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GAUSSIAN MARKOV EXPECTATIONS AND RELATED
INTEGRAL EQUATIONS*

JOHN A. BEEKMAN AND RALPH A. KALLMAN

Let {X(w), s ^ w S t} be a Gaussian Markov stochastic
process with continuous sample functions. Examples of such
processes are the Wiener, Ornstein-Uhlenbeck, and Doob-Kac
processes. An operator valued function space integral is
defined for each process. This was done for the Wiener
process by R. H. Cameron and D. A. Storvick. For func-

r rt Λ

tionals of the form F(x) = exp < I θ(t — w, x{w))dw V where
Us J

θ(t, u) is bounded and almost everywhere continuous, the
special integrals satisfy integral equations related to the
generalized Schroedinger equations studied by the first author.
For the Wiener process, a "backwards time" equation is
coupled with the Cameron-Storvick equation to give a pair
of integral equations.

In [12] R. H. Cameron and D. A. Storvick defined an operator
valued function space integral based on the Wiener stochastic process.
For an appropriate functional, such an integral solves an integral
equation related to the Schroedinger equation. The purpose of this
paper is to define such integrals for Gaussian Markov stochastic
processes, and prove that for appropriate functionals they satisfy an
integral equation related to the generalized Schroedinger equation
discussed by the first author in [5], [6], [7], and [8]. Examples of
Gaussian Markov processes are the Wiener, Ornstein-Uhlenbeck, and
Doob-Kac processes. For the Wiener process we will give a "back-
wards time" equation which when coupled with the Cameron-Storvick
"forwards time" equation will give a pair of integral equations.
That a function space integral solves a pair of integral equations
was first done in [14] by D. A. Darling and A. J. F. Siegert.

This area of research is motivated, in many respects, by R. P.
Feynman's function space integral which he first discussed in 1948
[16]. Since then extensive work has been done to enlarge the class
of functionals for which "Feynman integrals" exist. See, for example,
the work of R. H. Cameron [9, 10, 11], Donald Babbitt [1, 2, 3, 4],
Jacob Feldman [15], K. Itδ [18, 19], Edward Nelson [22], and G. W.
Johnson and D. L. Skoug [20, 21, 23]. In the papers by Cameron
and Storvick [12, 13] the integral equation involved is related to
the Schroedinger equation. A heuristic discussion of that relation is
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contained in the first author's paper [8].

2* Notation and definitions. Let {x(p), s fg p ^ t) be a Gaussian

Markov process with mean function m(p) = ζv(p)/v(s), s ^ p ^ t and

covariance function

) = I Z 7 ( δ M α ) f b ^ a

where U(p) = %(p) — u(s)v(p)/v(s), s ^ p <̂  ί,

(2.1) u(p) ^ 0 , v(?>) > 0 , s ^ p ^ ί

(2.2) u'(p) and v'(p) continuous on [s, ί]

(2.3) [v(p)w'(p) ~ u{p)v'(p)] > 0 , β ^ p ^ ί .

These processes have almost all sample functions continuous, and
since U(s) = 0, x(s) = ξ for almost all sample functions.

Let Cζ[s, t] be the set of continuous functions defined on [s, t]

with x(s) = ζ. The Gaussian Markov expectation of a functional

F[x] over Cξ[s, t] will be denoted by \ F[x]dm Rx. The "m" will
JCf[β,ί]

be omitted if it is identically zero. We have the relation (see [5])

(2.4) \ F[x]dm,Bx = \ F[y(.) + ξv(-)/v(s)]dEy .

Examples of the u and v functions are:

EXAMPLE 1. Wiener process: u(p) = p, v{p) = 1, s ^ p ^ t.

EXAMPLE 2. Doob-Kac process: u(p) = p, v(p) = 1 — p, 0 ^ s ^

EXAMPLE 3. Ornstein-Uhlenbeck family of processes: u(p) = σ2eap,
v(p) = e"αp, σ2 > 0, α > 0, s^p<*t.

We will now introduce some ideas and notation from [12] extended
to Gaussian Markov processes.

