MUTUALLY APOSYNDETIC PRODUCTS OF CHAINABLE CONTINUA

LELAND E. ROGERS

In this paper it is proved that the Cartesian product of two compact metric chainable continua is mutually aposyndetic if and only if each of the two factors is an arc. Also some relationships are shown between indecomposability and a strong form of non-mutual aposyndesis.

1. In [5], C. L. Hagopian developed the notion of mutual aposyndesis, a "Hausdorff" version of F. B. Jones' aposyndesis [6]. Mutual aposyndesis is stronger than aposyndesis but in general weaker than local connectedness. However, Theorem 1 of this paper shows that mutual aposyndesis and local connectedness are equivalent in a certain case.

Jones showed [7] that if a continuum is not aposyndetic at any point with respect to any other point, then it is indecomposable. A similar notion for mutual aposyndesis, called strict nonmutual aposyndesis by Hagopian, is closely related to indecomposability [5]. The author extends mutual aposyndesis to the notion of *n*-mutual aposyndesis and shows a relationship between strict non-*n*-mutual aposyndesis and *n*-indecomposability.

2. Definitions and notation. All spaces considered in this paper are compact and metric. A continuum is a nondegenerate closed connected set. The continuum M is a posyndetic at a point x with respect to a point y if there is a subcontinuum in M - y containing x in its interior [6]. We shall say that M is semi-aposyndetic at $\{x, y\}$ if M is aposyndetic either at x with respect to y or at y with respect to x. If $n \ge 2$ and A is an n-point set, we say that M is n-mutually aposyndetic at A if there are n disjoint subcontinua of M, each containing a point of A in its interior. If M is *n*-mutually aposyndetic at each *n*-point set, then M is said to be *n*-mutually aposyndetic. If M is n-mutually aposyndetic at no n-point set, then M is strictly non-n-mutually aposyndetic. For n=2 we obtain the notions of mutual aposyndesis and strict nonmutual aposyndesis [5]. For each point x in M, L_x denotes the set of all points y such that M is not aposyndetic at y with respect to x, and K_x denotes the set of all points y such that M is not aposyndetic at x with respect to y. If p, q, and r are distinct points of M, p cuts q from r if each continuum in M containing both q and r also contains p. ("Cut weakly" is sometimes used; this is not the same as to "separate".)

A chain is a finite collection $\{E_1, \dots, E_m\}$ of open sets such that $E_i \cap E_j \neq \emptyset$ if and only if $|i - j| \leq 1$. The elements of a chain are called *links*. For $\varepsilon > 0$ an ε -chain is a chain in which each link has diameter less than ε . A continuum is chainable if for each $\varepsilon > 0$, it can be covered by an ε -chain. An ε -map on a continuum M will denote a continuous function f from M onto [0, 1] such that for each $r \in [0, 1]$, diam $f^{-1}(r) < \varepsilon$. A chainable continuum M is also characterized by the property that for each $\varepsilon > 0$, there is an ε -map on M. An endpoint of a chainable continuum is a point p such that for each $\varepsilon > 0$, p is in the first link of some ε -chain covering M.

A continuum irreducible between two points is of type A [10] if there is a monotone upper semi-continuous decomposition of M onto an arc. A continuum M is of type A' [10] if M is of type A and has a decomposition in which no element has interior.

A subcontinuum T of the continuum M is terminal [4] if for each pair of subcontinua A, B which intersect T, either $A \subset B \cup T$ or $B \subset A \cup T$. If p is a point of an indecomposable subcontinuum Kof M, p is an *inaccessible point* of K [4] if for each subcontinuum Rof M which contains p, either $R \subset K$ or $K \subset R$.

REMARK. If $\varepsilon > 0$ and T is a terminal subcontinuum of a chainable continuum M, then there is an ε -map f on M such that f(T) is an initial segment of [0, 1]. (This can be shown using Lemma 1 of [4].)

A continuum M is the finished sum [9] of subcontinua A_1, \dots, A_k if $M = \bigcup A_i$ and for each $j, A_j \not\subset \bigcup_{i \neq j} A_i$. The continuum M is *n*indecomposable [9; 2] if M is the finished sum of n, but not of n + 1, subcontinua.

It is well-known [1] that chainable continua are atriodic, hereditarily unicoherent, irreducible between two points, and that each subcontinuum is chainable also. For definitions of other terms see [7] and [8].

