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MODULAR ANNIHILATOR A*-ALGEBRAS

PAak-KEN WONG

This paper is concerned with modular annihilator A*-
algebras, Let A be an A*-algebra, B a maximal commutative
*.subalgebra of 4 and X3 the carrier space of B. We show
that the following statements are equivalent: (i) A is a modular
annihilator algebra. (ii) Every X3 is discrete. (iii) Every B
is a modular annihilator algebra. (iv) The spectrum of every
hermitian element of A has no nonzero limit points.

Let A be an A*-algebra which is a dense two-sided ideal
of a B*-algebra 2, A** the second conjugate space of A and
74 the canonical embedding of A into A**, We show that
A is a modular annihilator algebra if and only if =4(A) is a
two-sided ideal of A** (with the Arens product). This
generalizes a recent result by B.J. Tomiuk and the author,

The theory of (left, right) modular annihilator algebras was
developed in [20]. In a recent paper [4], Barnes has extended this
study to semi-simple Banach algebras. He has proved an interesting
result which says that if A is a semi-simple Banach algebra, then
A is modular annihilator if and only if the spectrum of every element
of A has no nonzero limit points (see [4; p. 516, Theorem 4.2]). In
this paper, we show that a similar result holds for A*-algebras.

2. Notation and preliminaries. Notation and definitions not
explicitly given are taken from Rickart’s book [15].

For any subset E of a Banach algebra A, let L,(E) and R, (E)
denote the left and right annihilators of E in A, respectively. Then
A is called a modular annihilator algebra if, for every maximal
modular left ideal I and for every maximal modular right ideal .J,
we have R,(I) = (0) if and only if I = A and L,(J) = (0) if and only
if J=A. Let A be a semi-simple modular annihilator Banach
algebra. Then every left (right) ideal of A contains a minimal
idempotent (see [2; p. 569, Theorem 4.2]).

A Banach algebra with an involution 2 — x* is called a Banach
*-algebra. A Banach *-algebra A is called a B*-algebra if the norm
and the involution satisfy the condition |[[z*z|| = ||z|? (xe ). If A
is a Banach *-algebra on which there is defined a second norm |.|,
which satisfies, in addition to the multiplicative condition |2y | < 2] ||,
the B*-algebra condition |x*x| = |2 ?, then 4 is called an A*-algebra.
The norm |.| is called an auxiliary norm. Let A be an A*-algebra.
Then the involution x# —x* in A is continuous with respect to the
given norm and the auxiliary norm and every closed *-subalgebra of
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A is semi-simple (see [15; p. 187, Theorem (4.1.15)] and [15; p. 188,
Theorem (4.1.19)]).

Let A be a Banach algebra which is a subalgebra of a Banach
algebra 1. For each subset £ of A, cl(E) (resp. cl,(#)) will denote
the closure of £ in A (resp. 1).

Let A be a Banach algebra. For each element x ¢ A4, let Sp, (X)
denote the spectrum of x in A. If A is commutative, X, will denote
the carrier space of 4 and C,(X,) the algebra of all complex-valued
functions on X,, which vanishes at infinity. If 4 is a commutative
B*-algebra, then A = Cy(X,).

In this paper, all algebras and spaces under consideration are
over the complex field C.

3. Characterizations of modular annihilator A*-algebras. Our
first result, which is interesting in its own right, is useful in §5.

THEOREM 3.1. Let A be an A*-algebra. Then the following
statements are equivalent:

(i) A is a modular annihilator algebra.

(ii) The carrier space of every maximal commutative *-sub-
algebra of A is discrete.

(iii) FEwery mazimal ccmmutative *-subalgebra of A is a modular
annthilator algebra.

(iv) The spectrum of every hermitian element of A has mno
nonzero limit points.

Proof. (i) = (iii). This follows immediately from [4; p. 517,
Corollary].

