GENERALIZED FINAL RANK FOR ARBITRARY LIMIT ORDINALS

DOYLE O. CUTLER AND PAUL F. DUBOIS

Let G be a p-primary Abelian group. The final rank of G can be obtained in two equivalent ways: either as $\inf_{n \in \omega} \{r(p^n G)\}\$ where $r(p^n G)$ is the rank of $p^n G$; or as $\sup \{r(G/B) \mid B\}$ is a basic subgroup of G}. In fact it is known that there exists a basic subgroup of G such that r(G/B) is equal to the final rank of G. In this paper are displayed two appropriate generalizations of the above definitions of final rank, $r_{\alpha}(G)$ and $s_{\alpha}(G)$, where α is a limit ordinal. It is shown that the two cardinals $r_{\alpha}(G)$ and $s_{\alpha}(G)$ are indeed the same for any limit ordinal α . In this context one can think of the usual final rank as " ω -final rank".

The final rank of a *p*-primary Abelian group *G* is $\inf_{n < \omega} \{r(p^n G)\}$ where $r(p^n G)$ means the rank of $p^n G$. The same cardinal number is obtained by taking $\sup_{B \in \Gamma} r(G/B)$ where Γ is the set of all basic subgroups of *G*. In [1] we defined for limit ordinals α , $s_\alpha(G) = \inf_{\beta < \alpha} r(p^\beta G)$ and $r_\alpha(G) = \sup_{H \in \Gamma} r(G/H)$ where Γ is the set of all p^α -pure subgroups *H* of *G* such that G/H is divisible; it was shown that for accessible ordinals α that $r_\alpha(G) = s_\alpha(G)$. The proof given there strongly depended on the accessibility of α . In this paper it is proved that $r_\alpha(G) = s_\alpha(G)$ for any limit ordinal α , at the cost of a considerably more difficult argument.

Throughout we consider a reduced *p*-primary Abelian group *G*. We consider cardinal and ordinal numbers in the sense of von Neumann; that is, an ordinal number is a set, namely, the set of all smaller ordinals. Cardinal numbers are ordinal numbers that are not equivalent to any smaller ordinal. The cardinal number of a set Γ is denoted by $|\Gamma|$. The symbol ω denotes the first infinite ordinal. In general the notation and terminology is that of [2] or [3].

1. The lemmas. Let τ be a limit ordinal. We define the final τ -rank of G in two ways, which we will then show are equivalent. Ordinary final rank as defined in [2] corresponds to final ω -rank.

DEFINITION.

(1) $s_{\tau}(G) = \inf_{\beta < \tau} r(p^{\beta}G[p]).$

(2) $r_r(G) = \sup \{r(G/H) \colon H \subseteq G, G/H \text{ is divisible, and } 0 \to H \to G \to G/H \to 0 \text{ represents an element of } p^r \operatorname{Ext} (G/H, H) \}.$

In [1] it is shown that $r_r(G) \leq s_r(G)$. To show the converse we

will construct a p^{r} -pure subgroup H of G with G/H divisible and $r(G/H) = s_{r}(G)$.

We prove the following lemma to simplify the problem and to illustrate some techniques of construction which we will sometimes use later in the paper without explicit proofs.

LEMMA 0. (a) $r_{\tau}(G) = r_{\tau}(G_{\tau}) + r(p^{\tau}G)$ for any $p^{\tau}G$ -high subgroup G_{τ} . (b) $s_{\tau}(G) = s_{\tau}(G_{\tau}) + r(p^{\tau}G)$ for any $p^{\tau}G$ -high subgroup G_{τ} .

(c) $r_{\tau}(G) \ge s_{\tau}(G)$ holds for all G if it holds for all G satisfying $p^{\tau}G = 0$.

Proof. (a) and (b) together show (c). A $p^{\tau}G$ -high subgroup G_{τ} satisfies $G[p] = G_{\tau}[p] \bigoplus (p^{\tau}G)[p]$, ([4]) and hence is $p^{\tau+1}$ -pure (Th. 2.9 of [5]). It is easy to see that for $\alpha < \tau$,

$$(p^{\alpha}G)[p] = (p^{\alpha}G_{\tau})[p] \bigoplus (p^{\tau}G)[p]$$

and (b) follows.

