω-model SI of analysis and hence of set theory. Let

F(x) = (< \x~<B) A Ord(x)) .

Let SX be an ω-model of ZF. So SX t= (3! x)F(x). Say A h F[a]
(αε2l). By Theorem 14,

Now ^(ωω, Oα,^) is itself a recursive ordinal. This is best seen by
using Doner and Tarski's result that

μ{ωω, O2Ϊ) = μ{ω\ O2 r + 1) = ωθ2ΐ+2ω« .

Hence to show that μ(coω, Or) is recursive, it suffices to show that
aθτβ is recursive for α, β, 7 recursive. This is best done by defining
0{a, β, 7) on 0, the universal system of notations.

L e t g(a, x, y, z) =

x +oV iί z = 1

1 if z Φ 1, y — 1

x ifz^l,y = 2

Φa{Φa{%, v, z), x, w) Ίiz = 2W, y = 2V

3 5ei if z = 3-5% y = 2V

where φH = (Xn)(φa(φa(x, v, z), x, φe{n))

3-5^ if y = 3 5e

where φH = (Xri)(φa(x, φβ(ri), y))

0 Otherwise.
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So g is recursive. So there is a recursive function h such that

g(a, x, y, z) = φhia)(x, y, z) .

By the recursion theorem there is an n such that φn = φh[n). Let

So f(x, y, z) = x +

f(f(x, v, z), x, w)

0

if s = 1
ifzΦl,y = l
\ίzΦ\,y = 2
if s = 2W, y = 2v

if 2 = 3 5 e, 7/ = 2V

where φβ l = (Xn)(f(x, v, z), x, φe{n))

if y - 3 5e

where <?β2 - (\n)(f(x, φ.(n\ y))

Otherwise.
By another theorem of Doner and Tar ski we have,

aOQβ = α + β

aOr0 = 0 if 7 ^ 1
α θ r l = α if 7 ^ 1

<*Oλ(β + 1) - lim,<,(aO,/S)O,a if lim (λ)
aOrX = limβ<λ(a0rβ) if lim (λ).
So by induction on 0, we have if x, y, zeO, then

2/, | 0 and /, z) e 0 .

So if α, /5, 7 are recursive ordinals, then αOr/5 is a recursive ordinal.
In particular μ(ωω, Oa,<%) is a recursive ordinal. Let <s be a recursive
linear ordering such that < ^ Γ Oα, ^ ^ < s . Then define 0% according
to <s by induction on <s. It has an arithmetic definition. So as

ω, Oa,%), <Dom according to

, O|> = <Dom(< 5), < 5 , O | according to which has a

JJ truth-set as Dom(< 5 ), <s, 0^ according to <s are all arithmetic.

On the other hand, as 21 is an ω-model of set theory, P((o)^ is

an ω-model of analysis and ThP{ω) ^ Γ Th^. But the former is not Δ\

and so neither is Th% or Tr<On κ Aΐith )(<JO
a

1 έ). So as in the proof of

Corollary 8, if there is an ω-model SX of set theory, then there are

models 3^, 2l2 N ZF, 3! xF(x) and ordinals at e % such that
( i )
(ii)
(iii)
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(provided that in any ω-model, the unique ordinal a such that F(a)
is recursive).

Let 7 be a definable ordinal. Given an arithmetic function / we
define fr as follows:

ί/(tfi an) if oc, an, f(a, an) < 7
/.((*! αw) = j

(0 otherwise.

So by Lemma 9c, each fΊ is arithmetic.
Let Arithγ = {/r |/e Arith}.
We now proceed to show that appropriate ordinals can be found

so that we can show (a, <, A!, Arithry = (On, <, A\ Arith^> for vari-
ous Af S Arith. Once if we have shown this (provided that a is
provably less than On, so that it is less than On in all models) we
immediately can obtain not determined up to = results as in Coroll-
ary 15 above.

In order to obtain such appropriate a we must briefly consider
Hn in greater detail. Hn is an n move finite 2 person game. At
move i, player 1 choses a model %(i), an integer k(i) and k(i) points
αjf ••• a\%i in model 2XZ(<). Player 2 responds by choosing k(i) points
cvϊΓii)? in the other model. At the end Player 2 is said to win just
in case the correspondence aι

H <-» a)i i = 1 n, j — 1 k(ί) is a
partial isomorphism (with respect to the relations and operations of
% and Sl2).

So in a game Hn((a, <, A'>, <(O7̂ , <, A ; » if 2's winning strategy
can be constructed to preserve ordinals < 7 , then it is clear that the
partial isomorphism will also extend to Arith γ.

LEMMA 16. Player 2 has a winning strategy in Hn((μ(y + ωw), < »
preserving ordinals < γ .

