MODULAR ANNIHILATOR A*-ALGEBRAS

Pak-Ken Wong

This paper is concerned with modular annihilator A^* algebras. Let A be an A^* -algebra, B a maximal commutative *-subalgebra of A and X_B the carrier space of B. We show that the following statements are equivalent: (i) A is a modular annihilator algebra. (ii) Every X_B is discrete. (iii) Every B is a modular annihilator algebra. (iv) The spectrum of every hermitian element of A has no nonzero limit points.

Let A be an A*-algebra which is a dense two-sided ideal of a B*-algebra \mathfrak{A}, A^{**} the second conjugate space of A and π_A the canonical embedding of A into A**. We show that A is a modular annihilator algebra if and only if $\pi_A(A)$ is a two-sided ideal of A** (with the Arens product). This generalizes a recent result by B. J. Tomiuk and the author.

The theory of (left, right) modular annihilator algebras was developed in [20]. In a recent paper [4], Barnes has extended this study to semi-simple Banach algebras. He has proved an interesting result which says that if A is a semi-simple Banach algebra, then A is modular annihilator if and only if the spectrum of every element of A has no nonzero limit points (see [4; p. 516, Theorem 4.2]). In this paper, we show that a similar result holds for A^* -algebras.

2. Notation and preliminaries. Notation and definitions not explicitly given are taken from Rickart's book [15].

For any subset E of a Banach algebra A, let $L_A(E)$ and $R_A(E)$ denote the left and right annihilators of E in A, respectively. Then A is called a modular annihilator algebra if, for every maximal modular left ideal I and for every maximal modular right ideal J, we have $R_A(I) = (0)$ if and only if I = A and $L_A(J) = (0)$ if and only if J = A. Let A be a semi-simple modular annihilator Banach algebra. Then every left (right) ideal of A contains a minimal idempotent (see [2; p. 569, Theorem 4.2]).

A Banach algebra with an involution $x \to x^*$ is called a Banach *-algebra. A Banach *-algebra A is called a B^* -algebra if the norm and the involution satisfy the condition $||x^*x|| = ||x||^2$ $(x \in A)$. If A is a Banach *-algebra on which there is defined a second norm |.|, which satisfies, in addition to the multiplicative condition $|xy| \leq |x| |y|$, the B^* -algebra condition $|x^*x| = |x|^2$, then A is called an A^* -algebra. The norm |.| is called an auxiliary norm. Let A be an A^* -algebra. Then the involution $x \to x^*$ in A is continuous with respect to the given norm and the auxiliary norm and every closed *-subalgebra of A is semi-simple (see [15; p. 187, Theorem (4.1.15)] and [15; p. 188, Theorem (4.1.19)]).

Let A be a Banach algebra which is a subalgebra of a Banach algebra \mathfrak{U} . For each subset E of A, $\operatorname{cl}(E)$ (resp. $\operatorname{cl}_A(E)$) will denote the closure of E in A (resp. \mathfrak{U}).

Let A be a Banach algebra. For each element $x \in A$, let $Sp_A(X)$ denote the spectrum of x in A. If A is commutative, X_A will denote the carrier space of A and $C_0(X_A)$ the algebra of all complex-valued functions on X_A , which vanishes at infinity. If A is a commutative B^* -algebra, then $\hat{A} = C_0(X_A)$.

In this paper, all algebras and spaces under consideration are over the complex field C.

3. Characterizations of modular annihilator A^* -algebras. Our first result, which is interesting in its own right, is useful in §5.

THEOREM 3.1. Let A be an A^* -algebra. Then the following statements are equivalent:

(i) A is a modular annihilator algebra.

(ii) The carrier space of every maximal commutative *-subalgebra of A is discrete.

(iii) Every maximal commutative *-subalgebra of A is a modular annihilator algebra.

(iv) The spectrum of every hermitian element of A has no nonzero limit points.

Proof. (i) \Rightarrow (iii). This follows immediately from [4; p. 517, Corollary].