To prove (a), suppose H is a p^{τ} -pure subgroup of G_{τ} with G_{τ}/H divisible. Then H is p^{τ} -pure in G and $G/H \cong (G/G_{\tau})/(G_{\tau}/H)$ is divisible since G/G_{τ} is divisible. For H a pure subgroup of G,

$$r(G/H) = r((G/H)[p]) = r(G[p]/H[p])$$
.

Hence in this case

$$r(G/H) = r(G_{\tau}[p] \bigoplus (p^{\tau}G)[p]/H[p]) = r(G_{\tau}/H) + r(p^{\tau}G[p])$$
.

Hence $r_{\tau}(G) \geq r_{\tau}(G_{\tau}) + r(p^{\tau}G)$.

Now let H be a p^{r} -pure subgroup of G with G/H divisible. Let $H[p] = S \bigoplus (p^{r}G \cap H)[p]$. Let K be a $p^{r}G$ -high subgroup containing S, and let $\pi: G \to G/p^{r}G$ be the natural map. Then $(\pi(K))[p] = \pi(K[p]) = \pi(G_{\tau}[p])$. Choose $S' \subseteq G_{\tau}[p]$ such that $\pi(S') = \pi(S)$. We will then have that $r(G_{\tau}[p]/S') = r(\pi(G_{\tau})/\pi(S)) = r(K[p]/S)$. Note that $\{S', (p^{r}G)[p]\} = \{S, (p^{r}G)[p]\}$ and so the p^{r} -purity of H and the divisibility of G/H yield, for every $\alpha < \tau$,

$$egin{aligned} \{p^lpha G_{ au}[p],\,S'\} &= \{(p^lpha G\cap G_{ au})[p],\,S'\} \ &= \{\{p^lpha G[p],\,S'\}\cap G_{ au}[p]\} \ &= \{\{p^lpha G[p],\,S\}\cap G_{ au}[p]\} \ &= \{G[p]\cap G_{ au}[p]\} = G_{ au}[p] \ . \end{aligned}$$

We let L be such that $G_{\tau}[p] = L \bigoplus S'$ and let M be L-high containing S'. Then M[p] = S', M is neat in $G_{\tau}[p]$ and by Th. 2.9 of [5], M is p^{τ} -pure in G_{τ} . Then

$$egin{aligned} r(G/H) &= r((K[p] \oplus (p^ au G)[p])/(S \oplus (p^ au G \cap H)[p])) \ &= r(K[p]/S) + r(p^ au G[p]/(p^ au G \cap H)[p]) \ &\leq r(G_ au[p]/S') + r(p^ au G[p]) \ &= r(G_ au/M) + r(p^ au G) \ &\leq r_ au(G_ au) + r(p^ au G) \ &\leq r_ au(G_ au) + r(p^ au G) \end{aligned}$$

and (a) is proved.

Hence we consider only groups G with $p^{t}G = 0$. We will need the following four technical lemmas.

LEMMA 1. Let G be a p-primary Abelian group of length τ , a limit ordinal. Let $S \subseteq G[p]$ be such that $S \cap (p^{\tau}G)[p] \neq 0$ for all $\gamma < \tau$. Then there exists $S' \subseteq S$ such that $r(S/S') \geq 1$ and $\{S', (p^{\tau}G)[p]\} = \{S, (p^{\tau}G)[p]\}$ for all $\gamma < \tau$.

