GENERALIZED FINAL RANK FOR ARBITRARY LIMIT ORDINALS

Doyle O. Cutler and Paul F. Dubois

Let G be a p-primary Abelian group. The final rank of G can be obtained in two equivalent ways: either as $\inf _{n \in \omega}\left\{r\left(p^{n} G\right)\right\}$ where $r\left(p^{n} G\right)$ is the rank of $p^{n} G$; or as $\sup \{r(G / B) \mid B$ is a basic subgroup of $G\}$. In fact it is known that there exists a basic subgroup of G such that $r(G / B)$ is equal to the final rank of G. In this paper are displayed two appropriate generalizations of the above definitions of final rank, $r_{\alpha}(G)$ and $s_{\alpha}(G)$, where α is a limit ordinal. It is shown that the two cardinals $r_{\alpha}(G)$ and $s_{\alpha}(G)$ are indeed the same for any limit ordinal α. In this context one can think of the usual final rank as " ω-final rank".

The final rank of a p-primary Abelian group G is $\inf _{n<\omega}\left\{r\left(p^{n} G\right)\right\}$ where $r\left(p^{n} G\right)$ means the rank of $p^{n} G$. The same cardinal number is obtained by taking $\sup _{B \in \Gamma} r(G / B)$ where Γ is the set of all basic subgroups of G. In [1] we defined for limit ordinals $\alpha, s_{\alpha}(G)=\inf _{\beta<\alpha} r\left(p^{\beta} G\right)$ and $r_{\alpha}(G)=\sup _{H \in \Gamma} r(G / H)$ where Γ is the set of all p^{α}-pure subgroups H of G such that G / H is divisible; it was shown that for accessible ordinals α that $r_{\alpha}(G)=s_{\alpha}(G)$. The proof given there strongly depended on the accessibility of α. In this paper it is proved that $r_{\alpha}(G)=s_{\alpha}(G)$ for any limit ordinal α, at the cost of a considerably more difficult argument.

Throughout we consider a reduced p-primary Abelian group G. We consider cardinal and ordinal numbers in the sense of von Neumann; that is, an ordinal number is a set, namely, the set of all smaller ordinals. Cardinal numbers are ordinal numbers that are not equivalent to any smaller ordinal. The cardinal number of a set Γ is denoted by $|\Gamma|$. The symbol ω denotes the first infinite ordinal. In general the notation and terminology is that of [2] or [3].

1. The lemmas. Let τ be a limit ordinal. We define the final τ-rank of G in two ways, which we will then show are equivalent. Ordinary final rank as defined in [2] corresponds to final ω-rank.

Definition.
(1) $s_{\tau}(G)=\inf _{\beta<\tau} r\left(p^{\beta} G[p]\right)$.
(2) $r_{\tau}(G)=\sup \{r(G / H): H \cong G, G / H$ is divisible, and $0 \rightarrow H \rightarrow$ $G \rightarrow G / H \rightarrow 0$ represents an element of $\left.p^{\tau} \operatorname{Ext}(G / H, H)\right\}$.

In [1] it is shown that $r_{\tau}(G) \leqq s_{\tau}(G)$. To show the converse we
will construct a p^{τ}-pure subgroup H of G with G / H divisible and $r(G / H)=s_{\tau}(G)$.

We prove the following lemma to simplify the problem and to illustrate some techniques of construction which we will sometimes use later in the paper without explicit proofs.

Lemma 0. (a) $r_{\tau}(G)=r_{\tau}\left(G_{\tau}\right)+r\left(p^{\tau} G\right)$ for any $p^{\tau} G$-high subgroup G_{τ}.
(b) $s_{\tau}(G)=s_{\tau}\left(G_{\tau}\right)+r\left(p^{\tau} G\right)$ for any $p^{\tau} G$-high subgroup G_{τ}.
(c) $\quad r_{\tau}(G) \geqq s_{\tau}(G)$ holds for all G if it holds for all G satisfying $p^{\tau} G=0$.