(iii) \Rightarrow (i). Let |.| be the auxiliary norm on A. Assume $x = x^* \in A$ and let B be a maximal commutative *-subalgebra of A containing x. Then B has dense socle in |.| by [5; p. 288, Theorem 3.3]. Since the socle of B is included in the socle of A, x is in the closure of the socle of A. It follows that A has dense socle in |.|. By [21; p. 376, Lemma 2.8], |.| is a Q-norm on every maximal commutative *-subalgebra of A. Thus |.| is a Q-norm on A by [5; p. 258, Lemma 1.2]. Therefore A is a modular annihilator algebra by [20; p. 41, Lemma 3.11].

(ii) \Rightarrow (iv). Let x be a hermitian element in A and let B be a maximal commutative *-subalgebra of A containing x. By [15; p. 111, Theorem (3.1.6)],

$$Sp_{\scriptscriptstyle B}(x) - (0) \subset \{f(x) \colon f \in X_{\scriptscriptstyle B}\} \subset Sp_{\scriptscriptstyle B}(x)$$
 .

We suppose, on the contrary, that $Sp_B(x)$ has a nonzero limit point $f_0(x)$, where $f_0 \in X_B$. Let $\{f_n\}$ be a sequence in X_B such that

826

 $f_n(x) \to f_0(x)$ and $f_n(x)$ are distinct. Let $\varepsilon = \frac{1}{2} |f_0(x)|$. We may assume that $|f_n(x)| \ge \varepsilon$ $(n = 1, 2, \dots)$. For this given ε , there corresponds a compact subset $K \subset X_B$ such that $|f(x)| < \varepsilon$ for all $f \notin K$. Since X_B is discrete, K is finite. Hence $\{f_n\} \not\subset K$. But $|f_n(x)| \ge \varepsilon$ for all n. This is a contradiction. Therefore $Sp_A(x) =$ $Sp_B(x)$ has no nonzero limit points.

 $(iv) \Rightarrow (iii)$. Let B be a maximal commutative *-subalgebra of A. For each $x \in B$, we can write x = y + iz where y and z are hermitian elements in B. Since \hat{y} and \hat{z} have no nonzero limit points in their range, it follows that $\hat{z} = \hat{y} + i\hat{z}$ has the same property. Therefore by [4; p. 515, Theorem 4.1], B is a modular annihilator algebra.

(iii) \Rightarrow (ii). Let *B* be a maximal commutative *-subalgebra of *A*. Then by [2; p. 569, Theorem 4.2(6)], X_B is discrete in the hull-kernal topology. Therefore X_B is discrete in the finer Gelfand topology. This completes the proof of the theorem.

Let B be a commutative Banach algebra with carrier space X_B . Then B is called completely regular provided, for every closed subset $F \subset X_B$ and $p \in X_B - F$, there exists $x \in B$ such that F(x) = (0) and p(x) = 1. A commutative Banach algebra with discrete carrier space is completely regular.

COROLLARY 3.2. Let A be an A^* -algebra which is a dense subalgebra of a B^* -algebra \mathfrak{A} . Then A is a modular annihilator algebra if and only if the following conditions are satisfied:

(a) \mathfrak{A} is a dual algebra.

(b) For Every maximal commutative *-subalgebra B of A, B and cl(B) have the same carrier space.

Proof. Suppose A is a modular annihilator algebra. By [5; p. 287, Lemma 2.6], \mathfrak{A} has dense socle and therefore is a dual algebra (see [11; p. 222, Theorem 2.1]). This gives (a). By Theorem 3.1(ii), the carrier space of B is discrete. Therefore B is completely regular. Hence it follows from [15; p. 175, Theorem (3.7.5)] that cl(B) and B have the same carrier space. This proves (b).

Conversely, suppose conditions (a) and (b) hold. Since \mathfrak{A} is dual, $\operatorname{cl}(B)$ has discrete carrier space. Therefore the carrier space of B is also discrete. Theorem 3.1 now shows that A is a modular annihilator algebra. This completes the proof.

A Banach *-algebra A is called symmetric provided every element of the form- x^*x is quasi-regular in A.

