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A FACTORIZATION THEOREM FOR ANALYTIC

FUNCTIONS OPERATING IN A

BANACH ALGEBRA

PHILIP C. CURTIS, JR. AND HENRIK STETKAER

Cohen's factorization-theorem asserts that if the Banach
algebra 21 has a left approximate identity, then each y e%
may be written y = xz, x, ze%, The vector x may be chosen
to be bounded by some fixed constant and z may be chosen
arbitrarily close to y. In this setting the theorem below
asserts that if F is a holomorphic function defined on a
sufficiently large disc about ζ = 1, and satisfying F(l) = 1,
then each y e % may be written y = F(x)z, where x, z e S2l.
Again x may be chosen to be bounded by some fixed constant
and z may be chosen close to y.

We state and prove our result using the terminology of [2].
The proof is an elaboration of the proof of Theorem 2.2 of [2]. In
what follows X is a complex Banach space, gf = {Ea} is a uniformly-
bounded subset of B(X) which we may assume to be directed and
which satisfies limα EaE = E for each E e g7. Convergence is in the
norm topology of B(X). Let

Y= {xeX: lim Ea x = x} ,
a

and let ϊί be the closed subalgebra of B(X) generated by gf.
For further extensions of Cohen's theorem we refer the reader

to Chapter 8 of [3].

THEOREM. Let F be a holomorphic complex-valued function with
F(l) = 1, defined on a neighbourhood of {ze C\ \z — 1| ^ M}, M > 1,
where \\E - I\\ ̂  M for all Ee gf.

Then to every ye Y and δ > 0 there exist ze Y and Ue% such
that

y = F(U)z and \\y - z\\ < δ .

If furthermore F has no zeros in the open interval ]0, 1[, then
U may for some ae ]0, 1[ be written in the form

U=±a(l- a)*"1 Ek ,
1

where Ek e g? for k = 1, 2, .
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Proof. It suffices to prove the theorem in the case where F has
no zeros in ]0, 1[, since we otherwise simply use the function

G(z) = F(eiθ z) F(eίθ)~ι

for θ small, instead of F.
Let {λlf ,λm} denote the zeros of F in the disc {z e C\ \ z — 11 ̂  M}.
Let finally yeY and d > 0 be given.
To proceed we need

LEMMA 1. Let 0 < a < 1; Eu , En e g* and set

Un = ±a(l - a)k-> Ek + (I - a)* I.
1

Assume that no λ{ belongs to the spectrum σ(Un) of Un1 and that

Un)Y^ Y for i = 1, . . . , m ,

where

R(\if Un) = (XJ - Un)~' .

Then F(Un) and Wn = F-\Un) belong to B(X) and both map Y
into Y.

Proof. We assert first t h a t σ(Un) S {\z - 1 | < M). Indeed,

Un- I=±a(l- a)k-'Ek + (1 - a)«I- I=±a(l - af~\Ek - I) ,

so that

\\Un-I\\£ t | α(l - α)^ 1 - M(l - (1 - α)w) < ikf.

Now

Y = {x e X \\im Ea x = x} ,
a

and consequently EY = F for every S e g 7 , so that ί / ^ F ^ F. For
I ζ — 11 = ikί we have

JB(ζf f7.) - (ζ - i r ( I - (ζ - l)-ι(Uu - I)Γ

which converges absolutely, so that

R(ζ,Un)YQ Y.

Since the integral
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F( tf.) = - M F(ζ)R(ζ, Un)dζ e B{X)
2 7 Π J\ζ-ι\=M

is a limit of Riemann sums,

F(Un)YQ Y.

Since F is holomorphic and does not vanish on σ(Un) we have

To show l f w 7 g 7 , write

F(z) = Π (λ, - z)k*H(z) ,

where i ί does not vanish on {\z — 1| < M.} The above argument shows
H~ι{Un)Y^Y. Finally,

Π
i — i

and

by hypothesis.

LEMMA 2. If in addition Un may be chosen so that

\\{Wn - Wn^)y\\ < — for n= 1,2, ---,

then the theorem follows.

Proof. Set zn — Wny. Then {zn} is a Cauchy-sequence. With
z = l i m n z n w e h a v e \\z — y\\ ̂  δ .

Further, if

U = Σ ^(1 -

then

- 2/H = | | F ( C / ) ^ - i ^ ( [ / > + F ( t f w ) ( s - ^ ) + i ^ ( C / . K - y\\

^ \\F(U)-F(Un)\\\\z\\

from which the lemma follows.
We will need the following technical lemma in the induction step

below, where we use the notation

T(a) = {μ(l - a)~n \ n = 0,1, and μe [k19 , λm} U {z \ \ z - 11 = M}}

f or 0 < a < 1 .