3. Mutually aposyndetic products.

LEMMA 1. Suppose the semi-aposyndetic continuum M is irreducible between two points. Then M is an arc.

Proof. By [3, p. 116], M is aposyndetic. But every aposyndetic irreducible continuum is an arc [11, p. 738].

LEMMA 2. Suppose that
(1) M is a chainable continuum of type A',
(2) M is not semi-aposyndetic at {x, y},

 $(3) \quad T = K_x \cap K_y,$

(4) q is a point of a continuum N,

(5) H is a continuum in $M \times N$ containing the point (x, q) in its interior, and

(6) D denotes the (x, q)-component of $H \cap (T \times N)$. Then $\pi_1(D) = T$. $(\pi_j \text{ is the projection map onto the jth factor space.})$

Proof. By [10, p. 8], there is a minimal (with respect to refinement) monotone upper semi-continuous decomposition \mathcal{D} of M onto [0, 1]. Let f be the associated quotient map.

For each $z \in M$, L_z is a continuum in M [7, p. 405]. Since M is irreducible, each $K_z = L_z$ [3, p. 116]. Hence $T = L_x \cap L_y$, a continuum (by unicoherence). And by the definition of K_z we have

(*) For each continuum R containing either x or y in its interior, $T \subset R$.

Suppose the lemma fails. Let $s \in T - \pi_1(D)$. By [10, p. 25] there is a point $r \in [0, 1]$ such that $T \subset f^{-1}(r)$. In order to prove (**) below, we temporarily assume that 0 < r < 1. Let A, B, and C denote the sets $f^{-1}([0, r)), f^{-1}((r, 1])$, and $f^{-1}(r)$ respectively. Since C cannot have interior, $M = Cl A \cup Cl B$ (C1 denotes closure). Using this fact and (*), it can be shown that either Cl A or Cl B must contain all three of the points x, y, and s. We shall assume that $\{x, y, s\} \subset Cl A$. By [10, p. 10] $\Re \cap Cl A$ is a monotone upper semi-continuous descomposition of Cl A onto [0, 1], and it is easily seen to be minimal. By [10, p. 30] we have

(**) If $p \in A$ and $q, t \in C \cap Cl A$, then t cuts p from q (in the continuum Cl A).

Note that $(^{**})$ holds also in the case that r is an end point of [0, 1], so that $(^{**})$ holds for each $r \in [0, 1]$.

If $C \cap \operatorname{Cl} A \neq T$, then there is a point $c \in C \cap \operatorname{Cl} A - T$, hence (by definition of K_x and K_y) a subcontinuum $L \subset M - c$ containing x, say, in its interior. But then $L \cap \operatorname{Cl} A$ is a subcontinuum (by unicoherence) of $\operatorname{Cl} A$ which contains x and $L^0 \cap A$ but not the point c, contrary to (**). Thus $C \cap \operatorname{Cl} A = T$.

For each $\varepsilon > 0$ define $H_{\varepsilon} = H \cap [\operatorname{C1} f^{-1}((r - \varepsilon, r)) \times N]$. Suppose that for each $\varepsilon > 0$ there is a continuum in H_{ε} intersecting both $s \times N$ and D. The lim sup of such continua would then intersect both $s \times N$ and D, and would be contained in $T \times N$, hence in D by the definition of D. Since this contradicts the choice of s, there must exist an $\varepsilon > 0$ such that no continuum in H_{ε} intersects both $s \times N$ and D. By [8, p. 15] there are closed disjoint sets E_s and E_D such that $H_{\varepsilon} = E_s \cup E_D$, $(s \times N) \cap H_{\varepsilon} \subset E_s$, and $D \subset E_D$. Let z_1, z_2, \cdots be a sequence of points in $E_D \cap H^0 - T \times N$ which converges to the point (x, q). For each i, let $F_i = z_i$ -component of $H \cap [f^{-1}((r - \varepsilon, r)) \times N]$. By [8, p. 18] each F_i has a limit point (relative to H) in either $T \times N$ or in $f^{-1}(r-\varepsilon) \times N$. If some F_j has a limit point in $T \times N$, then Cl F_j is a continuum in E_D from z_j to $T \times N$, whereupon its projection onto M would contradict (**). Hence each F_i has a limit point in $f^{-1}(r-\varepsilon) \times N$. Then lim sup F_i is a continuum in E_D from $f^{-1}(r-\varepsilon) \times N$ to (x, q), whereupon its projection is a continuum in Cl A containing x and a point of A, but not containing s, contrary to (**).