COROLLARY 3.3. Let A be an A^* -algebra which is a dense subalgebra of a dual B^* -algebra \mathfrak{A} . Then A is a modular annihilator algebra if and only if A is symmetric. *Proof.* If A is a modular annihilator algebra, then by the proof of [15; p. 266, Theorem (4.10.11)], A is symmetric. Conversely suppose A is symmetric. Let B be a maximal commutative *-subalgebra of A. Then by [15; p. 233, Corollary (4.7.7)], B is a semi-simple symmetric algebra. Therefore B and cl(B) have the same carrier space (see [13; p. 219, Corollary]). It follows now from Corollary 3.2 that A is a modular annihilator algebra and the proof is complete.

4. The Arens products on A^{**} . Let A be a Banach algebra, A^* and A^{**} the conjugate and second conjugate spaces of A, respectively. The two Arens products on A^{**} are defined in stages according to the following rules (see [1]). Let $x, y \in A, f \in A^*, F, G \in A^{**}$.

(a) Define $f \circ x$ by $(f \circ x)(y) = f(xy)$. Then $f \circ x \in A^*$.

(b) Define $G \circ f$ by $(G \circ f)(x) = G(f \circ x)$. Then $G \circ f \in A^*$.

(c) Define $F \circ G$ by $(F \circ G)(f) = F(G \circ f)$. Then $F \circ G \in A^{**}$.

 A^{**} with the Arens product \circ is denoted by (A^{**}, \circ) .

(a') Define $x \circ f$ by $(x \circ f)(y) = f(yx)$. Then $x \circ f \in A^*$.

(b') Define $f \circ 'F$ by $(f \circ 'F)(x) = F(x \circ 'f)$. Then $f \circ 'F \in A^*$.

(c') Define $F \circ 'G$ by $(F \circ 'G)(f) = G(f \circ 'F)$. Then $F \circ G \in A^{**}$.

 A^{**} with the Arens product \circ' is denoted by (A^{**}, \circ') .

Each of these products extends the original multiplication on A when A is canonically embedded in A^{**} . In general, \circ and \circ' are distinct on A^{**} . If they coincide on A^{**} , then A is called Arens regular.

NOTATION. Let A be a Banach algebra. The mapping π_A will denote the canonical embedding of A into A^{**} in the rest of the paper.

LEMMA 4.1. Let A be a Banach algebra and let B be a maximal commutative subalgebra of A. If $\pi_A(A)$ is a two-sided ideal of (A^{**}, \circ) , then $\pi_B(B)$ is a two-sided ideal of (B^{**}, \circ) .

Proof. This follows from the proof of $(b) \Rightarrow (a)$ in [19; p. 533, Theorem 5.1].

Let A be a B^* -algebra. Then A is Arens regular and A^{**} is a B^* -algebra under the Arens product (see [7; p. 869, Theorem 7.1] or [17; p. 192, Theorem 5]).

Lemma 4.2. Let A be a B^{*}-algebra. Then A is a dual algebra if and only if $\pi_A(A)$ is a two-sided ideal of A^{**} .

Proof. This is [19; p. 533, Theorem 5.1].

5. The Arens product and modular annihilator A*-algebras. Throughout this section, unless otherwise stated, A will be an A*algebra which is a dense two-sided ideal of a B*-algebra \mathfrak{A} . The norm on A (resp. \mathfrak{A}) is denoted by ||.|| (resp. |.|). We shall often use, without explicitly mentioning, the following fact: For every $x \in A, y \in \mathfrak{A}$, we have

(5.1)
$$||xy|| \leq k ||x|| |y| \text{ and } ||yx|| \leq k ||x|| |y|,$$

where k is a constant (see [14; p. 18, Lemma 4]).

LEMMA 5.1. Let A be commutative. If $\pi_A(A)$ is a two-sided ideal of (A^{**}, \circ) , then A is a modular annihilator algebra.