For λ > 0, let

( ( ) ί ( ) / ( ) ) f ( ( ) ζv(t)/v(s))dRx
co[s,ί]

where F is a real or complex valued functional defined for all
continuous functions on [s, t] and ψ is a real or complex valued func-
tion defined almost everywhere on (-co, co) and £ is a real number;
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and the λ, F, ψ, ξ are so chosen that the Gaussian Markov integral
exists. Now assume that for a certain choice of the λ, F, ψ the
integral (2.5) exists for all (or almost all) values of ζ in a set S of
real numbers. Then

(2.6) Iλ(F)γ

denotes the function which maps ξ into {I7(F)ψ){ξ) for almost all
values of ~ in S. Now assume that for a certain choice of λ, ί7,
the function (2.6) exists for ψ in a class of functions D and belongs
to a class of functions E. Then the operator

(2.7) Iλ{F)

maps D into E. In this paper D and E will usually be L2{—°°, ^ ) ,
so Iχ(F) will usually be an operator that maps the Hubert space L2

into L2. It can therefore be regarded as an operator valued function
space integral.

r r t ~\

If F(x) = exp^\ θ(p, x(p))dp> and certain smoothness and order
Us J

of growth conditions are placed on θ and ψ, the expression (2.5)
(which now depends on s and ξ) is a solution of a partial differential
equation (see [5]). In this case ψ is not necessarily in L2.

We define
(2.8) IΓ(F)

to be the operator valued analytic function of λ, if it exists, which
agrees with Iχ(F) for real λ and is analytic throughout Re λ > 0.

We shall see that for Re λ > 0, Iλ(F)ψ = Iλ{K)f where the
expression on the right is given in terms of a Wiener integral, and
the F and K, and ψ and ψ are suitably related.

To show the existence of I°n(F), R e λ > 0, we shall follow the
method of [12] and obtain Ifn(F) as a weak limit of operators Iχ{K)
which are defined in terms of finite dimensional integrals; thus

(2.9) IΓ(E) = w lim I°{K)
| σ | — 0

where σ is a partition of [s, ί]. See (0.8) of [12] for the definition
of //.

Actually definition (2.9) can be made in terms of finite dimensional
Gaussian Markov integrals. This would involve using the multivariate
normal density

λ»/a[(2π)»A(α, t,) A(tn^, tn)Y^

x exp j-Σλfo - v{tj)xj_Mtj_1)\2l{2A{tj^ ts))\
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in the definition (0.8) of [12] where

and the u and v functions are subject to (2.1) through (2.3). How-
ever, our proofs will use Ip{F) as defined in (2.9).

Recently, Johnson and Skoug [21] have shown that the weak
limit of (2.9) may be replaced by the strong limit.

Finally we shall use

(2.10) JP(F) = w lim l£ip(F)

to obtain the solution of the integral equation in the pure imaginary
case—the Feynman case.

3* The integral equation for λ > 0*

THEOREM 1. Let θ(t, u) be continuous almost everywhere in the
strip R: 0 ^ t ^ t0, - oo < u < co, and let | θ(t, u)\ ^ M for (ί, u)
in the strip. Let φe'L2(—oo, oo), let λ > 0, t > s ^ 0, and ξ real.
Let G(s, t, ζ, λ) be defined by

G(s, t, ξ, λ) = ( exp {[θlt - τ, \~ll2x(τ) + ζv(τ)/v{s)]dτ
/g J_\ JCjβ,t] Us

x ψ[X~ιlix(t) + ξv(t)/v{s)]dβ.xx .

Then G(s, t, ζ, λ) satisfies the following integral equation.