Proof. Let $a \in S(a \neq 0)$. We define a family $\{R_j\}_{j < \tau}$ inductively as follows:

Write $S = L_1 \bigoplus pG \cap S$. If $a \notin L_1$, let $R_1 = L_1$. If $a \in L_1$, let $\{y_a\}_{a \in \Gamma}$ be a basis for L_1 . Then $a = \sum_{\alpha \in \Gamma} a_\alpha y_\alpha$ where $0 \leq a_\alpha < p$ and $a_\alpha = 0$ for all but finitely many α . Choose $\alpha_0 \in \Gamma$ so that $a_{\alpha_0} \neq 0$. Let $R_1 = \sum_{\alpha \in \Gamma - \{\alpha_0\}} \langle y_\alpha \rangle \bigoplus \langle y_{\alpha_0} - b \rangle$ where $b \in pG \cap S$ $(b \neq 0)$. Then $S = R_1 \bigoplus pG \cap S$ and $a \notin R_1$. Inductively, suppose $\{R_i\}_{i < r}$ has been defined such that $\sum_{i \leq k < r} R_i \bigoplus p^k G \cap S = S$ for each $k < \gamma$ and $a \notin \sum_{i < r} R_i$. If $\gamma - 1$ exists we have $\sum_{i < r} R_i \bigoplus p^{\gamma-1}G \cap S = S$. We choose L_r so that $L_r \bigoplus p^r G \cap S = p^{r-1}G \cap S$. If $a \notin \sum_{i < r} R_i \bigoplus L_r$ we let $R_r = L_r$. Otherwise, let $\{y_i\}_{i \in \Gamma}$ be a basis of L_r . Then $a = x + \sum_{i \in \Gamma} a_i y_i (0 \leq a_i < p, x \in \sum_{i < r} R_i)$. By the induction hypothesis not all a_i are zero. Let $\lambda_0 \in \Gamma$ such that $a_{\lambda_0} \neq 0$, and let $R_r = \sum_{i < r-(\lambda_0)} \langle y_i \rangle \bigoplus \langle y_{\lambda_0} - b \rangle$ $(b \in p^r G \cap S = S, b \neq 0)$. It follows that $a \notin \sum_{i < r+1} R_i$ and $\sum_{i \leq k \leq r} R_i \oplus p^k G \cap S = S$.

If γ is a limit ordinal, note that $\sum_{i<\tau} R_i \cap p^{\tau}G = 0$. Choose L_{γ} such that $\sum_{i<\tau} R_i \bigoplus L_{\gamma} \bigoplus p^{\tau}G \cap S = S$. Either $a \notin \sum_{i<\tau} R_i \bigoplus L_{\gamma}$ in which case we let $R_{\gamma} = L_{\gamma}$, or $a \in \sum_{i<\tau} R_i \bigoplus L_{\gamma}$ and we modify L_{γ} as above to get R_{γ} .

By transfinite induction, we obtain a family $\{R_i\}_{i<\tau}$ such that $\sum_{i\leq k} R_i \bigoplus p^k G \cap S = S$ for all $k < \tau$ and $a \notin \sum_{i<\tau} R_i$. Let $S' = \sum_{i<\tau} R_i$ and the conditions of the lemma are satisfied.

The general idea of the above proof for S summable was communicated to the authors by Paul Hill.

LEMMA 2. Let G be a p-primary Abelian group of length τ a limit ordinal. Let $\{R_i\}_{i<\eta}$, η a limit ordinal, be a collection of subsocles of G satisfying the following conditions:

- (1) $\sum_{j < \eta} R_j$ is direct,
- (2) $r(R_j) = \mathbf{K}$ is fixed, and

(3) For each $\lambda < \tau$, there exists $j < \eta$ such that $0 \neq R_j \subseteq p^2 G[p]$. Then there exists $S \subseteq \sum_{j < \eta} R_j$ such that

- (a) For each $\lambda < \tau$, $\{S, p^{\lambda}G[p]\} = \{\sum_{j < \eta} R_j, p^{\lambda}G[p]\}, and$
- (b) $r((\sum_{j<\eta} R_j)/S) \ge \mathbf{X}.$