Proof. Let X_A be the carrier space of A. It follows easily from [20; p. 40, Lemma 3.8] that A and \mathfrak{A} have the same carrier space. Therefore $\widehat{\mathfrak{A}} = C_0(X_A)$. We show that X_A is discrete. Suppose this not so. Let $f \in X_A$ and let $\{f_t\}$ be a net in X_A such that $f_t \to f$ and $f_t \neq f$ for all t. Let E be the closed subspace of A^* spanned by the f_t . We claim that $f \notin E$. In fact, we assume $f \in E$. Choose $0 < \varepsilon < ||f||/2k$, where ||f|| denotes the norm of f in ||.|| and k is a constant given in (5.1). Since $f \in E$, there exists $k_i \in C$ and $f_i \in \{f_t\}$ $(i = 1, 2, \dots, n)$ such that

(5.2)
$$\left\|f-\sum_{i=1}^{n}k_{i}f_{i}\right\|<\varepsilon$$
.

Since $\widehat{\mathfrak{A}} = C_0(X_A)$, there exists $x_i \in \mathfrak{A}$ such that $|x_i| = 1$, $f(x_i) = 1$ and $f_i(x_i) = 0$ $(i = 1, 2, \dots, n)$. Let $x \in A$ be such that $||x|| \leq 1$ and $|f(x)| \geq ||f||/2$. By (5.1), we have

(5.3)
$$\left\|\frac{1}{k}(xx_1\cdots x_n)\right\| \leq ||x|| |x_1|\cdots |x_n| \leq 1.$$

Since $f_i(xx_1\cdots x_n) = 0$ $(i = 1, 2, \cdots, n)$, it follows from (5.2) and (5.3) that

$$(5.4) \qquad \qquad |f(xx_1\cdots x_n)| < k\varepsilon < ||f||/2.$$

But

$$|f(xx_1 \cdots x_n)| = |f(x)| \ge ||f||/2$$

This is a contradiction to (5.4). Hence $f \notin E$. Therefore there exists an element $F \in A^{**}$ such that F(E) = (0) and $F(f) \neq 0$. Choose $y \in A$ such that $f(y) \neq 0$. Then $(F \circ \pi_A(y))(f) = F(f)f(y) \neq 0$. Since $f_i \in E$,

PAK-KEN WONG

 $(F \circ \pi_A(y))(f_t) = F(f_t)f_t(y) = 0$ for all t. This contradicts the facts that $F \circ \pi_A(y) \in \pi_A(A)$ and $f_t \to f$ in X_A . Therefore X_A is discrete and so by Theorem 3.1, A is a modular annihilator algebra. This completes the proof.

In the following theorem, $(\mathfrak{A}^{**}, *)$ will denote the Arens product on \mathfrak{A}^{**} and π the canonical mapping of \mathfrak{A} into \mathfrak{A}^{**} .

THEOREM 5.2. Let A be an A^* -algebra which is a dense twosided ideal of a B^* -algebra \mathfrak{A} . Then the following statements are equivalent:

(i) A is a modular annihilator algebra.

(ii) $\pi_A(A)$ is a two-sided ideal of (A^{**}, \circ) .

Proof. (i) \Rightarrow (ii). Suppose (i) holds. By Corollary 3.2, \mathfrak{A} is a dual algebra and so by Lemma 4.2, $\pi(\mathfrak{A})$ is a two-sided ideal of $(\mathfrak{A}^{**}, *)$. Let *e* be an idempotent of *A*. Since *A* is a two-sided ideal of \mathfrak{A} , $eA = e\mathfrak{A}$. For each $f \in A^*$, we define the linear functional *f.e* on \mathfrak{A} by

$$(f.e)(y) = f(ey) \quad (y \in \mathfrak{U})$$
.

Then by (5.1), $f \cdot e \in \mathfrak{A}^*$. For each $x \in A$, let Φ be the mapping on $\pi(eA)$ into A^{**} given by

$$\Phi(\pi(ex))(f) = \pi(ex)(f.e) ,$$

for all $f \in A^*$. Then $\varphi(\pi(ex)) = \pi_A(ex)$ and so φ is a one-one mapping of $\pi(eA)$ onto $\pi_A(eA)$. For each $g \in \mathfrak{A}^*$, let $g \mid A$ be the restriction of g to A. Since $|.| \leq \beta ||.||$ for a constant β , $g \mid A \in A^*$. For every element $F \in A^{**}$, let \widetilde{F} be the linear functional on \mathfrak{A}^* defined by

$$F(g) = F(g | A) \ (g \in A^*)$$
.