Proof. (a) and (b) together show (c). A $p^{\tau} G$-high subgroup G_{τ} satisfies $G[p]=G_{\tau}[p] \oplus\left(p^{\tau} G\right)[p],([4])$ and hence is $p^{\tau+1}$-pure (Th. 2.9 of [5]). It is easy to see that for $\alpha<\tau$,

$$
\left(p^{\alpha} G\right)[p]=\left(p^{\alpha} G_{\tau}\right)[p] \oplus\left(p^{\tau} G\right)[p]
$$

and (b) follows.
To prove (a), suppose H is a p^{τ}-pure subgroup of G_{τ} with G_{τ} / H divisible. Then H is p^{τ}-pure in G and $G / H \cong\left(G / G_{\tau}\right) /\left(G_{\tau} / H\right)$ is divisible since G / G_{τ} is divisible. For H a pure subgroup of G,

$$
r(G / H)=r((G / H)[p])=r(G[p] / H[p]) .
$$

Hence in this case

$$
r(G / H)=r\left(G_{\tau}[p] \oplus\left(p^{\tau} G\right)[p] / H[p]\right)=r\left(G_{\tau} / H\right)+r\left(p^{\tau} G[p]\right)
$$

Hence $r_{\tau}(G) \geqq r_{\tau}\left(G_{\tau}\right)+r\left(p^{\tau} G\right)$.
Now let H be a p^{τ}-pure subgroup of G with G / H divisible. Let $H[p]=S \bigoplus\left(p^{\tau} G \cap H\right)[p]$. Let K be a $p^{\tau} G$-high subgroup containing S, and let $\pi: G \rightarrow G / p^{\tau} G$ be the natural map. Then $(\pi(K))[p]=\pi(K[p])=$ $\pi\left(G_{\tau}[p]\right)$. Choose $S^{\prime} \subseteq G_{\tau}[p]$ such that $\pi\left(S^{\prime}\right)=\pi(S)$. We will then have that $r\left(G_{\tau}[p] / S^{\prime}\right)=r\left(\pi\left(G_{\tau}\right) / \pi(S)\right)=r(K[p] / S)$. Note that $\left\{S^{\prime},\left(p^{\tau} G\right)[p]\right\}=$ $\left\{S,\left(p^{\tau} G\right)[p]\right\}$ and so the p^{τ}-purity of H and the divisibility of G / H yield, for every $\alpha<\tau$,

$$
\begin{aligned}
\left\{p^{\alpha} G_{\tau}[p], S^{\prime}\right\} & =\left\{\left(p^{\alpha} G \cap G_{\tau}\right)[p], S^{\prime}\right\} \\
& =\left\{\left\{p^{\alpha} G[p], S^{\prime}\right\} \cap G_{\tau}[p]\right\} \\
& =\left\{\left\{p^{\alpha} G[p], S\right\} \cap G_{\tau}[p]\right\} \\
& =\left\{G[p] \cap G_{\tau}[p]\right\}=G_{\tau}[p] .
\end{aligned}
$$

We let L be such that $G_{\tau}[p]=L \oplus S^{\prime}$ and let M be L-high containing S^{\prime}. Then $M[p]=S^{\prime}, M$ is neat in $G_{\tau}[p]$ and by Th. 2.9 of [5], M is p^{τ}-pure in G_{τ}. Then

$$
\begin{aligned}
r(G / H) & =r\left(\left(K[p] \oplus\left(p^{\tau} G\right)[p]\right) /\left(S \oplus\left(p^{\tau} G \cap H\right)[p]\right)\right) \\
& =r(K[p] / S)+r\left(p^{\tau} G[p] /\left(p^{\tau} G \cap H\right)[p]\right) \\
& \leqq r\left(G_{\tau}[p] / S^{\prime}\right)+r\left(p^{\tau} G[p]\right) \\
& =r\left(G_{\tau} / M\right)+r\left(p^{\tau} G\right) \\
& \leqq r_{\approx}\left(G_{\tau}\right)+r\left(p^{\tau} G\right)
\end{aligned}
$$

and (a) is proved.
Hence we consider only groups G with $p^{\top} G=0$. We will need the following four technical lemmas.

Lemma 1. Let G be a p-primary Abelian group of length τ, a limit ordinal. Let $S \subseteq G[p]$ be such that $S \cap\left(p^{\gamma} G\right)[p] \neq 0$ for all $\gamma<\tau$. Then there exists $S^{\prime} \subseteq S$ such that $r\left(S / S^{\prime}\right) \geqq 1$ and $\left\{S^{\prime},\left(p^{\gamma} G\right)[p]\right\}=$ $\left\{S,\left(p^{\gamma} G\right)[p]\right\}$ for all $\gamma<\tau$.

