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MUTUALLY APOSYNDETIC PRODUCTS OF
CHAINABLE CONTINUA

LELAND E. ROGERS

In this paper it is proved that the Cartesian product of
two compact metric chainable continua is mutually aposyndetic
if and only if each of the two factors is an arc. Also some
relationships are shown between indecomposability and a
strong form of non-mutual aposyndesis.

!• In [5], C. L. Hagopian developed the notion of mutual
aposyndesis, a "Hausdorff" version of F. B. Jones' aposyndesis [6].
Mutual aposyndesis is stronger than aposyndesis but in general
weaker than local connectedness. However, Theorem 1 of this paper
shows that mutual aposyndesis and local connectedness are equivalent
in a certain case.

Jones showed [7] that if a continuum is not aposyndetic at any
point with respect to any other point, then it is indecomposable. A
similar notion for mutual aposyndesis, called strict nonmutual aposyn-
desis by Hagopian, is closely related to indecomposability [5]. The
author extends mutual aposyndesis to the notion of ^-mutual aposyn-
desis and shows a relationship between strict non-w-mutual aposyndesis
and π-indecomposability.

2* Definitions and notation* All spaces considered in this paper
are compact and metric. A continuum is a nondegenerate closed con-
nected set. The continuum M is aposyndetic at a point x with respect
to a point y if there is a subcontinuum in M — y containing x in its
interior [6]. We shall say that M is semi-aposyndetic at {x, y) if M
is aposyndetic either at x with respect to y or at y with respect to
x. If n^ 2 and A is an π-point set, we say that M is n-mutually
aposyndetic at A if there are n disjoint subcontinua of Λf, each con-
taining a point of A in its interior. If M is ^-mutually aposyndetic
at each %-point set, then M is said to be n-mutually aposyndetic.
If M is ^-mutually aposyndetic at no w-point set, then M is strictly
non-n-mutually aposyndetic. For n — 2 we obtain the notions of
mutual aposyndesis and strict nonmutual aposyndesis [5]. For each
point x in M, Lx denotes the set of all points y such that M is not
aposyndetic at y with respect to x, and Kx denotes the set of all
points y such that M is not aposyndetic at x with respect to y. If
p, q, and r are distinct points of M, p cuts q from r if each continuum
in M containing both q and r also contains p. ("Cut weakly" is some-
times used; this is not the same as to "separate".)
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A chain is a finite collection {Eu •••, Em} of open sets such that
Ei Π E3 Φ 0 if and only if \i — j \ <Ξ 1. The elements of a chain are
called links. For ε > 0 an ε-chain is a chain in which each link has
diameter less than ε. A continuum is chainable if for each ε > 0, it
can be covered by an ε-chain. An ε-map on a continuum M will
denote a continuous function / from M onto [0, 1] such that for each
r e [0, 1], diam/"*(>) < ε. A chainable continuum M is also charac-
terized by the property that for each ε > 0, there is an ε-map on M.
An endpoint of a chainable continuum is a point p such that for each
ε > 0, p is in the first link of some ε-chain covering M.

A continuum irreducible between two points is of type A [10] if
there is a monotone upper semi-continuous decomposition of M onto
an arc. A continuum M is of type Af [10] if M is of type A and
has a decomposition in which no element has interior.

A subcontinuum T of the continuum M is terminal [4] if for
each pair of subcontinua A, B which intersect T, either A c B U T
or B c A U T. If p is a point of an indecomposable subcontinuum K
of M, p is an inaccessible point of K [4] if for each subcontinuum R
of M which contains p, either R c K or K c iϋ.

REMARK. If ε > 0 and T is a terminal subcontinuum of a chain-
able continuum Λf, then there is an ε-map f on M such that f(T) is
an initial segment of [0, 1]. (This can be shown using Lemma 1 of
[4].)

A continuum M is the finished sum [9] of subcontinua A19 * , Ak

if M = U A-i and for each j , A3- ςt U^i ^ The continuum M is w-
indecomposable [9; 2] if Λf is the finished sum of n, but not of n + 1,
subcontinua.

It is well-known [1] that chainable continua are atriodic, here-
ditarily unicoherent, irreducible between two points, and that each
subcontinuum is chainable also. For definitions of other terms see
[7] and [8].

3* Mutually aposyndetic products*

LEMMA 1. Suppose the semi-aposyndetic continuum M is irredu-
cible between two points. Then M is an arc.

Proof. By [3, p. 116], M is aposyndetic. But every aposyndetic
irreducible continuum is an arc [11, p. 738].

LEMMA 2. Suppose that
(1) M is a chainable continuum of type A',
(2) M is not semi-aposyndetic at {x, y],
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(3) τ=κxnκy,
( 4 ) q is a point of a continuum N,
( 5 ) H is a continuum in M x N containing the point (x, q) in

its interior, and
( 6 ) D denotes the (x, q)-component of H Π (T x N).