Then $\widetilde{F} \in \mathfrak{A}^{**}$. Since $\pi(e) * \widetilde{F} \in \pi(\mathfrak{A})$, it follows that $\pi(e) * \widetilde{F} \in \pi(e\mathfrak{A}) = \pi(eA)$. Straightforward calculations show that $\Phi(\pi(e) * \widetilde{F}) = \pi_A(e) \circ F$ and therefore we have

(5.5)
$$\pi_A(e) \circ F \in \pi_A(A) \ (F \in A^{**})$$
.

Let $\{e_t\}$ be a maximal orthogonal family of hermitian minimal idempotents in \mathfrak{A} . It is easy to see that $\{e_t\} \subset A$. Let $x \in A$ and $F \in A^{**}$. Since \mathfrak{A} is a dual algebra, by [14; p. 23, Lemma 6], $x = \sum_t xe_t$ in |.|. Hence only a countable number of $xe_t \neq 0$; denote those e_t 's for which $xe_t \neq 0$ by e_1, e_2, \cdots . Let $x_n = \sum_{i=1}^n xe_i$ $(n = 1, 2, \cdots)$. It follows from (5.5) that

(5.6)
$$\pi_A(x_n) \circ F \in \pi_A(A) \qquad (n = 1, 2, \cdots) .$$

For each $f \in A^*$, we have

$$egin{aligned} &|(\pi_A(x_n)\circ F - \pi_A(x)\circ F)(f)| = |F(f\circ (x_n-x))| \ &\leq ||F||\,||f\circ (x_n-x)|| \leq k\,||F||\,||f||\,|x_n-x| \ . \end{aligned}$$

Since $x_n \to x$ in |.|, we have $\pi_A(x_n) \circ F \to \pi_A(x) \circ F$ in ||.||. It follows from (5.6) that $\pi_A(x) \circ F \in \pi_A(A)$. A similar argument shows that $F \circ \pi_A(x) \in \pi_A(A)$. Therefore $\pi_A(A)$ is a two-sided ideal of A^{**} . This proves (ii). (ii) \Rightarrow (i). This follows immediately from Lemma 4.1, Lemma 5.1 and Theorem 3.1. The proof of the theorem is complete.

Let A be a modular annihilator B^* -algebra. It follows from [8; p. 48, Theorem (2.9.5)(iii)] that A is dual (also see [20; p. 42, Theorem 4.7]). Therefore the preceding theorem generalizes Lemma 4.2.

COROLLARY 5.3. Let A and \mathfrak{A} be as in Theorem 5.2. Then the following statements are equivalent:

(i) $\pi_A(A)$ is a two-sided ideal of (A^{**}, \circ)

(ii) $\pi(\mathfrak{A})$ is a two-sided ideal of $(\mathfrak{A}^{**}, *)$.

Proof. This follows from Theorem 5.2, Corollary 3.2, Lemma 4.2 and [20; p. 40, Theorem 3.7].

THEOREM 5.4. Let A be a reflexive A^* -algebra which is a dense two-sided ideal of a B^* -algebra \mathfrak{A} , then A is dual.

Proof. Since A is reflexive, by Theorem 5.2 and Corollary 3.2, \mathfrak{A} is a dual algebra and hence is w.c.c. Therefore by [14; p. 31, Theorem 17], A is a dual algebra. This completes the proof.

It is well-known that a proper H^* -algebra is dual. This fact also follows from Theorem 5.4, since a proper H^* -algebra satisfies the conditions of Theorem 5.4 (see [14; p. 31]).