Proof. For each $j < \eta$, let $\{x_{j,\alpha}\}_{\alpha \in \Gamma} (|\Gamma| = \aleph)$ be a basis of R_j . Let $S_{\alpha} = \sum_{j < \eta} \langle x_{j \alpha} \rangle$. Note that $\sum_{\alpha \in \Gamma} S_{\alpha}$ is direct and $\sum_{\alpha \in \Gamma} S_{\alpha} = \sum_{\alpha < \eta} R_j$. Let $\lambda < \tau$. Then $S_{\alpha} \cap p^{\lambda}G[p] \neq 0$ by hypothesis (3). Hence by Lemma 1, there exists, for each $\alpha \in \Gamma$, $T_{\alpha} \subseteq S_{\alpha}$ such that

$$\{S_{\alpha}, p^{\lambda}G[p]\} = \{T_{\alpha}, p^{\lambda}G[p]\}$$

for all $\lambda < \tau$ and $r(S_{\alpha}/T_{\alpha}) \geq 1$. Let $S = \sum_{\alpha \in \Gamma} T_{\alpha}$. Then $\{S, p^{\lambda}G[p]\} = \{\sum_{s < \eta} R_{j}, p^{\lambda}G[p]\} = \{\sum_{j < \eta} R_{j}, p^{\lambda}G[p]\}$ for all $\lambda < \tau$ and $r((\sum_{j < \eta} R_{j})/S) = \sum_{\alpha \in \Gamma} r(S_{\alpha}/T_{\alpha}) \geq \bigstar$.

LEMMA 3. Let G be a p-primary Abelian group of length τ a limit ordinal. Let σ be an infinite initial ordinal such that $\sigma \leq \tau$. Let $\{R_j\}_{j<\sigma}$ be a collection of subsocles of G satisfying:

(1) $\sum_{j < \sigma} R_j$ is direct.

(2) For each $\lambda < \tau$ there exists $j < \sigma$ such that for all $i \ge j$, $R_i \subseteq p^{\lambda}G[p]$.

 $(3) |\{j | R_j \neq 0\}| = \sigma.$

Then there exists $S \subseteq \sum_{j < \sigma} R_j$ such that

- (a) $\{S, p^{\lambda}G[p]\} = \{\sum_{j < \sigma} R_j, p^{\lambda}G[p]\} \text{ for all } \lambda < \tau, \text{ and } \lambda < \tau, \lambda < \tau \}$
- (b) $|(\sum_{j<\sigma} R_j)/S| \geq \sigma$.

Proof. Let $x_j \in R_j$ $(x_j \neq 0)$ for each $j \in \{j \mid R_j \neq 0\} = \Gamma$. Then we may write Γ as the disjoint union $\Gamma = \bigcup_{i < \sigma} \Gamma_i$ such that $|\Gamma_i| = \sigma$ for each $i < \sigma$. Since σ is an initial ordinal, $\Gamma_i \not\subseteq \beta$ for any $\beta < \sigma$. Hence $\sum_{j \in \Gamma_i} \langle x_j \rangle$ satisfies the conditions of Lemma 1. Hence there exists a subgroup $S_i \subseteq \sum_{j \in \Gamma_i} \langle x_j \rangle$ such that $\{S_i, p^2G[p]\} = \{\sum_{j \in \Gamma_i} \langle x_j \rangle, p^2G[p]\}$ for all $\lambda < \tau$, and $r((\sum_{i \in \Gamma_i} \langle x_i \rangle)/S_i) \ge 1$. Let Q be such that $\sum_{i < \sigma} \sum_{\Gamma_i} \langle x_j \rangle \bigoplus Q = \sum_{j < \sigma} R_j$, and define $S = \sum_{i < \sigma} S_i \bigoplus Q$. Then Ssatisfies the desired conditions.

LEMMA 4. Let G be a p-primary Abelian group of length τ a limit ordinal. Let $\{R_j\}_{j\in\sigma}$ (σ a limit ordinal, $\sigma \leq \tau$) be a collection of subsocles of G satisfying:

(1) $\sum_{j < \sigma} R_j$ is direct;

(2) For each $\lambda < \tau$, there exists $j < \sigma$ such that for all $j < i < \sigma$, $R_i \subseteq p^{\lambda}G[p]$; and

(3) For all $i < j < \sigma$, $r(R_j) \ge r(R_i) \ge |\sigma|$.