Then πJ^D) = T. (π3 is the projection map onto the jth factor space.)

Proof. By [10, p. 8], there is a minimal (with respect to refine-
ment) monotone upper semi-continuous decomposition ϋΓ of M onto
[0, 1]. Let / be the associated quotient map.

For each zeM, Lz is a continuum in M [7, p. 405]. Since M is
irreducible, each Kz = Lz [3, p. 116]. Hence T — Lx Π Ly, a continuum
(by unicoherence). And by the definition of Kz we have

( * ) For each continuum R containing either x or y in its interior,
TaR.

Suppose the lemma fails. Let seT — πJJJ). By [10, p. 25] there
is a point r e [0, 1] such that T c f~ι{r). In order to prove (**) below,
we temporarily assume that 0 < r < 1. Let A, B, and C denote the
sets /^([O, r)), f~\(r, 1]), and f~\r) respectively. Since C cannot have
interior, M = ClA[j Gl B (Cl denotes closure). Using this fact and
(*), it can be shown that either CIA or GIB must contain all three
of the points x, y, and s. We shall assume that {x, y, s} c Cl A. By
[10, p. 10] & Π G1A is a monotone upper semi-continuous descompo-
sition of CIA onto [0,1], and it is easily seen to be minimal. By
[10, p. 30] we have

(**) If peA and q, teCπCIA, then t cuts p from q (in the
continuum Cl A).

Note that (**) holds also in the case that r is an end point of
[0, 1], so that (**) holds for each re [0, 1].

If C n Cl A φ T, then there is a point ceC Γ)CIA - T, hence
(by definition of Kx and Ky) a subcontinuum L c M — c containing x,
say, in its interior. But then L Π Cl A is a subcontinuum (by uni-
coherence) of Cl A which contains x and L° Γ) A but not the point c,
contrary to (**). Thus C Π Cl A = T.

For each ε > 0 define H£ - H Π [Cl f~\{r - ε, r)) x iV], Suppose
that for each ε > 0 there is a continuum in Hε intersecting both s x N
and D. The lim sup of such continua would then intersect both s x N
and D, and would be contained in T x Nf hence in D by the definition
of D. Since this contradicts the choice of s, there must exist an ε > 0
such that no continuum in Hε intersects both s x N and D. By [8,
p. 15] there are closed disjoint sets Es and ED such that Hε = ES\J ED1

(s x N) f] Hε (Z E8, and D c £7 .̂ Let zlf z2, be a sequence of points
in ED f) H° ~ T x N which converges to the point (x, q). For each ΐ,
let i ^ = ^-component of H Π [f~ι((r - ε, r)) x JVJ. By [8, p. 18] each
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Fi has a limit point (relative to H) in either T x N or in f~\r — ε) x
N. If some Fά has a limit point in T x ΛΓ, then Cl F,- is a continuum
in ED from ^ to T x N, whereupon its projection onto M would con-
tradict (**). Hence each Ft has a limit point in f~\r — ε) x N. Then
lim sup Fi is a continuum in ED from /" x ( r — ε) x N to (cc, g), where-
upon its projection is a continuum in Cl A containing x and a point
of A, but not containing s, contrary to (**).

LEMMA 3. Suppose that
( 1 ) M is a chainable continuum containing an indecomposable

subcontinuum T,
( 2 ) q is a point of a continuum N,
( 3 ) x is an inaccessible point of T,
( 4 ) H is a continuum in M x N containing (x, q) in its interior,

and
(5) D denotes the (x, q)-component of HΠ (T x N).

Then π^D) = T.

Proof. Assume that T Φ M; otherwise n^D) = T clearly. Sup-
pose seT - π^D). For each ε > 0 define Hε = H Π [Cl Nε(T) x N]
where Nε(T) denotes the ε-neighborhood of T. As in the proof of
Lemma 2, there exists an ε > 0 and disjoint closed sets Es and ED

such that He= Es U ED, (s x N) Π H£ c E8, and DaED. The closure
of the (x, g)-component of H Π [Nε(T) x N] is then a continuum in ED

from (x, q) to the boundary of Ne(T) x N, whereupon its projection
(onto M) is a subcontinuum of M containing both x and a point of
M — T, but not s, contrary to the fact that CG is an inaccessible point
of T.

THEOREM 1. Let M and N be chainable continua. Then M x N
is mutually aposyndetic if and only if M = N = [0,1].

Proof. Clearly [0, I] 2 is mutually aposyndetic. To prove the
other implication, we consider two cases.

Case I. At least one of M and N has an end point.

Suppose q is an end point of N, and M is not semi-aposyndetic.
In order to define sets Dx and Dy, we consider the following two cases:

Case 1. The continuum M is of type A!.