Proof. Let $a \in S(a \neq 0)$. We define a family $\left\{R_{j}\right\}_{j \ll}$ inductively as follows:

Write $S=L_{1} \oplus p G \cap S$. If $a \notin L_{1}$, let $R_{1}=L_{1}$. If $a \in L_{1}$, let $\left\{y_{\alpha}\right\}_{\alpha \in \Gamma}$ be a basis for L_{1}. Then $a=\sum_{\alpha \in \Gamma} a_{\alpha} y_{\alpha}$ where $0 \leqq a_{\alpha}<p$ and $a_{\alpha}=0$ for all but finitely many α. Choose $\alpha_{0} \in \Gamma$ so that $a_{\alpha_{0}} \neq 0$. Let $R_{1}=\sum_{\alpha \in \Gamma-\left\{\alpha_{0}\right\}}\left\langle y_{\alpha}\right\rangle \oplus\left\langle y_{\alpha_{0}}-b\right\rangle$ where $b \in p G \cap S(b \neq 0)$. Then $S=$ $R_{1} \oplus p G \cap S$ and $a \notin R_{1}$. Inductively, suppose $\left\{R_{i}\right\}_{i<r}$ has been defined such that $\sum_{i \leq k<r} R_{i} \oplus p^{k} G \cap S=S$ for each $k<\gamma$ and $a \notin \sum_{i<r} R_{i}$. If $\gamma-1$ exists we have $\sum_{i<r} R_{i} \oplus p^{i-1} G \cap S=S$. We choose L_{r} so that $L_{r} \oplus p^{\gamma} G \cap S=p^{r-1} G \cap S$. If $a \notin \sum_{i<r} R_{i} \oplus L_{\gamma}$ we let $R_{\gamma}=L_{i}$. Otherwise, let $\left\{y_{\lambda}\right\}_{\lambda \in \Gamma}$ be a basis of L_{γ}. Then $a=x+\sum_{\lambda_{\in \Gamma}} a_{\lambda} y_{\lambda}\left(0 \leqq a_{\lambda}<p\right.$, $x \in \sum_{i<r} R_{i}$). By the induction hypothesis not all a_{2} are zero. Let $\lambda_{0} \in \Gamma$ such that $\alpha_{\lambda_{0}} \neq 0$, and let $R_{r}=\sum_{\lambda \in \Gamma-\left\{\lambda_{0}\right\}}\left\langle y_{\lambda}\right\rangle \oplus\left\langle y_{\lambda_{0}}-b\right\rangle\left(b \in p^{r} G \cap\right.$ $S, b \neq 0$). It follows that $a \notin \sum_{i<\gamma+1} R_{i}$ and $\sum_{i \leq k \leq r} R_{i} \oplus p^{k} G \cap S=S$.

If γ is a limit ordinal, note that $\sum_{i<r} R_{i} \cap p^{\gamma} G=0$. Choose L_{r} such that $\sum_{i<r} R_{i} \oplus L_{r} \oplus p^{\gamma} G \cap S=S$. Either $a \notin \sum_{i<\gamma} R_{i} \oplus L_{\gamma}$ in which case we let $R_{r}=L_{r}$, or $a \in \sum_{i<r} R_{i} \oplus L_{r}$ and we modify L_{r} as above to get R_{r}.

By transfinite induction, we obtain a family $\left\{R_{i}\right\}_{i<\tau}$ such that $\sum_{i \leq k} R_{i} \oplus p^{k} G \cap S=S$ for all $k<\tau$ and $a \notin \sum_{i \ll} R_{i}$. Let $S^{\prime}=\sum_{i<\tau} R_{i}$ and the conditions of the lemma are satisfied.

The general idea of the above proof for S summable was communicated to the authors by Paul Hill.

Lemma 2. Let G be a p-primary Abelian group of length τ a limit ordinal. Let $\left\{R_{j}\right\}_{j<\eta}, \eta$ a limit ordinal, be a collection of subsocles of G satisfying the following conditions:
(1) $\sum_{j<\eta} R_{j}$ is direct,
(2) $r\left(R_{j}\right)=\$$ is fixed, and
(3) For each $\lambda<\tau$, there exists $j<\eta$ such that $0 \neq R_{j} \cong p^{\lambda} G[p]$. Then there exists $S \subseteq \sum_{j<\eta} R_{j}$ such that
(a) For each $\lambda<\tau,\left\{S, p^{2} G[p]\right\}=\left\{\sum_{j<\eta} R_{j}, p^{\lambda} G[p]\right\}$, and
(b) $\quad r\left(\left(\sum_{j<\eta} R_{j}\right) / S\right) \geqq \aleph$.