LEMMA 3. Suppose that

(1) M is a chainable continuum containing an indecomposable subcontinuum T,

(2) q is a point of a continuum N,

(3) x is an inaccessible point of T,

(4) H is a continuum in $M \times N$ containing (x, q) in its interior, and

(5) D denotes the (x, q)-component of $H \cap (T \times N)$. Then $\pi_1(D) = T$.

Proof. Assume that $T \neq M$; otherwise $\pi_1(D) = T$ clearly. Suppose $s \in T - \pi_1(D)$. For each $\varepsilon > 0$ define $H_{\varepsilon} = H \cap [\operatorname{Cl} N_{\varepsilon}(T) \times N]$ where $N_{\varepsilon}(T)$ denotes the ε -neighborhood of T. As in the proof of Lemma 2, there exists an $\varepsilon > 0$ and disjoint closed sets E_s and E_D such that $H_{\varepsilon} = E_s \cup E_D$, $(s \times N) \cap H_{\varepsilon} \subset E_s$, and $D \subset E_D$. The closure of the (x, q)-component of $H \cap [N_{\varepsilon}(T) \times N]$ is then a continuum in E_D from (x, q) to the boundary of $N_{\varepsilon}(T) \times N$, whereupon its projection (onto M) is a subcontinuum of M containing both x and a point of M - T, but not s, contrary to the fact that x is an inaccessible point of T.

THEOREM 1. Let M and N be chainable continua. Then $M \times N$ is mutually aposyndetic if and only if M = N = [0, 1].

Proof. Clearly $[0, 1]^2$ is mutually aposyndetic. To prove the other implication, we consider two cases.

Case I. At least one of M and N has an end point.

Suppose q is an end point of N, and M is not semi-aposyndetic. In order to define sets D_x and D_y , we consider the following two cases:

Case 1. The continuum M is of type A'.

Let x and y be points of M such that M is not semi-aposyndetic at $\{x, y\}$, and let $T = K_x \cap K_y$. By mutual aposyndesis of $M \times N$, there are disjoint subcontinua H_x and H_y such that $(x, q) \in H_x^0$ and $(y, q) \in H_y^0$. Then for $z \in \{x, y\}$, let D_z be the (z, q)-component of $H_z \cap (T \times N)$, whereupon $\pi_1(D_z) = T$ by Lemma 2.

Case 2. The continuum M is not of type A'.

By [10, p. 15], M contains an indecomposable subcontinuum Twith interior. Suppose that A, B, and C are disjoint subcontinua of M, each of which intersects T but is not contained in T. Then $A \cup B \cup C \cup T$ is a triod, contrary to the fact that M is chainable. Hence there are at most two composants of T which intersect subcontinua like A, B, and C above. Consequently, all the other composants of T contain inaccessible points of T. Let x and y be distinct inaccessible points of T. By mutual aposyndesis, there are disjoint subcontinua H_x and H_y such that $(x, q) \in H_x^0$ and $(y, q) \in H_y^0$. Defining D_x and D_y as in Case 1, it follows from Lemma 3 that both D_x and D_y project onto T.

Choose $\varepsilon > 0$ such that D_x and D_y are at least 2ε apart. Let f be an ε -map on T and let g be an ε -map on N such that g(q) = 0. Define the continuous function h from $T \times N$ to $[0, 1]^2$ by h(a, b) = ((f(a), g(b)). Both h(x, q) and h(y, q) meet $[0, 1] \times \{0\}$. Since both D_x and D_y project onto T, both continua $h(D_x)$ and $h(D_y)$ must intersect both $\{0\} \times [0, 1]$ and $\{1\} \times [0, 1]$. But by [8, p. 158], $h(D_x)$ and $h(D_y)$ must intersect, contradicting the choice of ε . Consequently, our assumption that M was not semi-aposyndetic must be false. Then by Lemma 1, M is an arc, and hence has an end point. Now assume that N is not semi-aposyndetic, and use the same argument (interchanging the roles of M and N) to establish that N also must be semi-aposyndetic, hence an arc.