348

Then there exists a subgroup $S \subseteq \sum_{j < \sigma} R_j$ satisfying:

(a) $\{S, p^{\lambda}G[p]\} = \{\sum_{j < \sigma} R_j, p^{\lambda}G[p]\} \text{ for all } \lambda < \tau.$

(b) $|(\sum_{j < \sigma} R_j)/S| = |\sum_{j < \sigma} R_j|.$

Proof. Define Q_{β}^{α} for all $(\alpha, \beta) \in \sigma x \sigma$ as follows: Define $Q_{0}^{0} = R_{0}$ and $Q_{0}^{\alpha} = 0$ for all $\alpha < \sigma, \alpha > 0$. We induct on the lower index. Suppose Q_{β}^{α} has been defined for all $\beta < \gamma < \sigma$ satisfying:

 $(1) \quad \text{For all } \alpha \leq \beta < \gamma, \, r(Q^{\alpha}_{\scriptscriptstyle\beta}) = r(Q^{\alpha}_{\scriptscriptstyle\alpha});$

 $(2) \quad Q^{\alpha}_{\beta} = 0 \ \text{if} \ \beta < \alpha < \sigma;$

 $(3) \quad \text{For} \ \ \beta < \sigma, \, r(Q_\beta^\beta) \neq 0 \ \ \text{if and only if} \ \ r(R_\beta) > r(R_\alpha) \ \ \text{for all} \\ \alpha < \beta; \ \text{and}$

(4) $R_{\beta} = \sum_{\alpha \in \sigma} Q_{\beta}^{\alpha}$.

Suppose $\gamma - 1$ exists. If $r(R_{\gamma}) = r(R_{\gamma-1})$, let $\varphi: R_{\gamma-1} \to R_{\gamma}$ be an isomorphism and define $Q_{\gamma}^{\alpha} = \varphi(Q_{\gamma-1}^{\alpha})$ for all $\alpha \in \sigma$. If $r(R_{\gamma-1}) < r(R_{\gamma})$ we first write $R_{\gamma} = S \bigoplus R$ where $R \cong R_{\gamma-1}$ (under an isomorphism φ). Let $Q_{\gamma}^{\alpha} = \varphi(Q_{\gamma-1}^{\alpha})$ for $\alpha < \gamma, Q_{\gamma}^{\gamma} = S$, and $Q_{\gamma}^{\alpha} = 0$ for $\alpha > \gamma$.

Suppose γ is a limit ordinal. If $r(R_{\gamma}) = r(R_{\beta})$ for some $\beta < \gamma$, then $R_{\gamma} \cong R_{\alpha}$ for all $\beta \le \alpha < \gamma$. Let φ be an isomorphism from R_{β} onto R_{γ} and let $Q_{\gamma}^{\alpha} = \varphi(Q_{\beta}^{\alpha})$ for all $\alpha < \sigma$.

If for some $\beta < \gamma$, $r(R_{\gamma}) > r(R_{\beta}) \ge r(R_{\alpha})$ for all $\alpha < \gamma$ we write $R_{\gamma} = R \bigoplus S$ where $R \cong R_{\beta}$ and proceed as in the case of the non-limit ordinal.

Finally suppose $r(R_{\gamma}) > r(R_{\beta})$ for all $\beta < \gamma$ and that there does not exist $\delta < \gamma$ such that $r(R_{\delta}) \ge r(R_{\beta})$ for all $\beta < \gamma$. Let $\pi = \sum_{\beta < \gamma} r(R_{\beta})$. Since $r(R_{\gamma}) > r(R_{\beta}) \ge |\sigma|, \beta < \gamma$, we have $\pi \le r(R_{\gamma})$ and both of these cardinals are infinite. We may write R_{γ} as $S \bigoplus R$ where $r(S) = \pi$. Divide a basis of S into two sets, $\{y_{\lambda}\}_{\lambda \in \pi}$ and $\{z_{\lambda}\}_{\lambda \in \pi}$. Let $Q_{\gamma}^{\gamma} = R \bigoplus$ $\langle \{z_{\lambda}\}_{\lambda \in \pi} \rangle$, and noting that $\pi = \sum_{\alpha < \gamma} r(Q_{\alpha}^{\alpha})$, write π as the disjoint union $\pi = \bigcup_{\alpha < \gamma} \pi_{\alpha}$ such that $|\pi_{\alpha}| = r(Q_{\alpha}^{\alpha})$.