Let x and y be points of M such that M is not semi-aposyndetic
at {x, y), and let T = Kx Π Ky. By mutual aposyndesis of M x N,
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there are disjoint subcontinua Hx and Hy such that (x, q) e Hx and
(y, q) e Hy. Then for ze {x, y}, let Dz be the (z, g)-component of Hzf]
(T x N), whereupon πγ{Dz) = T by Lemma 2.

Case 2. The continuum M is not of type A'.

By [10, p. 15], M contains an indecomposable subcontinuum T
with interior. Suppose that A, B, and C are disjoint subcontinua of
M, each of which intersects T but is not contained in T. Then
A[J B\J C \J T is a triod, contrary to the fact that M is chainable.
Hence there are at most two composants of T which intersect subcon-
tinua like A, B, and C above. Consequently, all the other composants
of T contain inaccessible points of T. Let x and y be distinct inac-
cessible points of T. By mutual aposyndesis, there are disjoint sub-
continua Hx and Hy such that (x, q) e Hx and (y, q) e Hy. Defining Dx

and Dy as in Case 1, it follows from Lemma 3 that both Dx and Dy

project onto T.
Choose ε > 0 such that Dx and Dy are at least 2ε apart. Let /

be an ε-map on T and let g be an ε-map on N such that g(q) = 0.
Define the continuous function h from T x N to [0, I] 2 by h(a, b) —
((/(α), 9Φ)). Both h(x, q) and Λ(i/, q) meet [0, 1] x {0}. Since both Dx

and Dy project onto Γ, both continua h(Dx) and λ(Z>y) must intersect
both {0} x [0, 1] and {1} x [0, 1]. But by [8, p. 158], h(Dx) and h(Dy)
must intersect, contradicting the choice of ε. Consequently, our as-
sumption that M was not semi-aposyndetic must be false. Then by
Lemma 1, M is an arc, and hence has an end point. Now assume
that N is not semi-aposyndetic, and use the same argument (inter-
changing the roles of M and N) to establish that N also must be
semi-aposyndetic, hence an arc.

Case II. Neither M nor N has an end point.

By [4, p. 385], there are indecomposable terminal subcontinua LM

and LN of M and N respectively. Let q be an inaccessible point of
LN, and let x and y be distinct inaccessible points of LM. By mutual
aposyndesis, there are disjoint subcontinua Hx and Hy of M x N such
that (x, q) e HI and (y, q) e Hf. Let ε > 0 such that Hx and Hy are
at least 2ε apart. Let / be an ε-map on LM and let g be an ε-map
on N such that g{LN) = [0, c] for some c ^ 1. Define h: LM x N—> [0,1]2

by h(a, b) = (/(α), g{b)). For ze {x, y}, let D z and D'z denote the (z, q)-
components of Hz Π (LM x iV) and ίfz Π (M x L^) respectively. By
Lemma 3, ^(DJ = π^Dy) = L^ and τr2(Z?i) = π*{D'y) = L^. By the
choice of ε, (̂Da.) Π h(Dy) = 0. Since q is an inaccessible point of LiV,
for each z e {x, y} either π2(Dz) c LN or L^ c π2(Dz).
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Suppose that LNaπ2(Dx). Then h(Dx) intersects both [0, 1] x {0}
and [0, 1] x {c}.

Case 1. π2(Dy)czLN.

Then Dy c LM x LN. Let B be a subcontinuum of h(Dx) irreducible
from [0, 1] x {0} to [0, 1] x {c}. Since π^Dy) = LM, h(Dy) intersects
both {0} x [0, 1] and {1} x [0, 1]. By [8, p. 158], the continua B and
h{Dy) must intersect, contrary to the fact that h{Dx) Π h{Dy) = 0 .

Case 2. LNaπ2(Dy).

For z e {x, y}, let dz denote the maximum of the numbers b e [0, 1]
such that the point (Q,b)eh(Dz). If dx > dy, then h{Dx) intersects
both [0, 1] x {0} and the point (0, dx), and h(Dy) intersects both {0} x
[0, 1] and {1} x [0, 1]. Hence h(Dx) and h(Dy) must intersect [8, p.
158]. A similar contradiction is reached in case dy > dx.

Since the supposition that LN c 7Γ2(DX) results in a contradiction,
we have that π2(Dx) c LN.

In a similar manner (by interchanging the roles of LM and LN,
and of Dx and Dy, and making the other obvious modifications) it
can be shown that π^D'y) c LM. Hence both Dx and Dy are contained
in LM x LN. Let gf be an ε-map on LN, and define h': LM x LN—> [0,1]2

by λ'(α, b) - (/(α), flr'(δ)). By the choice of ε, &'(£>,) Π h'{D'y) = 0. But
since A ' φ J intersects both {0} x [0, 1] and {1} x [0, 1], and since h'(D'y)
intersects both [0, 1] x {0} and [0, 1] x {1}, the continua hr{Dx) and
h'{Dy) must intersect [8, p. 158]. This contradiction concludes Case
II, and hence the proof of the theorem.