Case II. Neither M nor N has an end point.

By [4, p. 385], there are indecomposable terminal subcontinua L_M and L_N of M and N respectively. Let q be an inaccessible point of L_N , and let x and y be distinct inaccessible points of L_M . By mutual aposyndesis, there are disjoint subcontinua H_x and H_y of $M \times N$ such that $(x, q) \in H_x^0$ and $(y, q) \in H_y^0$. Let $\varepsilon > 0$ such that H_x and H_y are at least 2ε apart. Let f be an ε -map on L_M and let g be an ε -map on N such that $g(L_N) = [0, c]$ for some $c \leq 1$. Define $h: L_M \times N \rightarrow [0, 1]^2$ by h(a, b) = (f(a), g(b)). For $z \in \{x, y\}$, let D_z and D'_z denote the (z, q)components of $H_z \cap (L_M \times N)$ and $H_z \cap (M \times L_N)$ respectively. By Lemma 3, $\pi_1(D_x) = \pi_1(D_y) = L_M$ and $\pi_2(D'_x) = \pi_2(D'_y) = L_N$. By the choice of ε , $h(D_x) \cap h(D_y) = \emptyset$. Since q is an inaccessible point of L_N , for each $z \in \{x, y\}$ either $\pi_2(D_z) \subset L_N$ or $L_N \subset \pi_2(D_z)$. Suppose that $L_{\scriptscriptstyle N} \subset \pi_2(D_x)$. Then $h(D_x)$ intersects both $[0, 1] \times \{0\}$ and $[0, 1] \times \{c\}$.

Case 1. $\pi_2(D_y) \subset L_N$.

Then $D_y \subset L_M \times L_N$. Let *B* be a subcontinuum of $h(D_x)$ irreducible from $[0, 1] \times \{0\}$ to $[0, 1] \times \{c\}$. Since $\pi_1(D_y) = L_M$, $h(D_y)$ intersects both $\{0\} \times [0, 1]$ and $\{1\} \times [0, 1]$. By [8, p. 158], the continua *B* and $h(D_y)$ must intersect, contrary to the fact that $h(D_x) \cap h(D_y) = \emptyset$.

Case 2. $L_N \subset \pi_2(D_y)$.

For $z \in \{x, y\}$, let d_z denote the maximum of the numbers $b \in [0, 1]$ such that the point $(0, b) \in h(D_z)$. If $d_x > d_y$, then $h(D_x)$ intersects both $[0, 1] \times \{0\}$ and the point $(0, d_x)$, and $h(D_y)$ intersects both $\{0\} \times [0, 1]$ and $\{1\} \times [0, 1]$. Hence $h(D_x)$ and $h(D_y)$ must intersect [8, p. 158]. A similar contradiction is reached in case $d_y > d_x$.

Since the supposition that $L_{\scriptscriptstyle N} \subset \pi_2(D_x)$ results in a contradiction, we have that $\pi_2(D_x) \subset L_{\scriptscriptstyle N}$.

In a similar manner (by interchanging the roles of L_M and L_N , and of D_x and D'_y , and making the other obvious modifications) it can be shown that $\pi_1(D'_y) \subset L_M$. Hence both D_x and D'_y are contained in $L_M \times L_N$. Let g' be an ε -map on L_N , and define $h': L_M \times L_N \to [0, 1]^2$ by h'(a, b) = (f(a), g'(b)). By the choice of ε , $h'(D_x) \cap h'(D'_y) = \emptyset$. But since $h'(D_x)$ intersects both $\{0\} \times [0, 1]$ and $\{1\} \times [0, 1]$, and since $h'(D'_y)$ intersects both $[0, 1] \times \{0\}$ and $[0, 1] \times \{1\}$, the continua $h'(D_x)$ and $h'(D'_y)$ must intersect [8, p. 158]. This contradiction concludes Case II, and hence the proof of the theorem.

The chainability requirement in the hypothesis of Theorem 1 cannot be replaced by the the requirement that the continua be of type A':

EXAMPLE. A nonchainable planar continuum M of type A' such that M^2 is mutually aposyndetic. Let M be the union of two disjoint circles plus an open ray (copy of (0, 1)) which spirals down on one circle at one end and on the other circle at the other end. The minimal decomposition of M would have only the two circles as nondegenerate elements. Since M contains a circle, it is clearly not chainable. However, it can be shown that M^2 is mutually aposyndetic.

