A FACTORIZATION THEOREM FOR ANALYTIC FUNCTIONS OPERATING IN A BANACH ALGEBRA

PHILIP C. CURTIS, JR. AND HENRIK STETKAER

Cohen's factorization-theorem asserts that if the Banach algebra \mathfrak{A} has a left approximate identity, then each $y \in \mathfrak{A}$ may be written y = xz, $x, z \in \mathfrak{A}$. The vector x may be chosen to be bounded by some fixed constant and z may be chosen arbitrarily close to y. In this setting the theorem below asserts that if F is a holomorphic function defined on a sufficiently large disc about $\zeta = 1$, and satisfying F(1) = 1, then each $y \in \mathfrak{A}$ may be written y = F(x)z, where $x, z \in \mathfrak{A}$. Again x may be chosen to be bounded by some fixed constant and z may be chosen close to y.

We state and prove our result using the terminology of [2]. The proof is an elaboration of the proof of Theorem 2.2 of [2]. In what follows X is a complex Banach space, $\mathscr{C} = \{E_{\alpha}\}$ is a uniformly bounded subset of B(X) which we may assume to be directed and which satisfies $\lim_{\alpha} E_{\alpha} E = E$ for each $E \in \mathscr{C}$. Convergence is in the norm topology of B(X). Let

$$Y = \{x \in X: \lim_{\alpha} E_{\alpha} x = x\},\$$

and let \mathfrak{A} be the closed subalgebra of B(X) generated by \mathscr{C} .

For further extensions of Cohen's theorem we refer the reader to Chapter 8 of [3].

THEOREM. Let F be a holomorphic complex-valued function with F(1) = 1, defined on a neighbourhood of $\{z \in C \mid |z - 1| \leq M\}$, M > 1, where $||E - I|| \leq M$ for all $E \in \mathscr{C}$.

Then to every $y \in Y$ and $\delta > 0$ there exist $z \in Y$ and $U \in \mathfrak{A}$ such that

$$y = F(U)z$$
 and $||y - z|| < \delta$.

If furthermore F has no zeros in the open interval]0, 1[, then U may for some $a \in [0, 1]$ be written in the form

$$U = \sum\limits_{\scriptscriptstyle 1}^{\infty} a (1 - a)^{k - 1} \, E_k$$
 ,

where $E_k \in \mathscr{C}$ for $k = 1, 2, \cdots$.

Proof. It suffices to prove the theorem in the case where F has no zeros in]0, 1[, since we otherwise simply use the function

$$G(z) = F(e^{i\theta} z) F(e^{i\theta})^{-1}$$

for θ small, instead of F.

Let $\{\lambda_1, \dots, \lambda_m\}$ denote the zeros of F in the disc $\{z \in C \mid |z-1| \leq M\}$. Let finally $y \in Y$ and $\delta > 0$ be given. To proceed we need

LEMMA 1. Let 0 < a < 1; $E_1, \dots, E_n \in \mathcal{C}$ and set

$$U_n = \sum_{i=1}^n a(1-a)^{k-i} \, E_k + (1-a)^n \, I$$
 .

Assume that no λ_i belongs to the spectrum $\sigma(U_n)$ of U_n , and that

$$R(\lambda_i, U_n) Y \subseteq Y$$
 for $i = 1, \dots, m$,

where

$$R(\lambda_i, U_n) = (\lambda_i I - U_n)^{-1}$$
 .

Then $F(U_n)$ and $W_n \equiv F^{-1}(U_n)$ belong to B(X) and both map Y into Y.