G(s, t, ζ, λ) = V'2(27r^(s, ί))~1/2Γ f(x)

J—oo

x exp {- X[x - ξv(t)/v(s)Y/[2A(s, t)])dx
{ ' Γ( f -

+ λ1/2(2π)-1/2 [A(s, τ)]-ιl2dτ\ θ{t - τ, x)G{τ, t, x, λ)
Jβ J-oo

x exp{-λ[α; - ξv(τ)/v(s)]2/[2A(s, τ)]}dx .
Proof. Let θ*(τ, u) = θ(t - τ, u). Let 8(τ9 u) = θ*{τ, X~ll2u) and

f(u) = f(\-ιl2u). Then

G(s, t, ξ, λ) - ( exp jΓ#[τ> aj(τ) + Xll2ξv(τ)/v(s)]dτ\

X f[x(t) + λ

where Jϊ(s, ί, ?/) = G(s, ί, 7/λ~1/2, λ).
We now apply (3.3) and (3.6) of [5]. The hypotheses on θ

required by Theorem 3 of [5] are not necessary as can be seen by
consulting the Darling-Siegert paper [14]. The hypotheses of our
present theorem are sufficient. Hence
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H(s, t, y) = (2πA(s, ί))-1/2(~ ψ(u) exp {-[« - yv(t)/v(s)]2/[2A(s, t)]}du

S(τ, ά)H(τ, t, ά)[2πA(s, τ)]-" 2

x exp { — [a — yv(τ)/v(s)]2/[2A(s, τ)]}dadτ .

We transform the first integral with the substitution x = X~ιl2u to
obtain

λ1/2(2τrA(s, ί))~1/2Γ f(x)exv{-X[x - ξv(t)/v(s)]2/(2A(s, t))}dx .
J

We transform the second integral with the substitutions H(τ, t, a) =
G(τ, ί, λ~1/2α, λ) and α̂  = λ~1/2α to obtain

θ(t - r, a?)G(τ, ί, x, λ)λ1/2[2πA(s, λ)]~1/2

o

x exp {-X[x - ζv(τ)/v(s)]2/(2A(s, τ))}dxdτ .

This completes the derivation for λ > 0.

COROLLARY TO THEOREM 1. Assume that θ, φ, λ, t, s, and ξ are
as in the theorem. For the Wiener process, G(s, t, ξ, λ) satisfies a
pair of integral equations:

G(s, t, ξ, λ) - Xι'2(2π(t - s))~1/2Γ f{u) exp {-λ(ξ -

(3.3) + λ1'2(2ττ)-1/2Γ(ί - w)-ιl2dw\° θ{w - s, u)G(s, w, u, λ)
JS J—oo

x exp {~X(ξ - u)2/(2(t - w))}du ,

G(S, ί, £, λ) = λ1/2(27Γ(ί - s))-1/2\ α/r(u) exp {-λ(£ -

(3.4) + λ1/a(27r)-1/a('(w - s)~1/2c?wΓ 0(ί - w, u)G(w, t, u, X)

x exp {-X(ξ - u)2/(2(w - s))}du .

To prove this, we will need the following lemma.

LEMMA. Let

p{w, a; z, b) - —P[X(b) £ z \ X(a) = w] = [2πA(a, b)]~12

dz

X
2A(α, b) J

be the transition density function for the process. Assume that it is
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stationary; i.e. assume that A(a, b) — A(a + h, b + h) and v(b)/v(a) =
v(b + h)fv(a + h) for h > 0. Then

I expj

X ψ[X~ll2x(t)

exp \\

x ψ[χ-ll2x(p)

\ θ\t — r, X 1/2x

+ ηv{t)lv{t - p)]

θ[p - τ, λ-1/2x(τ)

+ ψ(p)lv{Q)]dσ.!l

ί(r) + ψ{τ)lv(t - p)]dτj

+ ηv(τ)lv(O)]dή

where = means if one side exists so does the other and they are
equal.

REMARK. It is easy to verify that the transition density func-
tions for the Wiener and Ornstein-Uhlenbeck processes are stationary.
This is not true for the Doob-Kac process.

Proof of lemma. Assume that the left hand side exists. Call
it G(t — p, t, η, λ). Then by Lemma 2 of [5],

G(t - pt t, η, X) = \ exp ί Γ θ[t - r, X^ιl2x{τ)]dτ\
JCη\.t-p,f\ [jt-p )

x f[X~il2x[t)]dG.Mx .