Proof. For each $j<\eta$, let $\left\{x_{j, \alpha}\right\}_{\alpha \in \Gamma}(|\Gamma|=\$)$ be a basis of R_{j}. Let $S_{\alpha}=\sum_{j<\eta}\left\langle x_{j \alpha}\right\rangle$. Note that $\sum_{\alpha \in \Gamma} S_{\alpha}$ is direct and $\sum_{\alpha \in \Gamma} S_{\alpha}=\sum_{\alpha<\eta} R_{j}$. Let $\lambda<\tau$. Then $S_{\alpha} \cap p^{\lambda} G[p] \neq 0$ by hypothesis (3). Hence by Lemma 1 , there exists, for each $\alpha \in \Gamma, T_{\alpha} \subseteq S_{\alpha}$ such that

$$
\left\{S_{\alpha}, p^{\lambda} G[p]\right\}=\left\{T_{\alpha}, p^{\lambda} G[p]\right\}
$$

for all $\lambda<\tau$ and $r\left(S_{\alpha} / T_{\alpha}\right) \geqq$. Let $S=\sum_{\alpha \in \Gamma} T_{\alpha}$. Then $\left\{S, p^{\lambda} G[p]\right\}=$ $\left\{\sum S_{\alpha}, p^{\lambda} G[p]\right\}=\left\{\sum_{j<\eta} R_{j}, p^{\lambda} G[p]\right\}$ for all $\lambda<\tau$ and $r\left(\left(\sum_{j<\eta} R_{j}\right) / S\right)=$ $\sum_{\alpha \in \Gamma} r\left(S_{\alpha} / T_{\alpha}\right) \geqq \$$.

Lemma 3. Let G be a p-primary Abelian group of length τ a limit ordinal. Let σ be an infinite initial ordinal such that $\sigma \leqq \tau$. Let $\left\{R_{j}\right\}_{j<o}$ be a collection of subsocles of G satisfying:
(1) $\sum_{j<a} R_{j}$ is direct.
(2) For each $\lambda<\tau$ there exists $j<\sigma$ such that for all $i \geqq j$, $R_{i} \cong p^{2} G[p]$.
(3) $\left|\left\{j \mid R_{j} \neq 0\right\}\right|=\sigma$.

Then there exists $S \subseteq \sum_{j<\sigma} R_{j}$ such that
(a) $\left\{S, p^{\lambda} G[p]\right\}=\left\{\sum_{j<\sigma} R_{j}, p^{\lambda} G[p]\right\}$ for all $\lambda<\tau$, and
(b) $\left|\left(\sum_{j<\sigma} R_{j}\right) / S\right| \geqq \sigma$.

Proof. Let $x_{j} \in R_{j}\left(x_{j} \neq 0\right)$ for each $j \in\left\{j \mid R_{j} \neq 0\right\}=\Gamma$. Then we may write Γ as the disjoint union $\Gamma=\bigcup_{i<\sigma} \Gamma_{i}$ such that $\left|\Gamma_{i}\right|=\sigma$ for each $i<\sigma$. Since σ is an initial ordinal, $\Gamma_{i} \nsubseteq \beta$ for any $\beta<\sigma$. Hence $\sum_{j \in \Gamma_{i}}\left\langle x_{j}\right\rangle$ satisfies the conditions of Lemma 1. Hence there exists a subgroup $S_{i} \subseteq \sum_{j \in \Gamma_{i}}\left\langle x_{j}\right\rangle$ such that $\left\{S_{i}, p^{\lambda} G[p]\right\}=\left\{\sum_{j \in \Gamma_{i}}\left\langle x_{j}\right\rangle\right.$, $\left.p^{\lambda} G[p]\right\}$ for all $\lambda<\tau$, and $r\left(\left(\sum_{j \in \Gamma_{i}}\left\langle x_{j}\right\rangle\right) / S_{i}\right) \geqq 1$. Let Q be such that $\sum_{i<\sigma} \sum_{r_{i}}\left\langle x_{j}\right\rangle \oplus Q=\sum_{j<\sigma} R_{j}$, and define $S=\sum_{i<\sigma} S_{i} \oplus Q$. Then S satisfies the desired conditions.