Proof. We assert first that $\sigma(U_n) \subseteq \{|z-1| < M\}$. Indeed,

$$U_n - I = \sum_{k=1}^n a(1-a)^{k-1}E_k + (1-a)^n I - I = \sum_{k=1}^n a(1-a)^{k-1}(E_k - I)$$
 ,

so that

$$||U_n - I|| \leq M \sum_{k=1}^n a(1-a)^{k-1} = M(1-(1-a)^n) < M$$

Now

$$Y = \{x \in X \mid \lim_{\alpha} E_{\alpha} x = x\},\$$

and consequently EY = Y for every $E \in \mathscr{C}$, so that $U_n Y \subseteq Y$. For $|\zeta - 1| = M$ we have

$$egin{aligned} R(\zeta,\,U_n) &= \,(\zeta\,-\,1)^{-1}(I\,-\,(\zeta\,-\,1)^{-1}(\,U_n\,-\,I))^{-1} \ &= \,(\zeta\,-\,1)^{-1}\sum\,(\zeta\,-\,1)^{-k}(\,U_n\,-\,I)^k \;, \end{aligned}$$

which converges absolutely, so that

$$R(\zeta, U_n) Y \subseteq Y.$$

Since the integral

$$F(U_n) = \frac{1}{2\pi i} \int_{|\zeta-1|=M} F(\zeta) R(\zeta, U_n) d\zeta \in B(X)$$

is a limit of Riemann sums,

 $F(U_n) Y \subseteq Y$.

Since F is holomorphic and does not vanish on $\sigma(U_n)$ we have

$$W_n\equiv F^{-{\scriptscriptstyle 1}}(U_n)\in B(X)$$
 .

To show $W_n Y \subseteq Y$, write

$$F(z) = \prod_{i=1}^m (\lambda_i - z)^{k_i} H(z)$$
 ,

where H does not vanish on $\{|z - 1| < M.\}$ The above argument shows $H^{-1}(U_n) Y \subseteq Y$. Finally,

$$F^{-_1}(U_n)\,=\,H^{-_1}(U_n)\prod_{i=1}^m\,R(\lambda_i,\;U_n)^{k_i}\;,$$

and

$$R(\lambda_i, U_n) Y \subseteq Y$$

by hypothesis.

LEMMA 2. If in addition U_n may be chosen so that

$$||(W_n-|W_{n-1})y||<rac{ec{\partial}}{2^n}\qquad for \,\,n=1,\,2,\,\cdots,$$

then the theorem follows.

Proof. Set $z_n = W_n y$. Then $\{z_n\}$ is a Cauchy-sequence. With $z = \lim_n z_n$ we have $||z - y|| \leq \delta$.

Further, if

$$U=\sum\limits_{\scriptscriptstyle 1}^{\infty}a(1-a)^{k-1}\,E_k$$
 ,

then

$$egin{aligned} ||F(U)z-y|| &= ||F(U)z-F(U_n)z+F(U_n)(z-z_n)+F(U_n)z_n-y|| \ &\leq ||F(U)-F(U_n)||\,||z||+||F(U_n)||\,||z-z_n|| \ , \end{aligned}$$

from which the lemma follows.

We will need the following technical lemma in the induction step below, where we use the notation

$$T(a) = \{ \mu(1-a)^{-n} \, | \, n = 0, 1, \cdots ext{ and } \mu \in \{\lambda_1, \cdots, \lambda_m\} \cup \{ z \, | \, |z-1| = M \} \}$$
 for $0 < a < 1$.

LEMMA 3. There exists $b \in [0, 1[$ such that

$$|a(au-1)^{-1}| < rac{1}{2M}$$
 for all $a \in]0, b]$ and all $au \in T(a)$.

Let $A_{\alpha} = aE_{\alpha} + (1-a)I$ for some $a \in]0, b]$. Then for $\tau \in T(a)$ we have that $R(\tau, A_{\alpha})$ exists in B(X), maps Y into Y and that $||R(\tau, A_{\alpha})|| \leq C < \infty$, where C only depends on F and M.

Furthermore, for fixed $E \in \mathscr{C}$ and $x \in Y$,

$$\lim_lpha R(au,A_lpha)E=(au-1)^{-\imath}E$$

and

$$\lim_{lpha} R(au, A_{lpha}) x = (au-1)^{-1} x$$
 ,

both uniformly for $\tau \in T(a)$.