(iii) = (i). Let |.| be the auxiliary norm on A. Assume
x=ux*cA and let B be a maximal commutative *-subalgebra of A
containing . Then B has dense socle in |.| by [5; p. 288, Theorem
3.3]. Since the socle of B is included in the socle of A4, z is in the
closure of the socle of A. It follows that A has dense socle in |.|[.
By [21; p. 376, Lemma 2.8],|.| is a @Q-norm on every maximal
commutative *-subalgebra of A. Thus |.| is a @-norm on A by [5;
p- 258, Lemma 1.2]. Therefore A is a modular annihilator algebra
by [20; p. 41, Lemma 3.11].

(ii) = (iv). Let 2 be a hermitian element in A and let B be a
maximal commutative *-subalgebra of A containing x. By [15; p. 111,
Theorem (3.1.6)],

Sps(@) — (0) € {f(2): f e Xp} < Spu()

We suppose, on the contrary, that Sp,(xr) has a nonzero limit point
fo@), where f,eX,. Let {f,} be a sequence in X, such that
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Fa(®) — fo(x) and f,(x) are distinct. Let e =31|f,(x)]. We may
assume that |[f,(x)|=¢ =12 --.). For this given ¢, there
corresponds a compact subset K < X, such that |f(x)| <e for all
fe K. Since X, is discrete, K is finite. Hence {f,} ¢ K. But
|fa(®)| = ¢ for all n. This is a contradiction. Therefore Sp,(x) =
Spz(x) has no nonzero limit points.

(iv) = (iii). Let B be a maximal commutative *-subalgebra of A.
For each 2 € B, we can write « = y + 42z where y and z are hermitian
elements in B. Since 9§ and Z have no nonzero limit points in their
range, it follows that Z = § + 42 has the same property. Therefore
by [4; p. 515, Theorem 4.1], B is a modular annihilator algebra.

(iii) = (ii). Let B be a maximal commutative *-subalgebra of A.
Then by [2; p. 569, Theorem 4.2(6)], X; is discrete in the hull-kernal
topology. Therefore X, is discrete in the finer Gelfand topology.
This completes the proof of the theorem.

Let B be a commutative Banach algebra with carrier space X;.
Then B is called completely regular provided, for every closed subset
Fc X, and pe X; — F, there exists x € B such that F(z) = (0) and
p(x) = 1. A commutative Banach algebra with discrete carrier space
is completely regular.

COROLLARY 3.2. Let A be an A*-algebra which is a dense sub-
algebra of a B*-algebra A. Then A 1s a modular annihilator algebra
if and only if the following conditions are satisfied:

(a) A s a dual algebra.

(b) For Ewvery maximal commutative *-subalgebra B of A, B
and cl(B) have the same carrier space.

Proof. Suppose A is a modular annihilator algebra. By [5; p.
287, Lemma 2.6], A has dense socle and therefore is a dual algebra
(see [11; p. 222, Theorem 2.1]). This gives (a). By Theorem 3.1(ii),
the carrier space of B is discrete. Therefore B is completely regular.
Hence it follows from [15; p. 175, Theorem (3.7.5)] that cl(B) and B
have the same carrier space. This proves (b).

Conversely, suppose conditions (a) and (b) hold. Since 9 is dual,
cl(B) has discrete carrier space. Therefore the carrier space of B is
also diserete. Theorem 3.1 now shows that A is a modular annihilator
algebra. This completes the proof.

A Banach *-algebra A is called symmetric provided every element
of the form-x*x is quasi-regular in A.

COROLLARY 3.3. Let A be an A*-algebra which is a dense subal-
gebra of a dual B*-algebra U. Then A is a modular annihilator
algedbra if and only if A 1s symmetric.
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Proof. If A is a modular annihilator algebra, then by the proof
of [15; p. 266, Theorem (4.10.11)], A is symmetric. Conversely
suppose A is symmetric. Let B be a maximal commutative *-subal-
gebra of A. Then by [15; p. 233, Corollary (4.7.7)], B is a semi-
simple symmetric algebra. Therefore B and cl(B) have the same
carrier space (see [13; p. 219, Corollary ]). It follows now from
Corollary 3.2 that A is a modular annihilator algebra and the proof
is complete.