Let H be a Hilbert space and B(H) the algebra of all continuous linear operators on H into itself with the usual operator bound norm. Let LC(H) be the algebra of all completely continuous operators on H and let $\tau c(H)$ be the trace-class on H.

THEOREM 5.5. There exists a dual A^* -algebra A which is a dense two-sided ideal of a B^* -algebra such that A is Arens regular and $A^{**} = \pi_A(A) + R^{**}$, where $R^{**} \neq (0)$ is the radical of A^{**} .

Proof. Let $\{H_{\lambda}\}$ be a family of Hilbert spaces such that at least one H_{λ} is infinite dimensional. Let $A = (\sum_{\lambda} \tau c(H_{\lambda}))_{1}$ be the L_{1} -direct sum of $\{\tau c(H_{\lambda})\}$ and let $\mathfrak{A} = (\sum_{\lambda} LC(H_{\lambda}))_{0}$ be the $B^{*}(\infty)$ -sum of $\{LC(H_{\lambda})\}$.

PAK-KEN WONG

Then A is a dual A*-algebra which is a dense two-sided ideal of \mathfrak{A} (see Theorem 9.2 in [18]). It is easy to verify that, as Banach spaces, A is isometrically isomorphic to \mathfrak{A}^* and that in turn \mathfrak{A}^{**} is isometrically isomorphic to the normed full direct sum $\sum_{\lambda} B(H_{\lambda})$ of $\{B(H_{\lambda})\}$. Let F be a bounded linear functional on A^* . Its restriction to $(\sum_{\lambda} LC(H_{\lambda}))_0$ ($\subset \sum_{\lambda} B(H_{\lambda})$) determines an element $F_1 \in \pi_A(A)$. Let

$$M = \{E \in A^{**}: E(g) = 0 \text{ for all } g \in (\sum_{\lambda} LC(H_{\lambda}))_0\}$$
.

It is clear that $F - F_1 \in M$. Since $\pi_A(A) \neq A^{**}, M \neq (0)$.

Let t_{λ} be the trace operator on H_{λ} . For all $f = (f_{\lambda}) \in A^* = \sum_{\lambda} B(H_{\lambda})$ and $x = (x_{\lambda}), y = (y_{\lambda}) \in A$, by [16; p. 47, Theorem 2] we have

$$\begin{aligned} (f \circ x)(y) &= f(xy) = \sum_{\lambda} f_{\lambda}(x_{\lambda}y_{\lambda}) = \sum_{\lambda} t_{\lambda}(x_{\lambda}y_{\lambda}f_{\lambda}) \\ &= \sum_{\lambda} t_{\lambda}(y_{\lambda}f_{\lambda}x_{\lambda}) = \sum_{\lambda} (f_{\lambda}x_{\lambda})(y_{\lambda}) \\ &= (fx)(y) \ . \end{aligned}$$

Since $f x \in (\sum_{\lambda} LC(H_{\lambda}))_0$, we have

$$(\pi_A(x)\circ E)(f) = E(f\circ x) = E(fx) = 0,$$

for all $f \in A^*$, $E \in M$ and $x \in A$. Since $\pi_A(A)$ is weakly dense in A^{**} , it follows from the weak continuity of left multiplication that $A^{**} \circ M = (0)$. Similarly we can show that $M \circ' A^{**} = (0)$. Since $\pi_A(x) \circ F = \pi_A(x) \circ' F$ and $F \circ \pi_A(x) = F \circ' \pi_A(x)$ for all $F \in A^{**}$, $x \in A$, we have

$$M \circ \pi_{A}(A) = \pi_{A}(A) \circ M = \pi_{A}(A) \circ' M = M \circ' \pi_{A}(A) = (0)$$
 .

Let $F, G \in A^{**}$ and write $F = F_1 + (F - F_1)$ and $G = G_1 + (G - G_1)$ with $F_1, G_1 \in \pi_A(A)$. Since $F - F_1$ and $G - G_1 \in M$, we have $F \circ G = F_1 \circ G_1 = F \circ 'G$ and so A is Arens regular by definition. Since $A^{**} \circ M = M \circ A^{**} = (0), M$ is a two-sided ideal of A^{**} . Now it is clear that M is contained in the radical R^{**} of A^{**} . Since $R^{**} \cap \pi_A(A) = (0)$, we have $M = R^{**}$ and therefore $A^{**} = \pi_A(A) + R^{**}$. This completes the proof.