Lemma 4. Let G be a p-primary Abelian group of length τ a limit ordinal. Let $\left\{R_{j}\right\}_{j_{\epsilon \sigma}}(\sigma$ a limit ordinal, $\sigma \leqq \tau)$ be a collection of subsocles of G satisfying:
(1) $\sum_{j<\sigma} R_{j}$ is direct;
(2) For each $\lambda<\tau$, there exists $j<\sigma$ such that for all $j<i<\sigma$, $R_{i} \subseteq p^{\lambda} G[p] ;$ and
(3) For all $i<j<\sigma, r\left(R_{j}\right) \geqq r\left(R_{i}\right) \geqq|\sigma|$.

Then there exists a subgroup $S \subseteq \sum_{j<\sigma} R_{j}$ satisfying:
(a) $\left\{S, p^{\lambda} G[p]\right\}=\left\{\sum_{j<\sigma} R_{j}, p^{\lambda} G[p]\right\}$ for all $\lambda<\tau$.
(b) $\left|\left(\sum_{j<\sigma} R_{j}\right) / S\right|=\left|\sum_{j<\sigma} R_{j}\right|$.

Proof. Define Q_{β}^{α} for all $(\alpha, \beta) \in \sigma x \sigma$ as follows: Define $Q_{0}^{0}=R_{0}$ and $Q_{0}^{\alpha}=0$ for all $\alpha<\sigma, \alpha>0$. We induct on the lower index. Suppose Q_{β}^{α} has been defined for all $\beta<\gamma<\sigma$ satisfying:
(1) For all $\alpha \leqq \beta<\gamma, r\left(Q_{\beta}^{\alpha}\right)=r\left(Q_{\alpha}^{\alpha}\right)$;
(2) $Q_{\beta}^{\alpha}=0$ if $\beta<\alpha<\sigma$;
(3) For $\beta<\sigma, r\left(Q_{\beta}^{\beta}\right) \neq 0$ if and only if $r\left(R_{\beta}\right)>r\left(R_{\alpha}\right)$ for all $\alpha<\beta$; and
(4) $\quad R_{\beta}=\sum_{\alpha \in \sigma} Q_{\beta}^{\alpha}$.

Suppose $\gamma-1$ exists. If $r\left(R_{\gamma}\right)=r\left(R_{\gamma-1}\right)$, let $\varphi: R_{\gamma-1} \rightarrow R_{r}$ be an isomorphism and define $Q_{r}^{\alpha}=\varphi\left(Q_{\gamma-1}^{\alpha}\right)$ for all $\alpha \in \sigma$. If $r\left(R_{\gamma-1}\right)<r\left(R_{r}\right)$ we first write $R_{r}=S \bigoplus R$ where $R \cong R_{\gamma-1}$ (under an isomorphism φ). Let $Q_{r}^{\alpha}=\varphi\left(Q_{r-1}^{\alpha}\right)$ for $\alpha<\gamma, Q_{r}^{r}=S$, and $Q_{r}^{\alpha}=0$ for $\alpha>\gamma$.

Suppose γ is a limit ordinal. If $r\left(R_{r}\right)=r\left(R_{\beta}\right)$ for some $\beta<\gamma$, then $R_{\gamma} \cong R_{\alpha}$ for all $\beta \leqq \alpha<\gamma$. Let φ be an isomorphism from R_{β} onto R_{r} and let $Q_{r}^{\alpha}=\varphi\left(Q_{\beta}^{\alpha}\right)$ for all $\alpha<\sigma$.

If for some $\beta<\gamma, r\left(R_{\gamma}\right)>r\left(R_{\beta}\right) \geqq r\left(R_{\alpha}\right)$ for all $\alpha<\gamma$ we write $R_{r}=R \oplus S$ where $R \cong R_{\beta}$ and proceed as in the case of the nonlimit ordinal.