Using a definition from [8] and a mild extension of Theorem 1 of [7],

G(t - p, t, η, X) = lim ( Π 2>*(fί-i, ^-iJ ζi, ̂ )
| | r | | - » O J i 2 w ΐ = l

x exp \ θ[t — r, X~ll2Γ7-ξ]c
t~P

where τ0 = t - p < τ, < r2 < . . < τn = t, ξQ = rj, Λ,€(^) = ζn i =
0,1, , n, and Γτ>ξ is linear on each [ r ^ , r 4]; also p*(w, a; z, b)
equals p(w, a; z, b) with A(a, b) replaced by A(α, δ)/λ.

From the hypotheses on A(a, b) and v(b)/v(a) we have

= 2)*^-!, r^, - (ί - p); fif r4 - (ΐ - j>)).

Also, as in [7],

|| τ || - max (τ, - τ^x)
J=l» ι»

= max ([ry - (ί - p)] - [τy_t - (ί - p)]) = \\ τ - (t - p) \\ .
j = l,' ',n

Thus
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G(t - p, t, η, X)

- lim ( Π J>*(fi-i» ^ - i - (« ~ P); £<» ^ - (ί - p))
I l l j i 2 ί

x exp {Γ <?[ί - r,

Let δi = τ{ - (t - p), i = 0,1, , n. Then

G(t - p, t, η, λ)

= lim ( Π P*(ί*-i. δ<-i; ί*. δ4) exp {ί'(?[p - δ, λ-^'Λ.el

(since /Vt_p = Λ)

= ( e x p j ί ^ b - δ, χ-ll*x(δ)]dδ\irl\-ll*x(p)]dG.Mx

(by Theorem 1 of [7])

= G(0, p, η, λ) by Lemma 2 of [5].

By assuming that the right side exists, the proof follows in reverse
order. Proof of Corollary: Since the Wiener transition density func-
tion is stationary, by the Lemma

G(s, t, ί, λ) = f exp |Γ"V[ί - s - T, X-^2X(T) + ζ]dτ\
Jσjo.ί-ί] Uo J

x ^[λ-1/2.τ(ί - s) + ζ]dwx = G(0, t - s, ζ, λ) .

Hence by (9.1) of [12]

G(0, ί - s, ί, λ)

- s))-1 / 2Γ f (u) exp [-λ(f - %)2/(2(ί - s))du

(ί - s - pJ-'/ d p Γ β(p, u)G(0, p, u, λ)
J—oo

x exp {-X(ζ - u)2/(2(t - s - p))}du .

Now let w — s — p and note that (7(0, w — s, u, λ) = G(s, w, u, λ) by
the Lemma. Hence the second term becomes

λ1/2(2τr)-1/2Γ(ί - w)-ll2dw[° θ(w ~ s, u)G(s, w, u, λ)

x exp {~X(ξ - u)2/(2{t - w))}du .

Thus (3.3) is verified.

Integral equation (3.4) is obtained from Theorem 1 since v(τ) = 1
and A(s, ί) = t — s in the Wiener case.

REMARK. The concept of a pair of integral equations representing
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forward and backward time equations was suggested by the Darling-
Siegert paper [14].

4* The analytίcity of G and the integral equation for ReX > ()•

THEOREM 2. Under the assumptions of Theorem 1, G(s, t, ξ, λ)
has an analytic extension to ReX > 0 and this extension satisfies the
integral equation (3.2). Furthermore this analytic extension satisfies

(4.1) || G(8, t, , λ) || £ || f || (v(s)/v(t)Y* exp [MU(to)/v(to)) .