Proof. The first assertion is an easy consequence of the fact that F has no zeros in]0, 1[, so that

$$|\tau - 1| \ge c > 0$$
 for all $\tau \in T(a)$ and all $a \in [0, 1[$.

Since

$$au I - A_lpha = (au - 1) \left(I - rac{a}{ au - 1} \left(E_lpha - I
ight)
ight) \, ,$$

we have that

$$R(au,A_lpha)=(au-1)^{{\scriptscriptstyle -1}}\sum\limits_{\scriptscriptstyle
u}^{\infty}\left(rac{a}{ au-1}
ight)^k(E_lpha-I)^k\;,$$

converges by our choice of a, maps Y into Y and finally that

$$||R(au, A_{lpha})|| \leq \max | au - 1|^{-1} \sum_{0}^{\infty} 2^{-k} = 2 \max \{| au - 1|^{-1} | au \in T(a)\}$$
 .

By an easy calculation

$$R(au,\,A_lpha)\,-\,(au\,-\,1)^{-_1}I=rac{a}{(au\,-\,1)^2}\,R(au,\,A_lpha)(E_lpha\,-\,I)$$
 ,

which yields the lemma.

We will also need the following trivial lemma.

LEMMA 4. Let $\{T_{i\alpha} \mid \alpha \in A, i = 1, \dots, n\} \subseteq B(Y)$ satisfy

$$||T_{i \alpha}|| \leq C < \infty$$
 for all $\alpha \in A, i = 1, \dots, n$.

If $T_{i \alpha} \rightarrow T_i$ strongly for $i = 1, \dots, n$, then

340

 $T_{1 \alpha} T_{2 \alpha} \cdots T_{n, \alpha} \rightarrow T_1 T_2 \cdots T_n$

strongly.

We will now by induction find a sequence $\{E_k\} \subseteq \mathscr{C}$ such that for any fixed $a \in]0, b]$,

$$R(\lambda_i, U_n) \in B(X)$$
 for all $i = 1, \dots, m$ and $n = 0, 1, \dots, m$

(*) maps Y into Y and such that

$$||(W_n - |W_{n-1})y|| < rac{\delta}{2^n} \ \ ext{for} \ \ n=1,\,2,\,\cdots\,.$$

The theorem then follows from Lemma 2. For n = 0 we may take $U_0 = I$.

Now suppose we have found U_0, U_1, \dots, U_n satisfying (*).

Let $A_{n+1} = aE_{n+1} + (1 - a)I$, where $E_{n+1} \in \mathscr{C}$ is to be chosen.

Since $R(\tau, A_{n+1})$ makes sense for $\tau \in T(a)$ by Lemma 3, we may define

$$U'_n(\lambda) = -\sum_{1}^n a(1-a)^{k-1} R(\lambda(1-a)^{-n}, A_{n+1}) E_k + (1-a)^n I$$

for $\lambda \in T(a)$. We note that $U'_n(\lambda)$ may be chosen arbitrarily close to $(1 - \lambda(1 - a)^{-n})^{-1}(U_n - \lambda I)$ uniformly for $\lambda \in T(a)$ if we just take E_{n+1} large. Therefore, $U'_n(\lambda)^{-1}$ exists in B(X), maps Y into Y and is uniformly bounded in T(a) and \mathscr{C} for E_{n+1} large.

By an easy calculation

$$\lambda I - U_{n+1} = (\lambda (1-a)^{-n}I - A_{n+1}) U'_n(\lambda)$$

 \mathbf{SO}

$$R(\lambda, U_{n+1}) = U'_n(\lambda)^{-1}R(\lambda(1-a)^{-n}, A_{n+1})$$

exists in B(X), maps Y into Y and is uniformly bounded in T(a) and \mathcal{C} .

