A FACTORIZATION THEOREM FOR ANALYTIC FUNCTIONS OPERATING IN A BANACH ALGEBRA

Philip C. Curtis, Jr. and Henrik Stetkaer

Cohen's factorization-theorem asserts that if the Banach algebra $\mathfrak{i l}$ has a left approximate identity, then each $y \in \mathcal{R}$ may be written $y=x z, x, z \in \mathfrak{M}$. The vector x may be chosen to be bounded by some fixed constant and z may be chosen arbitrarily close to y. In this setting the theorem below asserts that if F is a holomorphic function defined on a sufficiently large disc about $\zeta=1$, and satisfying $F(1)=1$,
 Again x may be chosen to be bounded by some fixed constant and z may be chosen close to y.

We state and prove our result using the terminology of [2]. The proof is an elaboration of the proof of Theorem 2.2 of [2]. In what follows X is a complex Banach space, $\mathscr{E}=\left\{E_{\alpha}\right\}$ is a uniformly bounded subset of $B(X)$ which we may assume to be directed and which satisfies $\lim _{\alpha} E_{\alpha} E=E$ for each $E \in \mathscr{E}$. Convergence is in the norm topology of $B(X)$. Let

$$
Y=\left\{x \in X: \lim _{\alpha} E_{\alpha} x=x\right\},
$$

and let $\mathfrak{i t}$ be the closed subalgebra of $B(X)$ generated by \mathscr{E}.
For further extensions of Cohen's theorem we refer the reader to Chapter 8 of [3].

Theorem. Let F be a holomorphic complex-valued function with $F(1)=1$, defined on a neighbourhood of $\{z \in \boldsymbol{C}||z-1| \leqq M\}, M>1$, where $\|E-I\| \leqq M$ for all $E \in \mathscr{E}$.

Then to every $y \in Y$ and $\delta>0$ there exist $z \in Y$ and $U \in \mathfrak{N}$ such that

$$
y=F(U) z \text { and }\|y-z\|<\delta .
$$

If furthermore F has no zeros in the open interval $] 0,1[$, then U may for some $a \in] 0,1[$ be written in the form

$$
U=\sum_{1}^{\infty} a(1-a)^{k-1} E_{k},
$$

where $E_{k} \in \mathscr{E}$ for $k=1,2, \cdots$.

Proof. It suffices to prove the theorem in the case where F has no zeros in $] 0,1[$, since we otherwise simply use the function

$$
G(z)=F\left(e^{i \theta} z\right) F\left(e^{i \theta}\right)^{-1}
$$

for θ small, instead of F.
Let $\left\{\lambda_{1}, \cdots, \lambda_{m}\right\}$ denote the zeros of F in the disc $\{z \in \boldsymbol{C}||z-1| \leqq M\}$.
Let finally $y \in Y$ and $\delta>0$ be given.
To proceed we need
Lemma 1. Let $0<a<1 ; E_{1}, \cdots, E_{n} \in \mathscr{G}$ and set

$$
U_{n}=\sum_{1}^{n} a(1-a)^{k-1} E_{k}+(1-a)^{n} I .
$$

Assume that no λ_{i} belongs to the spestrum $\sigma\left(U_{n}\right)$ of U_{n}, and that

$$
R\left(\lambda_{i}, U_{n}\right) Y \cong Y \quad \text { for } i=1, \cdots, m
$$

where

$$
R\left(\lambda_{i}, U_{n}\right)=\left(\lambda_{i} I-U_{n}\right)^{-1} .
$$

Then $F\left(U_{n}\right)$ and $W_{n} \equiv F^{-1}\left(U_{n}\right)$ belong to $B(X)$ and both map Y into Y.

Proof. We assert first that $\sigma\left(U_{n}\right) \subseteq\{|z-1|<M\}$. Indeed,

$$
U_{n}-I=\sum_{k=1}^{n} a(1-a)^{k-1} E_{k}+(1-a)^{n} I-I=\sum_{k=1}^{n} a(1-a)^{k-1}\left(E_{k}-I\right),
$$

so that

$$
\left\|U_{n}-I\right\| \leqq M \sum_{k=1}^{n} a(1-a)^{k-1}=M\left(1-(1-a)^{n}\right)<M .
$$