Proof. First we show G has the analytic extension. By a formula
in [5, p. 792] we can write

G(s, t, ?, λ)

- ( exp\[θ(t - r, χ-ιl2v(τ)x(U(τ)/v(τ)) + ξv(τ)/v(s))dτ\
JC0[0,ϋ"(ί)Mt)] Us J

x ^[λ^'MίMϋίQM*)) + ζv(t)/v(s)]dwx

where the right hand integral is a Wiener integral.
Let a(τ) = U(T)/V(T). Our hypotheses on u, v (see §2) insure

that a' is positive and continuous on [s, t\. Thus there exists C such
that 0 < l/a'(t) ^ C on [s, ί]. Next we transform the inner integral
in G(s, t, ξ, λ) by τf = α(r). Then

G(β, ί, f, λ)
Γ ΓΓα(ί)

exp <?(ί - ar\τ'), χ-^v{cc\τ'))x(τ')
Jc[o,«;ί)] Uo

x jpiorWdτ'}f[X-^v(t)x(a(t)) + ξv(t)/v(s)]dwx

exp{( 0(r', λ~1/2α;(τ') + f/v(s)dτ'U[λ~1/2α;(τ') + ζ/v(s)]dwx
clo,f\ Uo J

where V = a(t), θ(τf, u) = θ(t - or\τ'), uv{arι{τ'))){dldτf) {a~\τf)), ψ(u) =
ψ(v{t)u). Since l/a'(τ) ^ C on [s, ί] and v, α: are continuous, there exists
M such that | θ(τ, u)\ ^ M, and ̂  is continuous on [0, t'\ 0 (— °°, °°)
Let

(4.2) K(x) = exp | Γ θ(τ\ x{τf))dτ\ .

Let Iλ, IT be as in (2.7), (2.8) for the Wiener process with v{τ) = 1.
Then IλKf(ξ/v(s)) = G(s, t, £, λ). Then because of the hypotheses on
θ and since f eL2, by Theorem 4 of [12], Iχ*K= Is

λ

e<ιK is an analytic
extension of IλK; thus G has an analytic extension

(4.3) G(s, ί, f, λ) - lΓKψ{ζjv{s)) = lrKγ(ξv(t)/v(8)) .

Furthermore by Theorem 4 of [12] (see also line 19, p. 542 of [12])
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|| G(t, , λ) || <: || f((.)v(t)/v(s)) || exp (Ma(t0)). But

\ψ\ζ)\dξ = {V{s)lv{t))\\ir\? .
J —oo

Thus (4.1) holds.
Finally, Morera's Theorem can be used to show the right hand

side of the integral equation (3.2) is analytic. Thus (3.2) is valid
for 0 S s < t ^ t09 Re λ > 0, ξ real.

Next, we note that as in the preceding proof, we can extend
the Corollary to Theorem 1. We embody this remark in a

COROLLARY TO THEOREM 2. Under the assumptions of Corollary
to Theorem 1, G has an analytic extension to R e λ > 0 which then
satisfies equations (3.3) and (3.4).

5* The integral equation for Re λ = 0—The Feynman case*

THEOREM 3. Let θ(t, u) be continuous almost everywhere in the
strip R: 0 <t ^ t0, - co < ^ < co, | θ(t, u)\ ^ M for (t, u) e R. Let
ψ e L2(— oo, oo); then Γ(s, t, , q) = w limJ7_0+ G(s, t, , η — iq) exists for
(t, ξ) e R, t > s |Ξ> 0, and almost all real q. Then for each s e [0, t)
and almost every real q,

Γ(s, ί, f, q)

= l.i.m. qll2(2πiA(s, ί))~1/2Γ ψ(x) exp {iq(x - ζv(t)/v(s))2/(2A(s, t))}dx

(5.1) * n
+ l.i.m. g1/2(2τα)-1/2\ (A(s, τ))-ιl2dτ

x [B θ(t - τ, x)Γ(τ, ί, x, q) exp {iq(x - ζv(τ)/v(s))2/(2A(s, τ))}dx .
J-B

Proof. Let θ and ψ satisfy the hypotheses. Then

w lim)?_>0+ G(s, t, , r] — iq)

exists for (t, ζ)e R, 0 fg s < t and almost all real q. To see this
observe that from (4.3) G(s, ί, ζ, λ) = Ia

λ

nKf{ζv{t)lv{s)) where K is
given by (4.2). Now from our hypotheses on θ and by Theorem 5 of
[12, p. 534], w\imλ__ίqIϊnKψ exists, for almost all q, with limit
denoted JqKψ. Since v(t)/v(s) is bounded away from zero our con-
clusion follows. This weak limit, denoted Γ(s,t, ,q) can be chosen
to be measurable.