Since

$$F^{-_1}(U_k) = \, H^{-_1}(U_k) \prod_{_1}^{^m} \, R(\lambda_i, \; U_k)^{k_i}$$
 ,

it is by an easy application of Lemma 4 left to show that for each $x \in Y$,

$$R(\lambda, U_{n+1})x \longrightarrow R(\lambda, U_n)x$$

uniformly for $\lambda \in T(a)$ as E_{n+1} increases in \mathscr{C} .

Now

$$\begin{split} R(\lambda, \ U_{n+1})x &= R(\lambda, \ U_n)x \\ &= U_n'(\lambda)^{-1}R(\lambda(1-a)^{-n}, \ A_{n+1})x - R(\lambda, \ U_n)x \\ &= U_n'(\lambda)^{-1}[R(\lambda(1-a)^{-n}, \ A_{n+1})x - (\lambda(1-a)^{-n} - 1)^{-1}x] \\ &+ [(\lambda(1-a)^{-n} - 1)^{-1}U_n'(\lambda)^{-1} - R(\lambda, \ U_n)]x \;. \end{split}$$

The first term can be made arbitrarily small by Lemma 3. The second term can be made arbitrarily small too, for we have already observed that

$$U'_n(\lambda) \rightarrow (1 - \lambda(1 - a)^{-n})^{-1}(U_n - \lambda I)$$
 unif. in $T(a)$

 \mathbf{so}

$$U'_n(\lambda)^{-1} \rightarrow (\lambda(1-a)^{-n}-1)R(\lambda, U_n)$$
 unif. in $T(a)$.

That finishes the proof.

REMARK. If K is a compact subset of Y then we can use the same U for all $y \in K$. That is proved as in [5].

Similarly, if $y_i \rightarrow 0$, then there exist U and x_i , $x_i \rightarrow 0$ such that $y_i \in F(U)x_i$.

COROLLARY. Let A be a commutative self-adjoint semi-simple Banach algebra with a bounded approximate identity $\{e_{\alpha}\}$. Let \mathscr{M}_{A} be the maximal ideal space for A. If $f \in C_{0}(\mathscr{M}_{A})$, the continuous complex functions on \mathscr{M}_{A} vanishing at ∞ , and $f \geq 0$, then there exists a $g \in C_{0}(\mathscr{M}_{A})$, $g \geq 0$ such that $\sqrt{f/g} \in A$. If $f \in A$, then g may be chosen to be in A.

Proof. $f \to \overline{f}$ is continuous since A is commutative and semisimple. $\{f_{\alpha}\} = \{e_{\alpha}\overline{e}_{\alpha}\}$ is an approximate identity consisting of nonnegative functions. Let $F(z) = z^2$ and write $f \in C_0(\mathscr{M}_A)$, $f \ge 0$ as $f = h^2 g$, where $h = \sum a(1-a)^{n-1} f_n$ with $\{f_n\} \subseteq \{f_{\alpha}\}$ is in A. Then $h = \sqrt{f/g}$, and we are done.

This Corollary may be contrasted with a theorem of Katznelson [4] which asserts that if $\sqrt{f} \in A$ for each nonnegative f in A then $A = C(\mathcal{M}_A)$.

References

- 1. Paul Cohen, Factorization in group-algebras, Duke Math. J., 26 (1959), 199-206.
- 2. P. C. Curtis, Jr. and Figa-Talamanca, *Factorization theorems for Banach algebras* in "Function algebras" edited by F. T. Birtel, Scott Foresman and Co., Chicago Ill. 1966, 169-185.

342

^{3.} E. Hewitt and K. Ross, Abstract harmonic analysis, II, Springer-Verlag 1970.

4. Y. Katznelson, Sur les algèbres dont les éléments non-negatifs admettent des racines carrés, Ann. École Norm. Sup, 3^e serie, **77** (1960), 167-174.

5. D. C. Taylor, A characterization of Banach algebras with approximate unit, Bull. Amer. Math. Soc., **74**(1968), 761-766.

Received October 10, 1970

UNIVERSITY OF CALIFORNIA, LOS ANGELES AND AARHUS UNIVERSITY