Let $Q_{\tau}^{\alpha} = \langle \{y_{\lambda} | \lambda \in \pi_{\alpha} \} \rangle$, and we complete the induction. Note that by the construction that if R_{τ} is the first to have rank ρ , then $r(Q_{\tau}^{\tau}) = \rho$.

Let $\Lambda = \{r(R_j) | j < \sigma\}$. For each $\rho \in \Lambda$ let j_{ρ} be the least element of σ such that $r(R_{j_{\rho}}) = \rho$. Then $Q_{j_{\rho}}^{j_{\rho}} \neq 0$ by construction. For each $\rho \in \Lambda$ consider the collection $\{Q_{\alpha}^{j_{\rho}}\}_{\alpha \in \Gamma_{\rho}}$ where $\Gamma_{\rho} = \{j | j_{\rho} \leq j < \sigma\}$. Note that this collection satisfies the hypothesis of Lemma 2. Thus there exists a subgroup $S_{\rho} \subseteq \sum_{\alpha \in \Gamma_{\rho}} Q_{\alpha}^{j_{\rho}}$ such that $|(\sum_{\alpha \in \Gamma_{\rho}} Q_{\alpha}^{j_{\rho}})/S_{\rho}| \geq \rho$, and for each $\lambda < \tau$, $\{S_{\rho}, p^{2}G[p]\} = \{\sum_{\alpha \in \Gamma_{\rho}} Q_{\alpha}^{j_{\rho}}, p^{2}G[p]\}$. Note that

$$\sum\limits_{
ho \, \epsilon \, \Lambda} \, \sum\limits_{lpha \, \epsilon \, \Gamma_
ho} \, Q^{j}_{lpha^
ho} = \, \sum\limits_{j < \sigma} \, R_j$$

since each nonzero Q^{α}_{α} is a $Q^{j}_{\rho}_{\rho}$ for some $\rho \in \Lambda$. Let $S = \sum_{\rho \in \Lambda} S_{\rho}$. Then

$$|(\sum\limits_{j<\sigma}R_j)/S| = \sum\limits_{
ho \; \epsilon \; \Lambda} |(\sum\limits_{lpha \; \epsilon \; \Gamma} \; Q^{j}_{lpha^{
ho}})/S_{
ho}| \geqq \sum\limits_{
ho \; \epsilon \; \Lambda}
ho = \sum\limits_{j<\sigma} r(R_j) = |\sum\limits_{j<\sigma} \; R_j| \; .$$

(Note that we use the last part of condition (3) for the second equality). Also for each $\lambda < \tau$, $\{S, (p^{\lambda}G)[p]\} = \{\sum_{j < \sigma} R_j, (p^{\lambda}G)[p]\}$.

2. The Theorem.

THEOREM. Let G be a reduced p-primary Abelian group. Then $r_{\tau}(G) = s_{\tau}(G)$.

Proof. As indicated in the introduction we may assume that the length of G is τ . Let $\lambda < \tau$ be such that $|p^{\lambda}G| = s_{\tau}(G)$. Then there exists an ordinal β such that $\tau = \lambda + \beta$, and the length of $p^{\lambda}G$ is β . Now $r_{\tau}(G) \geq r_{\beta}(p^{\lambda}G)$ (Use [5, Th. 2.9]) and $s_{\tau}(G) = s_{\beta}(p^{\lambda}G)$. Hence we need only show $r_{\beta}(p^{2}G) = s_{\beta}(p^{2}G)$. Thus we may consider only those groups G with length τ and $r(G) = s_{\tau}(G)$.