Next let h(τ, x) = θ(t — τ, x)G(τ, t, x, λ) and
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g(τ, ξ) = X^(2πA(s, r)Γ' 2 ί h(τ, x)
J—CO

x exp {-X(x - ξv(τ)/v(s))2/(2A(s, τ))}dx .

Since | θ(t — τ, x) \ < M and using the bound on || G(τ, t, , λ) || given
by (4.1) means there exists B such that

(5.2) || h(τ9 -) \^B<oo for all τ e [s, ί] .

By Lemma 1 of [12, p. 522], || g{τ, (*)v{s)/v(τ) || ^ || h(τ, •) || ^ B.
Thus || g(τ, •) II ̂  I v{s)fv(τ) \ll2B ^ B' for some Br since v{τ) is positive and

continuous on [s, ί]. Then , )dτ B'{t - s). Thus if φeL21

s) so by Fubini's Theorem

ψ{ξ)g(τ,ζ)dξdτ .Γ
J-c

Now Γ I φ(ζ)g{τ, ξ)\dζ^\\φ\\' II g{τ, •) || ^ || ψ \\ B' so by Fubini 's
J-co

Theorem

x exp

, a?)

ξv{τ)/υ(8)γ/(2A(8, τ))}dxd~

x -λ(α - ξ(v(τ)/v(8))*/(2A(8, τ))}dζdx .

Thus

(5.4)
= \\ιl2(2πA(s, τ))M" h(τ, x)\~ φ(ζ)

x exp[-yl(« - ξv(s)/υ(τ)Y/2]dζdxdτ

where A = X/A(s, τ).
Now let Hn be the •n-th degree Hermite polynomial. Then

where

κ(«, Λ)dx

, Λ) = Γ £r,,(e)exp(-iV2)exp[-yl(ii;(T)/i;(8) -

n(xv(s)/v(τ), Λ(v(τ)/v(s))2) where

. Now

,(w, /I) - \°°βn(ξ) exp (-5V2) exp (-Λ(f -
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In [12, p. 547] it was shown

|| Φn{-,Λ) || ^ ( 2 π ) 1 ' 2 μ | - 1 ' 2 | | i ϊ M ( . ) e x p [ - ( . ) 2 ] | |

thus \\Φn{',Λ)\\ £ (2πv(τ)l(\Λ\v(s))r2\\Hn( )exv[~(Ύ]\\.

Now the proof in [12, p. 548] can be generalized, slightly, to show

that

l.i.m. Φn( , Vc) — Φw( , —ϊQ/c)

where c is independent of λ and c > 0. Thus

l.i.m. ΦΛ( , λι;(τ)/(ι;(8)A(s, r))) = Φw(., -iqv(τ)/(v(s)A(s, τ))) .
X—iq
Eβ;.>o

But then

|| Φn( , \/A(a, r)) - Φn(., -iq/A(s, r)) ||

= (v(τ)lv(8)yι*\\ Φn(', Xv(t)/(v(s)A(s, r)))

r)» || - 0

as λ —>• — iq+. Thus

(5.5) l.i.m. Φu(.,\/A(8, r)) = Φ,( , -ίg/Λ(β, r)) .

But I θ I ̂  M and || h(τ, •) || ^ B on [s, ί] by (5.2) so

^ ( t - τ, χ)G((τ, t, x, \)[Φn(x, X/A(s, τ))

- Φn(x, -iq/A(s,τ))]dx

\ Φn(x, λ/A(s, τ)) - Φn(, x-iq/A(s, τ) \\ dτ .

By (5.5) the limit of the integrand is zero. Also, from above,

|| Φn(., \/A(8, τ)) || <: [2πA(s, τ)v(τ)/(\ λ \v(s))]^ \\ fl.(.) exp [-( )2] II

so a bound for this integrand is

B\\Hn( ) exv[-(-Y]\\(2πv(τ)/v(s)y'*[\X\-^ + \q\-^] ^ C

where C is chosen such that the bound holds uniformly for all
Γ G [ S , t]. Such a C exists since v(τ) is continuous and, we may
assume, | λ | >̂ \q\/2. Thus by bounded convergence, ^ f —> 0 as
λ—> —iq.