Now

$$
Y=\left\{x \in X \mid \lim _{\alpha} E_{\alpha} x=x\right\},
$$

and consequently $E Y=Y$ for every $E \in \mathscr{E}$, so that $U_{n} Y \subseteq Y$. For $|\zeta-1|=M$ we have

$$
\begin{aligned}
R\left(\zeta, U_{n}\right) & =(\zeta-1)^{-1}\left(I-(\zeta-1)^{-1}\left(U_{n}-I\right)\right)^{-1} \\
& =(\zeta-1)^{-1} \sum(\zeta-1)^{-k}\left(U_{n}-I\right)^{k},
\end{aligned}
$$

which converges absolutely, so that

$$
R\left(\zeta, U_{n}\right) Y \cong Y
$$

Since the integral

$$
F\left(U_{n}\right)=\frac{1}{2 \pi i} \int_{|\zeta-1|=M} F(\zeta) R\left(\zeta, U_{n}\right) d \zeta \in B(X)
$$

is a limit of Riemann sums,

$$
F\left(U_{n}\right) Y \subseteq Y
$$

Since F is holomorphic and does not vanish on $\sigma\left(U_{n}\right)$ we have

$$
W_{n} \equiv F^{-1}\left(U_{n}\right) \in B(X)
$$

To show $W_{n} Y \subseteq Y$, write

$$
F(z)=\prod_{i=1}^{m}\left(\lambda_{i}-z\right)^{k_{i}} H(z)
$$

where H does not vanish on $\{|z-1|<M$.$\} The above argument shows$ $H^{-1}\left(U_{n}\right) Y \subseteq Y$. Finally,

$$
F^{-1}\left(U_{n}\right)=H^{-1}\left(U_{n}\right) \prod_{i=1}^{m} R\left(\lambda_{i}, U_{n}\right)^{k_{i}}
$$

and

$$
R\left(\lambda_{i}, U_{n}\right) Y \subseteq Y
$$

by hypothesis.
Lemma 2. If in addition U_{n} may be chosen so that

$$
\left\|\left(W_{n}-W_{n-1}\right) y\right\|<\frac{\delta}{2^{n}} \quad \text { for } n=1,2, \cdots
$$

then the theorem follows.
Proof. Set $z_{n}=W_{n} y$. Then $\left\{z_{n}\right\}$ is a Cauchy-sequence. With $z=\lim _{n} z_{n}$ we have $\|z-y\| \leqq \delta$.

Further, if

$$
U=\sum_{1}^{\infty} a(1-a)^{k-1} E_{k}
$$

then

$$
\begin{aligned}
\|F(U) z-y\| & =\left\|F(U) z-F\left(U_{n}\right) z+F\left(U_{n}\right)\left(z-z_{n}\right)+F\left(U_{n}\right) z_{n}-y\right\| \\
& \leqq\left\|F(U)-F\left(U_{n}\right)\right\|\|z\|+\left\|F\left(U_{n}\right)\right\|\left\|z-z_{n}\right\|
\end{aligned}
$$

from which the lemma follows.
We will need the following technical lemma in the induction step below, where we use the notation

$$
\begin{gathered}
T(a)=\left\{\mu(1-a)^{-n} \mid n=0,1, \cdots \text { and } \mu \in\left\{\lambda_{1}, \cdots, \lambda_{m}\right\} \cup\{z| | z-1 \mid=M\}\right\} \\
\text { for } 0<a<1
\end{gathered}
$$

Lemma 3. There exists $b \in] 0,1[$ such that

$$
\left.\left.\left|a(\tau-1)^{-1}\right|<\frac{1}{2 M} \text { for all } a \in\right] 0, b\right] \text { and all } \tau \in T(a)
$$

Let $A_{\alpha}=a E_{\alpha}+(1-a) I$ for some $\left.\left.a \in\right] 0, b\right]$. Then for $\tau \in T(a)$ we have that $R\left(\tau, A_{\alpha}\right)$ exists in $B(X)$, maps Y into Y and has $\left\|R\left(\tau, A_{\alpha}\right)\right\| \leqq C<\infty$, where C only depends on F and M.

Furthermore, for fixed $E \in \mathscr{E}$ and $x \in Y$,

$$
\lim _{\alpha} R\left(\tau, A_{\alpha}\right) E=(\tau-1)^{-1} E
$$

and

$$
\lim _{\alpha} R\left(\tau, A_{\alpha}\right) x=(\tau-1)^{-1} x
$$

both uniformly for $\tau \in T(a)$.