COROLLARY 5.6.
$$(\sum_{i} \tau c(H_i))_i^{**}$$
 is a *-algebra.

Proof. This follows from Theorem 5.5 and [17; p. 186, Theorem 1].

6. Unsolved questions. 1. Let H be a Hilbert space. For $1 \leq p < \infty$, let C_p be the algebra given in [9; p. 1089]. Then C_p is an A^* -algebra which is a dense two-sided ideal of LC(H). It is easy to show that for each $T \in C_p$, T is contained in the closure of TC_p in

832

 C_p . Therefore by [14; p. 28, Lemma 8], C_p is a dual algebra (also see [3; pp. 10 - 11]). For p = 2, C_p is an H*-algebra and therefore $C_2^{**} = C_2$. For $p \neq 2$ and $1 \leq p < \infty$, is C_p Arens regular and is C_p^{**} semi-simple?

2. Let A be a dual A^* -algebra which is a dense two-sided ideal of a B^* -algebra. Is A Arens regular?

REMARK. We know that a dual A^* -algebra may not be Arens regular. Let A be the group algebra of an infinite compact abelian group. Then A is a dual A^* -algebra which is not an ideal of \mathfrak{A} , where \mathfrak{A} is the completion of A in an auxiliary norm (see [14; p. 32]). By [7; p. 857, Theorem 3.14], A is not Arens regular.

The author would like to thank the referee for suggestions and simplifications of the original proofs in § 3.

References

1. R. F. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2 (1951), 839-848.

B. A. Barnes, Modular annihilator algebras, Canadian J. Math., 18 (1966), 566-578.
_____, Subalgebras of modular annihilator algebras, Proc. Camb. Phil. Soc., 66 (1969), 5-12.

4. _____, On the existence of minimal ideals of a Banach algebra, Trans. Amer. Math. Soc., **133** (1968), 511-517.

5. _____, Algebras with the spectral expansion property, Illinois J. Math., **11** (1967), 284-290.

6. _____, A generalized Fredholm theory for certain maps in the regular representations of an algebra, Canadian J. Math., **20** (1968), 495-504.

7. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math., **11** (1961), 847-870.

8. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964.

9. N. Dunford and J. Schwartz, *Linear operators, Part II: Spectral theory*, Interscience Publishers, N.Y., 1963.

10. I. Kaplansky, Normed algebras, Duke Math. J., 16 (1949), 399-418.

11. ____, The structure of certain operator algebras, Trans. Amer. Math. Soc., **70** (1951), 219-255.

12. ____, Ring isomorphisms of Banach algebras, Canadian J. Math., 6 (1954), 374-381.

13. M. A. Naimark, Normed rings, P. Noordhoff, 1959.

14. T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach *-algebras, J. Sci. Hiroshima Uni. Ser. A, 18 (1954), 15-36.

15. C. E. Rickart, *General theory of Banach algebras*, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960.

16. R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, 1960.

17. M. Tomita, The second dual of a C*-algebra, Mem. Fac. Sci. Kyushu Uni. Ser. A, 21 (1967), 185-193.

18. B. J. Tomiuk and P. K. Wong, Annihilator and complemented Banach *-algebras, J. Australian Math. Soc., (to appear).

PAK-KEN WONG

19. ____, The Arens product and duality in B*-algebras, Proc. Amer. Math. Soc., 25 (1970), 529-535.

20. B. Yood, Ideals in topological rings, Canadian J. Math., 16 (1964), 28-45.

21. ____, Homomorphisms on normed algebras, Pacific J. Math., 8 (1958), 373-381.

22. P. K. Wong, The Arens product and duality in B*-algebras II, Proc. Amer. Math. Soc., (to appear).

Received June 12, 1970.

MCMASTER UNIVERSITY

834