Now w l im^. i g θ(t - τ, -)G(τ, t, , λ) = <?(ί - r, )Γ(τ, ί, , q) and
Φ»( , -iq/A(8,τ))eL2 so
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\~ Φn(x, -iq/A(s, τ))θ{t - τ, x)[G(τ, t, x, λ) - Γ(τ, t, x, q)]dx — 0
J_oo

as λ—> — iq+. Now as a function of r, this is bounded by

2B(2πA(s, τ)/| q I)1'2 || J3.(.) exp [-( )2] II .

Thus by bounded convergence

J^ = \\A(S, τ))-" d r Γ θ(t - τ, x)Φn(x, -iq/A(s, τ))[G(τ, t, x, λ)
J S J — oo

— Γ(τ, t, x, q)]dx —> 0

as λ-^ — iq+.
Thus cJT + ^ — 0̂ as λ—> — iq+ and using (5.4) we have

,= lim (°° Hn(ξ)exv(-ei2)dζ\\xl(2πA(8,τ))γι*dτ

x (" θ(t - τ, x)G{τ, t, x, λ) exp [-Λ(x- ξv(s)/v(τ))2/2]dx

= lim Γ[λ/(2πΛ(8, r ) ) ] 1 ' 2 ^ ! " θ(t - τ, x)G(τ, t, x, \)Φ,(x, X/A(s, τ))dx

= \\-iq/(2πA(s, r))] ι '*drί" 5(ί - τ, x)Γ(τ, t, x, q)Φn{x, -iq/A(s, τ))dx
Js J-oo

- j![-i?/(27rA(s, r))]^2dτj^(ί - τ, α?)Γ(r, ί, a?, g)J^fl ίf) exp (-ί2/2)

x exp [ig(ίv(τ)/v(s) - x)2/(2A(s, τ))]dξdx .

( f ) Γ < » Γ-β

Then, using the notation \ f(u, ζ)du = l.i.m.^^+oo I f(u, ζ)du, a slight
J~°° (6) J-B

generalization of Lemma 10 of [12, p. 542] shows the expression
becomes

S t foo ( ί ) foo

(q/(2πiA(s, τ))yι>dτ\_^Hn(ζ) exp [ - f / 2 ] ^ j_^ι9(ί - r, x)

x Γ(r, ί, x, q) exp [ΐg(x — ίi)(τ)/v(s))2/(2A(s, τ))]dx .

Since w lim,!̂ -,-, G(τ, t, , λ) = /"(r, ί, , g1), we have

| | Γ | | g l i m i n f | |G(r, t, , λ ) | | ^ C
yί—>—iq

where C is the bound on | | G | | given in (4.1). Then by Lemma 1 of

[12, p. 522], Γ(τ, ί, , g ) e L 2 , | 0 | ^ i k Γ imply

Γ p «(t - r, a;)Γ(r, t, x, q) exp [ig(a; - (.)v(τ)lv(s)y/(2A(s, τ))]dx\\
II J - ° ° II

^ II Γ(r, ί, , q) || M(A(e, τ)V(S)/(2τrV(r))1'2 ̂  B"(Λ(8, r))1'2

where B" is chosen to be independent of τ since v(τ) is positive
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and continuous on [s, t]. Thus by Schwarz's Lemma, since

J ϊ (£) exp [-e/2]dζ^_J(t - τ, x)Γ(τ, t, x, q)

x exp [iq(x - ξv(τ)/v(s))2/(2A(s, τ))]dx

£ || ff»(.) exp [-(.)72] \\B"(A(s, τ))1'2 = £'"(A(s, τ))1'2

for the appropriate J3'". Thus the integrand for JL in (5.6) is bounded
by (I q \/(2π))ll2B'" for s ^ τ ^ ί, - oo < £ < cχ3. Thus by Fubini's
Theorem

S f ( f f

fl.(f) exp [-ί72]dί (A(β, r))-"2dτ (?(ί - r,

x JΓ(Γ, ί, x, q) exp [ϊg(α; — ζv(τ)/v(s))2/2A(s, τ)\dx .