340 PHILIP C. CURTIS, JR. AND HENRIK STETKAER

LEMMA 3. There exists δe]0, 1[ such that

\a(τ - I)"11 < —^—for all αe]0, 6] and all τe T(a) .
2M

Let Aa = aEa + (1 - a)I for some αe]0, 6]. Then for τe T(a)
we have that R(τ, Aa) exists in B(X), maps Y into Y and {has
11 R(τ, Aa) 11 ^ C < °°, where C only depends on F and M.

Furthermore, for fixed Ee& and xe Y,

lim R(τ, Aa)E = (r - l ) " 1 ^
a

and

lim R(τ, Aa)x — (τ — V)~~ιx ,
a

both uniformly for τe T(a).

Proof. The first assertion is an easy consequence of the fact
that F has no zeros in ]0, 1[, so that

I T - 11 ̂  c > 0 for all τ e T^a) and all a e ]0, 1[ .

Since

τl- Aa = (τ - 1) ( / - _ 5 L _ (Ea - I)) ,

we have that

B(τ, Aa) = (r - iyi±(-±-)\Ea - If ,
υ \ τ — 1 /

converges by our choice of α, maps Y into Y and finally that

||22(τ, Aa) || ^ max (r - li"1 ± 2~k - 2 max {|r - 11"1] τe T(a)} .
0

By an easy calculation

R(τ, Aa) - (τ - 1)-J = ^ jB(τf Λβ)(£?β - I) ,

which yields the lemma.
We will also need the following trivial lemma.

LEMMA 4. Let {Tia\aeA,i = 1, •••,%} £ B ( Γ ) satisfy

\\Tia\\^C< oo for all aeA,i=l, --.,n.

If Tia—> Ti strongly for i — 1, , n, then
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l α ±2a' l-n,a—* A A ' ' ' 1 n

strongly.

We will now by induction find a sequence {Ek} S ĝ  such that
for any fixed αe]0, 6],

JB(λ4, Z7n) G £ ( X ) for all i = l , . . . , m and n = 0, 1,

( * ) maps Y into Y and such t h a t

\\(Wn- Wn^)y\\<^ for w = l , 2 , . . . .

The theorem then follows from Lemma 2. For % = 0 we may
take UQ = I.

Now suppose we have found Z70, tΛ, •••, Un satisfying ( * ) .

Let An+1 = αJS?Λ+1 + (1 — a)I, where En+ι e g " is to be chosen.

Since R(τ, An+ι) makes sense for τ e T(a) by Lemma 3, we may

define

for λe T(a). We note that Z7»(λ) may be chosen arbitrarily close to
(1 - λ(l - a)~n)-ι{Un - XI) uniformly for λe T(a) if we just take En+1

large. Therefore, Unix)"1 exists in B(X)y maps Y into Y and is
uniformly bounded in T(a) and g7 for ΐ7^+1 large.

By an easy calculation

XI- Un+1 =

so

i2(λ, Un+1) = U'

exists in 5(X), maps Y into F and is uniformly bounded in T(a)
and g\

Since

it is by an easy application of Lemma 4 left to show that for each
xe Y,

uniformly for λ e Γ(α) as j&Λ+1 increases in
Now
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R(\, Un+ι)x - R(\, Un)x

- α ) - , An+ί)x - R(\ Un)x

- α ) - , An+ί)x - (λ(l - α ) -

, Un)]x .

The first term can be made arbitrarily small by Lemma 3. The
second term can be made arbitrarily small too, for we have already
observed that

Uf

n(\) -> (1 - λ(l - a)-n)-\Un - XI) unif. in T(a)

so

UW1 — (λ(l - a)~n - l)#(λ, Un) unif. in Γ(α) .

That finishes the proof.

REMARK. If K is a compact subset of Y then we can use the
same U for all yeK. That is proved as in [5].

Similarly, if y{—>0, then there exist U and &<, x^--*0 such that

COROLLARY. Lei A δβ α commutative self-adjoint semi-simple
Banach algebra with a bounded approximate identity {ea}. Let ^/fA

be the maximal ideal space for A. If / G C 0 ( ^ C ) , the continuous
complex functions on ^/ίA vanishing at oo, and / ^ 0, then there

exists age C0(^C), g ^ 0 such that λ/f/g e A. If f e A> then g may
be chosen to be in A.

Proof. / — > / is continuous since A is commutative and semi-

simple. {/«} = {eaea} is an approximate identity consisting of non-

negative functions. Let F(z) — z2 and write / e C 0 ( ^ ) , / ^ 0 as

/ - h2g, where Λ = Σ α(l - α ) ^ 1 / , with {/%} e {fa} is in A. Then

h — Vfig, and we are done.

This Corollary may be contrasted with a theorem of Katznelson

[4] which asserts that if V'f e A for each nonnegative / in A then

A = CUC).
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