Finally suppose $r\left(R_{r}\right)>r\left(R_{\beta}\right)$ for all $\beta<\gamma$ and that there does not exist $\delta<\gamma$ such that $r\left(R_{\delta}\right) \geqq r\left(R_{\beta}\right)$ for all $\beta<\gamma$. Let $\pi=\sum_{\beta<r} r\left(R_{\beta}\right)$. Since $r\left(R_{r}\right)>r\left(R_{\beta}\right) \geqq|\sigma|, \beta<\gamma$, we have $\pi \leqq r\left(R_{\gamma}\right)$ and both of these cardinals are infinite. We may write R_{r} as $S \oplus R$ where $r(S)=\pi$. Divide a basis of S into two sets, $\left\{y_{\lambda}\right\}_{\lambda \in \pi}$ and $\left\{z_{\lambda}\right\}_{\lambda_{\in \pi}}$. Let $Q_{r}^{r}=R \oplus$ $\left\langle\left\{z_{\lambda}\right\}_{\lambda \in \pi}\right\rangle$, and noting that $\pi=\sum_{\alpha<\gamma} r\left(Q_{\alpha}^{\alpha}\right)$, write π as the disjoint union $\pi=\mathrm{U}_{\alpha<r} \pi_{\alpha}$ such that $\left|\pi_{\alpha}\right|=r\left(Q_{\alpha}^{\alpha}\right)$.

Let $Q_{\gamma}^{\alpha}=\left\langle\left\{y_{\lambda} \mid \lambda \in \pi_{\alpha}\right\}\right\rangle$, and we complete the induction. Note that by the construction that if R_{r} is the first to have rank ρ, then $r\left(Q_{r}^{r}\right)=\rho$.

Let $A=\left\{r\left(R_{j}\right) \mid j<\sigma\right\}$. For each $\rho \in \Lambda$ let j_{ρ} be the least element of σ such that $r\left(R_{j_{\rho}}\right)=\rho$. Then $Q_{j_{\rho}}^{j} \neq 0$ by construction. For each $\rho \in \Lambda$ consider the collection $\left\{Q_{\alpha}^{j}\right\}_{\alpha \in \Gamma_{\rho}}$ where $\Gamma_{\rho}=\left\{j \mid j_{\rho} \leqq j<\sigma\right\}$. Note that this collection satisfies the hypothesis of Lemma 2. Thus there exists a subgroup $S_{\rho} \subseteq \sum_{\alpha \in \Gamma_{\rho}} Q_{\alpha^{\prime}}^{j}$ such that $\left|\left(\sum_{\alpha \in \Gamma_{\rho}} Q_{\alpha}^{j} \rho\right) / S_{\rho}\right| \geqq \rho$, and for each $\lambda<\tau,\left\{S_{\rho}, p^{2} G[p]\right\}=\left\{\sum_{\alpha \in \Gamma_{\rho}} Q_{\alpha^{j}}^{j}, p^{2} G[p]\right\}$. Note that

$$
\sum_{\rho \in A} \sum_{\alpha \in F_{\rho}} Q_{\alpha}^{j} \rho=\sum_{j<\sigma} R_{j}
$$

since each nonzero Q_{α}^{α} is a $Q_{j_{\rho}^{j}}^{j}$ for some $\rho \in \Lambda$. Let $S=\sum_{\rho \in \Lambda} S_{\rho}$. Then

$$
\left|\left(\sum_{j<\sigma} R_{j}\right) / S\right|=\sum_{\rho \in A}\left|\left(\sum_{\alpha \in \Gamma} Q_{\alpha}^{j} \rho\right) / S_{\rho}\right| \geqq \sum_{\rho \in A} \rho=\sum_{j<\sigma} r\left(R_{j}\right)=\left|\sum_{j<\sigma} R_{j}\right|
$$

(Note that we use the last part of condition (3) for the second equality). Also for each $\lambda<\tau,\left\{S,\left(p^{\lambda} G\right)[p]\right\}=\left\{\sum_{j<\sigma} R_{j},\left(p^{\lambda} G\right)[p]\right\}$.

2. The Theorem.

Theorem. Let G be a reduced p-primary Abelian group. Then $r_{\tau}(G)=s_{\tau}(G)$.

Proof. As indicated in the introduction we may assume that the length of G is τ. Let $\lambda<\tau$ be such that $\left|p^{2} G\right|=s_{\tau}(G)$. Then there exists an ordinal β such that $\tau=\lambda+\beta$, and the length of $p^{2} G$ is β. Now $r_{\tau}(G) \geqq r_{\beta}\left(p^{\lambda} G\right)$ (Use [5, Th. 2.9]) and $s_{\tau}(G)=s_{\beta}\left(p^{\lambda} G\right)$. Hence we need only show $r_{\beta}\left(p^{\lambda} G\right)=s_{\beta}\left(p^{\lambda} G\right)$. Thus we may consider only those groups G with length τ and $r(G)=s_{\tau}(G)$.