Proof. 2's strategy is as follows:
For ordinals < 7 he leaves them fixed. For the ωω segment be-

tween 7 and 7 + coω "versus" the On segment ^>τ, 2 uses his win-
ning strategy from Hn((ωω, <>, (On, < » "shifted over by 7".

Let 7* = limΛ<ω ωa-n. Then clearly 7* Ξ> 7 (for 7 > 0).

LEMMA 17. Player 2 has a ivinning strategy in

preserving ordinals < 7 * .

Proof. One simply observes that in the winning strategy for 2



512 JOHN ROSENTHAL

defined by Ehrenfeucht in this game from the winning strategy for
2 in the game Hn(ζy + ωω, <>, ζOn, < » if ordinals < τ are preserved
in the latter game, then ordinals <7* are preserved in the former.

LEMMA 18. Player 2 has a τvinning strategy in

Hn«ω«r+ωa, <, +, x>,<0™, <, +, x »

preserving ordinals <7**.

Proof. As in Lemma 17.

THEOREM 19.

<ωωr+ωω, <, +, x,Arithr> = <On, < + , x,Arithr> .

Proof. As described above.

COROLLARY 20. Say there is a standard model of

ZF, (3! x)(F(x) A Ord(x)), V = L.

Then there are models 2Xi, 3t2 N= ZF, α̂  e A€ such that
( i ) % N F(α,) Λ
(ii)

% 2 ^ 5ί2 ^ ^
(iii) % =£ L % .

Proof. As in Corollary 15.

REMARKS. (1) If F(x) is a predicate of the form < {x p* <R

for some recursive well-ordering < Λ , then the hypothesis of corollary
20 may be weakened as were those of corollary 15 to supposing the
existence of ω-models of ZF.

(2) Doner claims that Lemma 18 may be extended to the state-
ment that 2 has a winning strategy in

Hn(ζμ(δ + or, O0, <, O>, <On, <, O »̂

preserving ordinals <δ. Hence we may conclude by similar arguments
to those above that the constructible sets are not determined up to =
by <, Arithδ, Or where S, 7 are definable ordinals. Again, as usual
the hypothesis may be weakened if both S, 7 are recursive ordinals.

(3) The pairing function p of Godel [8] can be shown by a
long tedious computation to be definable in terms of +, x . Hence in
any result where we have shown that the structure of L is not de-
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termined up to Ξ by <, Af where +, xεAf we may conclude that
the structure of L is not determined up to = by <, A' U {p}. Feferman
has pointed out to us that the pairing function q(a, β) = 2a(β + 1) is
immediately definable in terms of +, x and exponentiation (O2), and
hence if the structure of L is not determined upto Ξ by <, A' where
Oo, 0i> O2eAf then A' might as well contain q.

(4) As <O%, <gj, +3j, x^> = ω$°ω, <m, +2j, x^> and as

is not recursive for any model 31 of ZF, we may conclude that

Hence if ZF is consistent, then there are models 3 ,̂ 9X2 of ZF with

Identically we may conclude that if ZF is consistent then + ω , xω are
not determined up to Ξ by < where

0 otherwise

ot β if <x, β < (o

0 otherwise

and hence likewise the structure of L is not determined up to = by
<, + ω , xω (if ZF has co-models). Now let HFS be the hereditarily
finite sets. Then it is easily seen that there is a one-to-one onto de-
finable map of HFS into ω such that the image of ε and = are
arithmetic in the sense of recursion theory and hence in particular
definable in terms of +ω, xω. Also +ω, xω are definable in terms of ε
on HFS simply by the use of their recursive definitions. Hence if ZF
is consistent then the structure of HFS is not determined up to =
by <, and if ZF has ω-models then the structure of L is not deter-
mined up to = by the structure of HFS.

(5) On the other hand, as έ gives us in (On^ <, Arith^} (for
any model 21 of ZF) a model of ZF we may in this model give ex-
plicit definitions of all primitive recursive functions which are of course
definable in terms of έ and hence arithmetic and as h the function
mapping ordinals of this model isomorphically to On% is also primitive
recursive, we can pull these functions over to arithmetic functions
on On^. By the axiom schema of transfinite induction in ONT' these
are the original primitive recursive functions. So if ί:(Onu <x, έ ^ ^
(On2, < 2, ε2y then let i' — h2ihjι (where ht: On(On. gi,Si>^OUi) and one
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may immediately conclude that ir: ζθnu Arith^ ^ <Όw2, Arith2y. So
all arithmetic functions are determined up to p& by ε.

(6) Finally we observe, if we restrict the question if the struc-
ture of L is determined up to ^ by < merely to standard models,
then the answer, as is well-known, is yes because to show the I/s
are isomorphic we have available "real" transfinite induction in the
"real" world, i.e., in our metalanguage outside our models.
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