4, The Arens products on A**, Let A be a Banach algebra,
A* and A** the conjugate and second conjugate spaces of A, respec-
tively. The two Arens products on A** are defined in stages accor-
ding to the following rules (see [1]). Let x,ye A, fe A% F,Ge A**.

(a) Define fox by (fox)(y) = f(xy). Then foxe A*.

(b) Define Gof by (Gof)(x) = G(fox). Then Gofe A*.

(¢) Define FoG by (FoG)(f) = F(Gof). Then FoGe A**.
A** with the Arens product o is denoted by (A**, o).

(a’) Define xo'f by (x°'f)(y) = f(yx). Then xo'f e A*.

(b’) Define fo’F by (fo'F)(x) = F(xo'f). Then fo'Fe A*.

(¢’) Define F'o'G by (Fo'G)(f) = G(f'F). Then FoGe A**.
A** with the Arens product o’ is denoted by (4**, o).

Each of these products extends the original multiplication on A
when A is canonically embedded in A**. In general, o and o’ are
distinet on A**. If they coincide on A**, then A is called Arens
regular.

NoTATION. Let A be a Banach algebra. The mapping 7, will
denote the canonical embedding of A into A** in the rest of the

paper.

LEMMA 4.1. Let A be a Banach algebra and let B be a maximal
commutative subalgebra of A. If w,(A) is a two-sided tdeal of (A**, o),
then wy(B) is a two-sided ideal of (B**, o).

Proof. This follows from the proof of (b) = (a) in [19; p. 533,
Theorem 5.1].

Let A be a B*-algebra. Then A is Arens regular and A** is a
B*-algebra under the Arens product (see [7; p. 869, Theorem 7.1] or
[17; p. 192, Theorem 5]).

Lemma 4.2. Let A be a B*-algebra. Then A 1is a dual algebra
if and only if w,(A) ts a two-sided ideal of A**.
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Proof. This is [19; p. 533, Theorem 5.1].

5. The Arens product and modular annihilator A*-algebras.
Throughout this section, unless otherwise stated, 4 will be an A*-
algebra which is a dense two-sided ideal of a B*-algebra 2. The
norm on A (resp. %) is denoted by ||.|| (resp. |.]). We shall often
use, without explicitly mentioning, the following fact: For every
xe A, ye A, we have

(5.1) loyll < k|l ly| and Jlyz|| = Ell2] |y],

where k is a constant (see [14; p. 18, Lemma 4]).

LEmMMA 5.1. Let A be commutative. If w,(A) s a two-sided
ideal of (A**, o), then A is a modular annihilator algebra.

Proof. Let X, be the carrier space of A. It follows easily from
[20; p. 40, Lemma 3.8] that A and I have the same carrier space.
Therefore A = Cy(X,). We show that X, is discrete. Suppose this
not so. Let fe X, and let {f,} be a net in X, such that f, — f and
fie= f for all ¢. Let E be the closed subspace of A* spanned by
the f,. We claim that fe¢ E. In fact, we assume fc E. Choose
0 < e <{fll/2k, where || f|| denotes the norm of f in ||.|| and k% is
a constant given in (5.1). Since f € F, there exists k;€ C and f;€{f.}
(t=1,2, --., n) such that

(5.2) Hf - Sk <.

Since 9 = Cy(X,), there exists x,€ 2 such that |z;| =1, f(z;) =1 and
fiz)=0 (+=1,2, +-+,m). Let xe A be such that |[z||<1 and
|f(@)] = [ fll/2. By (5.1), we have

(5.3) “ = (xx, e,

= llefl o] eeefonf =1

Since f,(xx,---2,) =0 (2 =1,2, ---, n), it follows from (5.2) and (5.3)
that

(5.4) | f@oyeeem,) | < ke <[ fl/2.
But
| fl@z, @) | = [fl@)] =z | fll/2.

This is a contradiction to (5.4). Hence f ¢ E. Therefore there exists
an element F'e A** such that F(E) = (0) and F(f) = 0. Choose yc A
such that f(y) = 0. Then (Fom,(y)(f) = F(f)f(y) = 0. Since f, <€ K,
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(Fom,u)(f) = F(f)f.(y) =0 for all ¢t. This contradicts the facts
that Form,(y)erm,(A4) and f,— f in X,. Therefore X, is discrete and
so by Theorem 3.1, A is a modular annihilator algebra. This completes
the proof.