Let Γ be the set of all ordinals β such that there exists a oneto-one order preserving map f_{β} from β into τ such that $\bigcup_{\alpha < \beta} f_{\beta}(\alpha) = \tau$. Let σ be the least element of Γ and $f = f_{\sigma}$. It follows easily from Theorem 13.4.4 of [6] that σ is an initial ordinal.

Define a set of subgroups $\{P_{\alpha}\}_{\alpha<\sigma}$ of G[p] as follows: Let P_0 be such that $G[p] = P_0 \bigoplus (p^{f(0)}G)[p]$. Assuming that P_{α} has been defined for all $\alpha < \beta < \sigma$, define P_{β} such that $G[p] = \sum_{\alpha<\beta} P_{\alpha} \bigoplus P_{\beta} \bigoplus (p^{f(\beta)}G)[p]$. This procedure is inspired by [3].

Choose λ_0 such that $|\sum_{\lambda_0 \leq i < \sigma} P_i| = \inf_{\lambda < \sigma} |\sum_{\lambda \leq i < \sigma} P_i|$. By the choice of σ , we have that $[\lambda_0, \sigma) = \sigma$. Hence we assume henceforth that $|\sum_{i < \sigma} P_i| = \inf_{\lambda < \sigma} |\sum_{\lambda \leq i < \sigma} P_i|$. We may, in fact, assume each $P_{\alpha}, \alpha < \sigma$ is nonzero, again because σ is regular (see [6]).

Let Q be such that $\sum_{i < \sigma} P_i \bigoplus Q = \sum_{i < \sigma}$ (the original P_i). Then note that for each $\lambda < \tau$, $\{\sum_{i < \sigma} P_i \bigoplus Q, (p^2G)[p]\} = G[p]$. Let $M = \sum_{i < \sigma} P_i$.

Case I. Suppose $|M| < s_{\tau}(G)$. Then [5, Th. 2.9] $M \bigoplus Q$ supports a p^{τ} -pure subgroup K of G with G/K divisible and $|G/K| \ge s_{\tau}(G)$. So we assume $|M| \ge s_{\tau}(G)$.

Case II (A). Suppose $|M| = \sigma$. Then by Lemma 3 there exists a subsocle S of M such that $|M/S| \ge \sigma \ge s_{\tau}(G)$, and $\{S, (p^{\lambda}G)[p]\} = \{M, (p^{\lambda}G)[p]\}$ for all $\lambda < \tau$. Thus $S \bigoplus Q$ supports a p^{τ} -pure subgroup K of G with G/K divisible and $|G/K| \ge s_{\tau}(G)$.

(B). Suppose $|M| > \sigma$. Then construct a family of subsocles $\{R_i\}_{i \leq \sigma}$ inductively as follows: Let $R_0 = \sum_{i < \lambda_1} P_i$ where λ_1 is the least ordinal such that $|\sum_{i < \lambda_1} P_i| \geq \sigma$. Assuming R_{α} has been defined for all $\alpha < \beta$, define $R_{\beta} = \sum_{\lambda_{\beta} \leq i < \lambda_{\beta+1}} P_i$ where λ_{β} is the least element of σ such that $P_{\lambda_{\beta}} \cap R_{\alpha} = 0$ for all $\alpha < \beta$, and $\lambda_{\beta+1}$ is the least element of $\sigma + 1$ such that $|\sum_{\lambda_{\beta} \leq i < \lambda_{\beta+1}} P_i| \geq |R_{\alpha}|$ for all $\alpha < \beta$.

350

If λ_{β} does not exist set $R_{\beta} = 0$. It will be seen below that if λ_{β} exists, $\lambda_{\beta+1}$ exists.

Note that $R_{\sigma} = 0$ since σ is an initial ordinal such that if $\beta < \sigma$, β is not cofinal with σ (i.e., σ is regular). Note that $\sum_{i < \sigma} P_i = \sum_{i < \sigma} R_i$. If not, let η be the least element of $\sigma + 1$ such that $R_{\eta} = 0$. If $\lambda_{\eta} = \sigma$ then $\sum_{i < \sigma} P_i = \sum_{i < \eta} R_i$. If $\lambda_{\eta} < \sigma$, then $|\sum_{i < \sigma} P_i| = |\sum_{i < \sigma} P_i| \ge |R_{\alpha}|$ for all $\alpha < \eta$. Hence $R_{\eta} \neq 0$, a contradiction. Hence $\sum_{i < \sigma} R_i = \sum_{i < \sigma} P_i$.