Let Γ be the set of all ordinals β such that there exists a one-to-one order preserving map f_{β} from β into τ such that $\bigcup_{\alpha<\beta} f_{\beta}(\alpha)=\tau$. Let σ be the least element of Γ and $f=f_{\sigma}$. It follows easily from Theorem 13.4.4 of [6] that σ is an initial ordinal.

Define a set of subgroups $\left\{P_{\alpha}\right\}_{\alpha<\sigma}$ of $G[p]$ as follows: Let P_{0} be such that $G[p]=P_{0} \oplus\left(p^{f(0)} G\right)[p]$. Assuming that P_{α} has been defined for all $\alpha<\beta<\sigma$, define P_{β} such that $G[p]=\sum_{\alpha<\beta} P_{\alpha} \oplus P_{\beta} \oplus\left(p^{f(\beta)} G\right)[p]$. This procedure is inspired by [3].

Choose λ_{0} such that $\left|\sum_{i_{0} \leq i<\sigma} P_{i}\right|=\inf _{\lambda<\sigma}\left|\sum_{\lambda \leq i<\sigma} P_{i}\right|$. By the choice of σ, we have that $\left[\lambda_{0}, \sigma\right)=\sigma$. Hence we assume henceforth that $\left|\sum_{i<\sigma} P_{i}\right|=\inf _{i<\sigma}\left|\sum_{i \leq i<\sigma} P_{i}\right|$. We may, in fact, assume each $P_{\alpha}, \alpha<\sigma$ is nonzero, again because σ is regular (see [6]).

Let Q be such that $\sum_{i<\sigma} P_{i} \oplus Q=\sum_{i<\sigma}$ (the original P_{i}). Then note that for each $\lambda<\tau,\left\{\sum_{i<\sigma} P_{i} \oplus Q,\left(p^{\lambda} G\right)[p]\right\}=G[p]$. Let $M=$ $\sum_{i<\sigma} P_{i}$.

Case I. Suppose $|M|<s_{\tau}(G)$. Then [5, Th. 2.9] $M \oplus Q$ supports a p^{τ}-pure subgroup K of G with G / K divisible and $|G / K| \geqq s_{\tau}(G)$. So we assume $|M| \geqq s_{\tau}(G)$.

Case II (A). Suppose $|M|=\sigma$. Then by Lemma 3 there exists a subsocle S of M such that $|M / S| \geqq \sigma \geqq s_{\tau}(G)$, and $\left\{S,\left(p^{2} G\right)[p]\right\}=$ $\left\{M,\left(p^{2} G\right)[p]\right\}$ for all $\lambda<\tau$. Thus $S \oplus Q$ supports a p^{τ}-pure subgroup K of G with G / K divisible and $|G / K| \geqq s_{\tau}(G)$.
(B). Suppose $|M|>\sigma$. Then construct a family of subsocles $\left\{R_{i}\right\}_{i \leq o}$ inductively as follows: Let $R_{0}=\sum_{i<\lambda_{1}} P_{i}$ where λ_{1} is the least ordinal such that $\left|\sum_{i<\lambda_{1}} P_{i}\right| \geqq \sigma$. Assuming R_{α} has been defined for all $\alpha<\beta$, define $R_{\beta}=\sum_{\lambda_{\beta} \leq i<\lambda_{\beta+1}} P_{i}$ where λ_{β} is the least element of σ such that $P_{\lambda_{\beta}} \cap R_{\alpha}=0$ for all $\alpha<\beta$, and $\lambda_{\beta+1}$ is the least element of $\sigma+1$ such that $\left|\sum_{\lambda_{\beta} \leq i<\lambda_{\beta+1}} P_{i}\right| \geqq\left|R_{\alpha}\right|$ for all $\alpha<\beta$.

If λ_{β} does not exist set $R_{\beta}=0$. It will be seen below that if λ_{β} exists, $\lambda_{\beta+1}$ exists.

Note that $R_{\sigma}=0$ since σ is an initial ordinal such that if $\beta<\sigma, \beta$ is not cofinal with σ (i.e., σ is regular). Note that $\sum_{i<\sigma} P_{i}=\sum_{i<\sigma} R_{i}$. If not, let η be the least element of $\sigma+1$ such that $R_{\eta}=0$. If $\lambda_{\eta}=\sigma$ then $\sum_{i<\sigma} P_{i}=\sum_{i<\eta} R_{i}$. If $\lambda_{\eta}<\sigma$, then $\left|\sum_{\lambda_{\eta} \leq i<\sigma} P_{i}\right|=\left|\sum_{i<\sigma} P_{i}\right| \geqq\left|R_{\alpha}\right|$ for all $\alpha<\eta$. Hence $R_{\eta} \neq 0$, a contradiction. Hence $\sum_{i<\sigma} R_{i}=\sum_{i<\sigma} P_{i}$.