In the following theorem, (A** ) will denote the Arens product
on 2** and 7w the canonical mapping of A into A**,

THEOREM 5.2. Let A be an A*-algebra which is a dense two-
sided ideal of a B*-algebra A. Then the following statements are
equivalent:

(i) A is a modular annihilator algebra.

(ii) m,(A) is a two-sided ideal of (A**, o).

Proof. (1i)= (ii). Suppose (i) holds. By Corollary 3.2, U is a
dual algebra and so by Lemma 4.2, 7(2) is a two-sided ideal of (A**, x).
Let ¢ be an idempotent of A. Since A is a two-sided ideal of 2,
eA = eA. For each fe A*, we define the linear functional f.e on A
by

(f-e)) = fley) (ye) .

Then by (5.1), f.ee2*. For each xe A, let ® be the mapping on
w(eA) into A** given by

D(m(ex))(f) = m(ex)(f )

for all fe A*. Then @(w(ex)) = 7, (ex) and so @ is a one-one mapping
of mw(ed) onto mw,(eA). For each geA*, let g|A be the restriction of
g to A. Since |.| < g]l.|| for a constant B, g|Aec A*. For every
element F'e A**, let F' be the linear functional on A* defined by

F(g) = F(glA) (ge A%) .

Then Fe**. Since m(e)« Fen(), it follows that m(e)F e m(e) =
w(eA). Straightforward calculations show that @(w(e)+F) = w(e)o F
and therefore we have

(5.5) Tue)o Fem,(A) (FeA*).

Let {e} be a maximal orthogonal family of hermitian minimal
idempotents in . It is easy to see that {¢} < A. Let ze A and
Fe A**. Since U is a dual algebra, by [14; p. 23, Lemma 6],
x=,%e, in |.|. Hence only a countable number of ze, = 0; denote
those e¢/s for which xe, =0 by e, e, ---. Let x, =7 we;, (n =1,
2, +++). It follows from (5.5) that

(5.9) (%, o Fem(A) n=1,2 <-+).



MODULAR ANNIHILATOR A*ALGEBRAS 831

For each fe A*, we have

[(Ta(a) o F' — Ty(@) e F)(F)| = | F(f o (w0 — @)
SFINISf @, —2) | = EINFIFIl e, — @] .

Since x, — « in |.|, we have 7w ,(z,)c F — 7 (x)oF in [|.||. It follows
from (5.6) that w,(x)cFem,(A). A similar argument shows that
Form,(x)erm (A). Therefore m,(A) is a two-sided ideal of A**. This
proves (ii). (i) = (i). This follows immediately from Lemma 4.1,
Lemma 5.1 and Theorem 3.1. The proof of the theorem is complete.

Let A be a modular annihilator B*-algebra. It follows from
[8; p. 48, Theorem (2.9.5)(iii)] that A is dual (also see [20; p. 42,
Theorem 4.7]). Therefore the preceding theorem generalizes Lemma
4.2,

COROLLARY 5.3. Let A and U be as tn Theorem 5.2. Then the
following statements are equivalent:

(i) w(A) is a two-stded ideal of (A**, o)

(ii) Q) s a two-sided ideal of (A**, ).

Proof. This follows from Theorem 5.2, Corollary 3.2, Lemma 4.2
and [20; p. 40, Theorem 3.7].

THEOREM 5.4. Let A be a reflexive A*-algebra which 1is a dense
two-sided ideal of a B*-algebra A, then A is dual.

Proof. Since A is reflexive, by Theorem 5.2 and Corollary 3.2,
A is a dual algebra and hence is w.c.c. Therefore by [14; p. 31,
Theorem 17], A is a dual algebra. This completes the proof.

It is well-known that a proper H*-algebra is dual. This fact
also follows from Theorem 5.4, since a proper H*-algebra satisfies the
conditions of Theorem 5.4 (see [14; p. 31]).