Let η be the least element of $\sigma + 1$ such that $R_{\eta} = 0$. Suppose η is not a limit ordinal. Let $\eta = \gamma + 1$. Then $R_r = \sum_{\lambda_r \leq i < \sigma} P_i$ and $|R_r| \geq |R_{\alpha}|$ for all $\alpha < \gamma$. Construct a family $\{R_r^i\}_{i \leq \sigma}$ as above replacing 0 by λ_r . Let η_1 be the least ordinal such that $R_r^{\gamma_1} = 0$. Suppose η_1 is not a limit ordinal. Let $\eta_1 = \gamma_1 + 1$. Then $|R_r^{\gamma_1}| > |R_r^{\alpha}|$ for all $\alpha < \gamma_1$. In fact, $|R_r^{\gamma_1}| > \sup_{\alpha < r_1} |R_r^{\alpha}|$ since $|R_r^{\gamma_1}| = |R_r|$ and assuming otherwise we would have $R_r = (\sum_{\alpha < r_1} R_r^{\alpha}) \bigoplus R_r^{\gamma_1}$ with $|\sum_{\alpha < r_1} R_r^{\alpha}| = |R_r|$ contradicting the construction of R_r . Hence there exists $i, \lambda_{r_1} \leq i < \sigma$ such that $|P_i| \geq \sup_{\alpha < r_1} |R_r^{\alpha}|$. This contradicts the construction of $R_r^{\gamma_1}$. Hence η_1 is a limit ordinal.

Hence in either case $(\eta \text{ or } \eta_i \text{ a limit ordinal})$ there exists a family of subsocles $\{R_i\}_{i<\eta}$ of G[p] such that $|\sum_{i<\eta} R_i| = |\sum_{i<\sigma} P_i|$ and satisfying the conditions of Lemma 4. Thus there exists a subsocle S of $\sum_{i<\eta} R_i$ satisfying conditions (a) and (b) of Lemma 4. Now $\sum_{i<\eta} R_i$ may not be all of $\sum_{i<\sigma}$ (the original P_i) and so we let Q' be such that $\sum_{i<\sigma}$ (the original $P_i = \sum_{i<\eta} R_i \bigoplus Q'$. We then have

$$G[p]=\{\sum\limits_{i< \eta}R_i \bigoplus Q',\,(p^{\lambda}G)[p]\}=\{S \bigoplus Q',\,p^{\lambda}G[p]\}$$

for each $\lambda < \tau$. Further,

$$|G[p]/S \oplus Q'| \geq |\sum\limits_{i<\eta} R_i/S| \geq |\sum\limits_{i<\eta} R_i| = |M| = s_{ au}(G)$$
 .

Hence $S \bigoplus Q'$ supports a p^{τ} -pure subgroup H of G such that $|G/H| \ge s_{\tau}(G)$. Thus $r_{\tau}(G) \ge s_{\tau}(G)$. An application of this theorem appears in [1].

References

1. D. O. Cutler and P. F. Dubois, A generalization of final rank of primary abelian groups, Canadian J. Math., vol. XXII, No. 6, (1970), 1118-1122.

2. L. Fuchs, Abelian Groups, Budapest 1958.

3. J. Irwin and E. A. Walker, On N-high subgroups of Abelian groups, Pacific J. Math., **11** (1961).

4. I. Kaplansky, *Infinite Abelian Groups*, University of Michigan Press, Ann Arbor, 1954.

5. R. J. Nunke, Homology and direct sums of countable Abelian groups, Math. Zeitschr. (101), (1967) 182-212.

6. J. E. Rubin, Set Theory for the Mathematician, Holden-Day, San Francisco 1967.

Received January 20, 1970.

UNIVERSITY OF CALIFORNIA, DAVIS

351