Proof. The first assertion is an easy consequence of the fact that F has no zeros in $] 0,1[$, so that

$$
|\tau-1| \geqq c>0 \text { for all } \tau \in T(a) \text { and all } a \in] 0,1[.
$$

Since

$$
\tau I-A_{\alpha}=(\tau-1)\left(I-\frac{a}{\tau-1}\left(E_{\alpha}-I\right)\right)
$$

we have that

$$
R\left(\tau, A_{\alpha}\right)=(\tau-1)^{-1} \sum_{0}^{\infty}\left(\frac{a}{\tau-1}\right)^{k}\left(E_{\alpha}-I\right)^{k}
$$

converges by our choice of α, maps Y into Y and finally that

$$
\left\|R\left(\tau, A_{\alpha}\right)\right\| \leqq \max |\tau-1|^{-1} \sum_{0}^{\infty} 2^{-k}=2 \max \left\{|\tau-1|^{-1} \mid \tau \in T(a)\right\}
$$

By an easy calculation

$$
R\left(\tau, A_{\alpha}\right)-(\tau-1)^{-1} I=\frac{a}{(\tau-1)^{2}} R\left(\tau, A_{\alpha}\right)\left(E_{\alpha}-I\right)
$$

which yields the lemma.
We will also need the following trivial lemma.
Lemma 4. Let $\left\{T_{i \alpha} \mid \alpha \in A, i=1, \cdots, n\right\} \cong B(Y)$ satisfy

$$
\left\|T_{i \alpha}\right\| \leqq C<\infty \quad \text { for all } \alpha \in A, i=1, \cdots, n
$$

If $T_{i \alpha} \rightarrow T_{i}$ strongly for $i=1, \cdots, n$, then

$$
T_{1 \alpha} T_{2 \alpha} \cdots T_{n, \alpha} \rightarrow T_{1} T_{2} \cdots T_{n}
$$

strongly.
We will now by induction find a sequence $\left\{E_{k}\right\} \subseteq \mathscr{E}$ such that for any fixed $a \in \mathrm{]} 0, b$,

$$
R\left(\lambda_{i}, U_{n}\right) \in B(X) \text { for all } i=1, \cdots, m \text { and } n=0,1, \cdots,
$$

(*) maps Y into Y and such that

$$
\left\|\left(W_{n}-W_{n-1}\right) y\right\|<\frac{\delta}{2^{n}} \text { for } n=1,2, \cdots
$$

The theorem then follows from Lemma 2. For $n=0$ we may take $U_{0}=I$.

Now suppose we have found $U_{0}, U_{1}, \cdots, U_{n}$ satisfying (*).
Let $A_{n+1}=a E_{n+1}+(1-a) I$, where $E_{n+1} \in \mathscr{E}$ is to be chosen.
Since $R\left(\tau, A_{n+1}\right)$ makes sense for $\tau \in T^{\prime}(a)$ by Lemma 3, we may define

$$
U_{n}^{\prime}(\lambda)=-\sum_{1}^{n} a(1-a)^{k-1} R\left(\lambda(1-a)^{-n}, A_{n+1}\right) E_{k}+(1-a)^{n} I
$$

for $\lambda \in T(a)$. We note that $U_{n}^{\prime}(\lambda)$ may be chosen arbitrarily close to ($\left.1-\lambda(1-a)^{-n}\right)^{-1}\left(U_{n}-\lambda I\right)$ uniformly for $\lambda \in T(a)$ if we just take E_{n+1} large. Therefore, $U_{n}^{\prime}(\lambda)^{-1}$ exists in $B(X)$, maps Y into Y and is uniformly bounded in $T(a)$ and \mathscr{E} for E_{n+1} large.

By an easy calculation

$$
\lambda I-U_{n+1}=\left(\lambda(1-a)^{-n} I-A_{n+1}\right) U_{n}^{\prime}(\lambda)
$$

so

$$
R\left(\lambda, U_{n+1}\right)=U_{n}^{\prime}(\lambda)^{-1} R\left(\lambda(1-a)^{-n}, A_{n+1}\right)
$$

exists in $B(X)$, maps Y into Y and is uniformly bounded in $T(a)$ and \mathscr{E}.