Let H be a Hilbert space and B(H) the algebra of all continuous
linear operators on H into itself with the usual operator bound norm.
Let LC(H) be the algebra of all completely continuous operators on
H and let t¢(H) be the trace-class on H.

THEOREM 5.5. There exists a dual A*-algebra A which ts a dense
two-sided ideal of a B*-algebra such that A 1is Arens regular and
A** = 1w, (A) + B**, where R** 5= (0) is the radical of A**.

Proof. Let {H;} be a family of Hilbert spaces such that at least
one H, is infinite dimensional. Let A = (3, 7¢(H,)), be the L.,-direct
sum of {r¢(H))} and let A = (3; LC(H))), be the B*(co)-sum of {LC(H,)}.
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Then A is a dual A*-algebra which is a dense two-sided ideal of A
(see Theorem 9.2 in [18]). It is easy to verify that, as Banach
spaces, A is isometrically isomorphic to 2* and that in turn A** is
isometrically isomorphic to the normed full direct sum 3, B(H;) of
{B(H);)}. Let F be a bounded linear functional on A*. Its restriction
to 3, LC(H)), (C 3, B(H,)) determines an element F,ex,(A). Let

M = {Ee A**: E(g) = 0 for all ge (3, LC(H)))o) -

It is clear that F' — F,e M. Since 7 (A) = A**, M =+ (0).
Let ¢; be the trace operator on H,. For all f = (f,) € A* = >, B(H))
and = (2,), ¥y = () € A, by [16; p. 47, Theorem 2] we have

(fem)(y) = flxy) = Dufww,) = Duty.f)
= DUt ) = Du(f2)(y)
= (fa)(v) .

Since fxe (3,,LC(H,)),, we have

(Ta(@) o E)(f) = E(f ox) = E(fe) =0,

for all fe A*, Ee M and x€ A. Since 7,(A) is weakly dense in A**,
it follows from the weak continuity of left multiplication that
A**o M = (0). Similarly we can show that Mo’A** = (0). Since
T x)o F=m (x)c"F and Form(x) = Fo'mw(x) for all Fe A**, zc A,
we have

Meom(A) =7 (A)o M = 7w, (A) "M = Mo"7,(A) = (0) .

Let F,Ge A** and write FF = F, - (F — F) and G =G, + (G — G)
with F,, G,e7,(A). Since FF— F, and G — G, € M, we have FoG =
FoG, = Fo'G and so A is Arens regular by definition. Since
A** o M = Mo A** = (0), M is a two-sided ideal of A**. Now it is
clear that M 1is contained in the radical R** of A**. Since
R** N7 (A) = (0), we have M = R** and therefore A** = x ,(4) + R**.
This completes the proof.

COROLLARY 5.6. (3, te(H))i* is a *-algebra.

Proof. This follows from Theorem 5.5 and [17; p. 186, Theorem
1].

6. Unsolved questions. 1. Let H be a Hilbert space. For
1< p< c, let C, be the algebra given in [9; p. 1089]. Then C, is
an A*-algebra which is a dense two-sided ideal of LC(H). It is easy
to show that for each T'e C,, T is contained in the closure of 7C, in
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C,. Therefore by [14; p. 28, Lemma 8], C, is a dual algebra (also
see [3; pp. 10 — 11]). For p = 2, C, is an H*-algebra and therefore
Ci*=0C, For p#2 and 1< p< =, is C, Arens regular and is
Ck* semi-simple?

2. Let A be a dual A*-algebra which is a dense two-sided ideal
of a B*-algebra. Is A Arens regular?

REMARK. We know that a dual A*-algebra may not be Arens
regular. Let A be the group algebra of an infinite compact abelian
group. Then A is a dual A*-algebra which is not an ideal of ¥,
where 2 is the completion of A in an auxiliary norm (see [14; p. 32]).
By [7; p. 857, Theorem 3.14], A is not Arens regular.

The author would like to thank the referee for suggestions and
simplifications of the original proofs in § 3.
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