Next we considerJ2 = lim

x exp{-λ[α; - ζv(t)/v(s)]2/(2A(s, t))}dx .

As in (5.3) above we can interchange integration so

J2 = Jim+(λ/(2;rA(s, t)ψ2^(x)dx^Hn(ζ) exp [-f2/2]

x exp{-λ[x - ζv(t)/v(s)]2/(2A(s, t))}dζ .

Since Hn(ζ) exp [ — ζ2/2] e L^ by dominated convergence

lim \ Hn(ξ) exp [ — <f/2] exp { — \(x — ζv(t)/v(s))2/(2A(s,

Hn{ξ) exp [-f2/2] exp {iq(x - ξv{t)/v{s))2/(2A(s, t))}dζ .

By Lemma 1 of [12], the L2 norm of the left integrand as a function
of ξ is bounded uniformly in λ (assume | λ | > | q |/2) so by 13.44 of
[17] we have the weak limit

J2 - (q/(2πίA(8, t))yή_j(x)dx^Hn(ζ) exp [-

x exp {ίq(x - ζv(t)/v(s))2/(2A(s, t))}dξ .

As with Jx in (5.6) we have

S oo (ζ)

__#.(£) exp [-£72]#
x exp {iq(x - ξv(t)/v(s))2/(2A(s, t))}dx .
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Finally, multiply both sides of (3.2), valid for Reλ > 0 by Theorem
2, by Hn(ξ)exp[ — ξ2/2] and integrate with respect to ζ. Taking
limits of both sides as λ —> — iq+ gives

lim Γ H%(ξ) exp [-f2/2]G(s, ί, f, X)dζ = Jx + J2

or using the definition of Γ,

\~_JUξ) exp [-ξ2/2]Γ(S, t, ξ, q)dζ

= \~ Hn{ξ) exp [-ξη2]dξ{(q/(2πiA(s, ί)))"»

( f ) f o o

x ψ(x) exp [ίg(α? - ξv(f)/v(s)γ/(2A(s, t))]dx
J-oo

S ί (e)foo

(q/(2πίA(s, r)))1'2 (?(ί - r, x)Γ(r, ί, *, ?)
3 J-oo

x exp [ i φ - ^(τ)/'y

for almost all g. Since the J3"Λ(f) exp [—ξ2/2] span L2, the desired
equation (5.1) results.

As in the preceding proof we can extend the Corollaries to
Theorems 1 and 2 to obtain a

COROLLARY TO THEOREM 3. Assume that θy φ, q, ί, s and ζ are
as in Theorem 3. For the Wiener process, Γ(s, t, ξ, q) satisfies a
pair of integral equations:

Γ(s, t, ί, q)

= l.i.m. (q/(2πi(t - s)))1/2Γ ψ(x) exp [ίg(α; - ζ)2/(2(t - s))]dte

( 5 7 ) <S)

 f i r^
+ l.i.m. (g/(2π t))1/2\ (t - w)-ll2dw\ θ(w - s, x)Γ(s, w, x, q)

yl->oo J s J —A

x exp [iq(x — ξ)2/(2(t — w))]dx ,

Γ(8, t, ξ, q)

= l.i.m. (q/(2πi(t - s)))1/2(* ψ(x) exp [iq(x - ζ)2/(2(t - s))]dx
/r n\ A^oo )—A

( 5 8 ) ( f l r, p
+ l.i.m. (9/(2τri))1'2 (w - s)-1/2dw\ θ(t - w, x)Γ(w, t, x, q)

A-*°° js J—A
(ξ)

x exp [iq(x — ζ)*/(2(w - s))]dx .
REMARK. In [13] Cameron and Storvick extend their results

from almost all points of the imaginary axis, iq, to all points except
q — 0. The extension of these results to Gaussian Markov processes
is presently under investigation.
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