Since

$$
F^{-1}\left(U_{k}\right)=H^{-1}\left(U_{k}\right) \prod_{1}^{m} R\left(\lambda_{i}, U_{k}\right)^{k_{i}}
$$

it is by an easy application of Lemma 4 left to show that for each $x \in Y$,

$$
R\left(\lambda, U_{n+1}\right) x \rightarrow R\left(\lambda, U_{n}\right) x
$$

uniformly for $\lambda \in T(a)$ as E_{n+1} increases in \mathscr{E}.
Now

$$
\begin{aligned}
R\left(\lambda, U_{n+1}\right) x & -R\left(\lambda, U_{n}\right) x \\
= & U_{n}^{\prime}(\lambda)^{-1} R\left(\lambda(1-a)^{-n}, A_{n+1}\right) x-R\left(\lambda, U_{n}\right) x \\
= & U_{n}^{\prime}(\lambda)^{-1}\left[R\left(\lambda(1-a)^{-n}, A_{n+1}\right) x-\left(\lambda(1-a)^{-n}-1\right)^{-1} x\right] \\
& \quad+\left[\left(\lambda(1-a)^{-n}-1\right)^{-1} U_{n}^{\prime}(\lambda)^{-1}-R\left(\lambda, U_{n}\right)\right] x .
\end{aligned}
$$

The first term can be made arbitrarily small by Lemma 3. The second term can be made arbitrarily small too, for we have already observed that

$$
U_{n}^{\prime}(\lambda) \rightarrow\left(1-\lambda(1-a)^{-n}\right)^{-1}\left(U_{n}-\lambda I\right) \quad \text { unif. in } T(a)
$$

so

$$
U_{n}^{\prime}(\lambda)^{-1} \rightarrow\left(\lambda(1-a)^{-n}-1\right) R\left(\lambda, U_{n}\right) \quad \text { unif. in } T(a) .
$$

That finishes the proof.
Remark. If K is a compact subset of Y then we can use the same U for all $y \in K$. That is proved as in [5].

Similarly, if $y_{i} \rightarrow 0$, then there exist U and $x_{i}, x_{i} \rightarrow 0$ such that $y_{i} \in F(U) x_{i}$.

Corollary. Let A be a commutative self-adjoint semi-simple Banach algebra with a bounded approximate identity $\left\{e_{\alpha}\right\}$. Let \mathscr{M}_{A} be the maximal ideal space for A. If $f \in C_{0}\left(\mathscr{M}_{1}\right)$, the continuous complex functions on \mathscr{M}_{A} vanishing at ∞, and $f \geqq 0$, then there exists $a g \in C_{0}\left(\mathscr{M}_{A}\right), g \geqq 0$ such that $\sqrt{f / g} \in A$. If $f \in A$, then g may be chosen to be in A.

Proof. $f \rightarrow \bar{f}$ is continuous since A is commutative and semisimple. $\left\{f_{\alpha}\right\}=\left\{e_{\alpha} \bar{e}_{\alpha}\right\}$ is an approximate identity consisting of nonnegative functions. Let $F(z)=z^{2}$ and write $f \in C_{0}\left(\mathscr{M}_{4}\right), f \geqq 0$ as $f=h^{2} g$, where $h=\sum a(1-a)^{n-1} f_{n}$ with $\left\{f_{n}\right\} \subseteq\left\{f_{\alpha}\right\}$ is in A. Then $h=\sqrt{f / g}$, and we are done.

This Corollary may be contrasted with a theorem of Katznelson [4] which asserts that if $\sqrt{f} \in A$ for each nonnegative f in A then $A=C\left(\mathscr{M}_{A}\right)$.

References

1. Paul Cohen, Factorization in group-algebras, Duke Math. J., 26 (1959), 199-206.
2. P. C. Curtis, Jr. and Figa-Talamanca, Factorization theorems for Banach algebras in "Function algebras" edited by F. T. Birtel, Scott Foresman and Co., Chicago Ill. 1966, 169-185.
3. E. Hewitt and K. Ross, Abstract harmonic analysis, II, Springer-Verlag 1970.
4. Y. Katznelson, Sur les algèbres dont les éléments non-negatifs admettent des racines carrés, Ann. École Norm. Sup, 3^{e} serie, 77 (1960), 167-174.
5. D. C. Taylor, A characterization of Banach algebras with approximate unit, Bull. Amer. Math. Soc., 74(1968), 761-766.

Received October 10, 1970
University of California, Los Angeles
AND
Aarhus University