The chainability requirement in the hypothesis of Theorem 1 can-
not be replaced by the the requirement that the continua be of type
A':

EXAMPLE. A nonchainable planar continuum M of type Af such
that M2 is mutually aposyndetic. Let M be the union of two disjoint
circles plus an open ray (copy of (0, 1)) which spirals down on one
circle at one end and on the other circle at the other end. The minimal
decomposition of M would have only the two circles as nondegenerate
elements. Since M contains a circle, it is clearly not chainable. How-
ever, it can be shown that M2 is mutually aposyndetic.

4. Strict non-w-mutual aposyndesis* Hagopian has shown [5,
p. 621] that the product of two chainable continua is strictly non-
mutually aposyndetic if and only if each of the two continua is in-
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decomposable. [Hagopian actually showed it for the case when the
two factors are the same continuum; however it is clear that with
slight modifications his proof will prove this more general result.]
One direction of implication generalizes easily to ^-mutual aposyndesis:

THEOREM 2. Let n ^ 2. Suppose Mx and M2 are continua, and
ikfi x M2 is strictly non-n-mutually aposyndetic. Then for each i
(i — 1, 2), Mi is Ti-indecomposable for some integer r€ < n.

Proof. Suppose Mx is the finished sum of n subcontinua A19 , An.
Then for each j ^ n there is a point p3- e A3 — U^y At. In M2 let
Ui, •••, Un be open sets with disjoint closures. Then for each j rg n,
let Hj = (Aj x Cl Uj) U (Pj x M2), clearly a continuum with interior.
Since the H/s are disjoint, Mγ x M2 is not strictly non-π-mutually
aposyndetic. This contradiction implies that Mι is the finished sum
of at most n — 1 subcontinua, and the proof is complete.

The other direction of implication in Hagopian's result is repre-
sented by

(***) Suppose M is an m-indecomposable chainable continuum and
N is an ^-indecomposable chainable continuum. Then M x N is strictly
non-(mn + l)-mutually aposyndetic.

Question. Is (***) true for all values of m and nt
By the above remarks, (***) holds for m = n = 1. The next

theorem shows that m = 2 and n = 1 are also values for which (***)
is true.

THEOREM 3. Suppose that Mι and M2 are chainable continua,
and M2 is indecomposable. Then Mx x M2 is strictly non-Z-mutually
aposyndetic if and only if M1 is either indecomposable or 2-indecom-
posable.

Proof. If M1 x M2 is strictly non-3-mutually aposyndetic, then
the conclusion follows from Theorem 2.

Conversely, suppose that M1 is either indecomposable or 2-inde-
composable. In case Mι is indecomposable, then M1 x M2 is strictly
nonmutually aposyndetic, hence strictly non-3-mutually aposyndetic.
So we assume that Mι is 2-indecomposable.

Suppose that there are three disjoint continua Hly H2, and iί3 with
interior in M, x M2. By [9, p. 649], M, = A U B where A and B are
proper indecomposable subcontinua. One of A x M2 and B x M2 (say
A x M2) must contain interior points of at least two of the three iJ/s
(say J?! and H2). Since M2 is indecomposable, π2(i?i) = ^2(̂ 2) = M2.
Similarly for i = 1, 2, πJ^H^ ZD A; otherwise π^H^ Π A would be a pro-
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per subcontinuum of A with interior, contrary to the fact that A is
indecomposable.

Let ε > 0 such that Hx is of distance at least 2ε from H2. Let
g be an ε-map on M2 and let / be an ε-map on Mι such that f(A) is
an initial segment of [0, 1]. Define the continuous function h from
Mλ x M2 to [0, I] 2 by h(x, y) = (f(x), g(y)). By the choice of ε, the
continua hiH^ and h(H2) are disjoint. For i = 1, 2, hiHi) meets both
y — 0 and 7/ = 1 since π2(H^ = Λf2. And for i = 1, 2, since 7 (̂7?;) z> A,
h(Hi) projects onto f{A). Let ax be the left-most point (i.e., smallest
first coordinate) of h(H^) on the top edge (y — 1), and let a2 be the
corresponding point for H2. We shall assume, without loss of gener-
ality, that aγ lies to the left of a2. Since h{H^ intersects y = 0 and
h(H2) intersects x = 0, the continua fe(ϋΊ) and /^(ί^) must intersect
[8, p. 158]. This contradiction concludes the proof.

Question. For what values of m and n does (***) hold without
the requirement that M and N be chainable [cf. 5, p. 622]?
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