Let η be the least element of $\sigma+1$ such that $R_{\eta}=0$. Suppose η is not a limit ordinal. Let $\eta=\gamma+1$. Then $R_{\gamma}=\sum_{i_{\gamma} \leq i<\sigma} P_{i}$ and $\left|R_{\gamma}\right| \geqq\left|R_{\alpha}\right|$ for all $\alpha<\gamma$. Construct a family $\left\{R_{r}^{i}\right\}_{i \leq \sigma}$ as above replacing 0 by λ_{i}. Let η_{1} be the least ordinal such that $R_{r}^{\eta_{1}}=0$. Suppose η_{1} is not a limit ordinal. Let $\eta_{1}=\gamma_{1}+1$. Then $\left|R_{r}^{r_{1}}\right|>\left|R_{r}^{\alpha}\right|$ for all $\alpha<\gamma_{1}$. In fact, $\left|R_{r}^{\gamma_{1}}\right|>\sup _{\alpha<r_{1}}\left|R_{r}^{\chi}\right|$ since $\left|R_{r}^{r_{1}}\right|=\left|R_{r}\right|$ and assuming otherwise we would have $R_{r}=\left(\sum_{\alpha<r_{1}} R_{r}^{\alpha}\right) \oplus R_{r}^{r_{1}}$ with $\left|\sum_{\alpha<r_{1}} R_{r}^{\alpha}\right|=\left|R_{r}\right|$ contradicting the construction of R_{γ}. Hence there exists $i, \lambda_{r_{1}} \leqq i<\sigma$ such that $\left|P_{i}\right| \geqq \sup _{\alpha<r_{1}}\left|R_{r}^{\alpha}\right|$. This contradicts the construction of $R_{r}^{\gamma_{1}}$. Hence η_{1} is a limit ordinal.

Hence in either case (η or η_{1} a limit ordinal) there exists a family of subsocles $\left\{R_{i}\right\}_{i<\eta}$ of $G[p]$ such that $\left|\sum_{i<\eta} R_{i}\right|=\left|\sum_{i<\sigma} P_{i}\right|$ and satisfying the conditions of Lemma 4. Thus there exists a subsocle S of $\sum_{i<\eta} R_{i}$ satisfying conditions (a) and (b) of Lemma 4. Now $\sum_{i<\eta} R_{i}$ may not be all of $\sum_{i<o}$ (the original P_{i}) and so we let Q^{\prime} be such that $\sum_{i<\sigma}$ (the original P_{i}) $=\sum_{i<\eta} R_{i} \oplus Q^{\prime}$. We then have

$$
G[p]=\left\{\sum_{i<r^{\prime}} R_{i} \oplus Q^{\prime},\left(p^{\lambda} G\right)[p]\right\}=\left\{S \oplus Q^{\prime}, p^{\lambda} G[p]\right\}
$$

for each $\lambda<\tau$. Further,

$$
\left|G[p] / S \oplus Q^{\prime}\right| \geqq\left|\sum_{\nu<\eta} R_{i} / S\right| \geqq\left|\sum_{i<\eta} R_{i}\right|=|M|=s_{\tau}(G)
$$

Hence $S \oplus Q^{\prime}$ supports a p^{τ}-pure subgroup H of G such that $|G / H| \geqq$ $s_{\tau}(G)$. Thus $r_{\tau}(G) \geqq s_{\tau}(G)$. An application of this theorem appears in [1].

References

1. D. O. Cutler and P. F. Dubois, A generalization of final rank of primary abelian groups, Canadian J. Math., vol. XXII, No. 6, (1970), 1118-1122.
2. L. Fuchs, Abelian Groups, Budapest 1958.
3. J. Irwin and E. A. Walker, On N-high subgroups of Abelian groups, Pacific J. Math., 11 (1961).
4. I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954.
5. R. J. Nunke, Homology and direct sums of countable Abelian groups, Math. Zeitschr. (101), (1967) 182-212.
6. J. E. Rubin, Set Theory for the Mathematician, Holden-Day, San Francisco 1967.

Received January 20, 1970.
University of California, Davis