4. Strict non-*n*-mutual aposyndesis. Hagopian has shown [5, p. 621] that the product of two chainable continua is strictly non-mutually aposyndetic if and only if each of the two continua is in-

decomposable. [Hagopian actually showed it for the case when the two factors are the same continuum; however it is clear that with slight modifications his proof will prove this more general result.] One direction of implication generalizes easily to *n*-mutual aposyndesis:

THEOREM 2. Let $n \ge 2$. Suppose M_1 and M_2 are continua, and $M_1 \times M_2$ is strictly non-n-mutually aposyndetic. Then for each i $(i = 1, 2), M_i$ is r_i -indecomposable for some integer $r_i < n$.

Proof. Suppose M_1 is the finished sum of n subcontinua A_1, \dots, A_n . Then for each $j \leq n$ there is a point $p_j \in A_j - \bigcup_{i \neq j} A_i$. In M_2 let U_1, \dots, U_n be open sets with disjoint closures. Then for each $j \leq n$, let $H_j = (A_j \times \operatorname{Cl} U_j) \cup (p_j \times M_2)$, clearly a continuum with interior. Since the H_j 's are disjoint, $M_1 \times M_2$ is not strictly non-*n*-mutually aposyndetic. This contradiction implies that M_1 is the finished sum of at most n-1 subcontinua, and the proof is complete.

The other direction of implication in Hagopian's result is represented by

(***) Suppose M is an *m*-indecomposable chainable continuum and N is an *n*-indecomposable chainable continuum. Then $M \times N$ is strictly non-(mn + 1)-mutually aposyndetic.

Question. Is (***) true for all values of m and n?

By the above remarks, (***) holds for m = n = 1. The next theorem shows that m = 2 and n = 1 are also values for which (***) is true.

THEOREM 3. Suppose that M_1 and M_2 are chainable continua, and M_2 is indecomposable. Then $M_1 \times M_2$ is strictly non-3-mutually aposyndetic if and only if M_1 is either indecomposable or 2-indecomposable.

Proof. If $M_1 \times M_2$ is strictly non-3-mutually aposyndetic, then the conclusion follows from Theorem 2.

Conversely, suppose that M_1 is either indecomposable or 2-indecomposable. In case M_1 is indecomposable, then $M_1 \times M_2$ is strictly nonmutually aposyndetic, hence strictly non-3-mutually aposyndetic. So we assume that M_1 is 2-indecomposable.

Suppose that there are three disjoint continua H_1 , H_2 , and H_3 with interior in $M_1 \times M_2$. By [9, p. 649], $M_1 = A \cup B$ where A and B are proper indecomposable subcontinua. One of $A \times M_2$ and $B \times M_2$ (say $A \times M_2$) must contain interior points of at least two of the three H_i 's (say H_1 and H_2). Since M_2 is indecomposable, $\pi_2(H_1) = \pi_2(H_2) = M_2$. Similarly for $i = 1, 2, \pi_1(H_i) \supset A$; otherwise $\pi_1(H_i) \cap A$ would be a proper subcontinuum of A with interior, contrary to the fact that A is indecomposable.

Let $\varepsilon > 0$ such that H_1 is of distance at least 2ε from H_2 . Let g be an ε -map on M_2 and let f be an ε -map on M_1 such that f(A) is an initial segment of [0, 1]. Define the continuous function h from $M_1 \times M_2$ to $[0, 1]^2$ by h(x, y) = (f(x), g(y)). By the choice of ε , the continua $h(H_1)$ and $h(H_2)$ are disjoint. For $i = 1, 2, h(H_i)$ meets both y = 0 and y = 1 since $\pi_2(H_i) = M_2$. And for i = 1, 2, since $\pi_1(H_i) \supset A$, $h(H_i)$ projects onto f(A). Let a_1 be the left-most point (i.e., smallest first coordinate) of $h(H_1)$ on the top edge (y = 1), and let a_2 be the corresponding point for H_2 . We shall assume, without loss of generality, that a_1 lies to the left of a_2 . Since $h(H_1)$ intersects y = 0 and $h(H_2)$ intersects x = 0, the continua $h(H_1)$ and $h(H_2)$ must intersect [8, p. 158]. This contradiction concludes the proof.

Question. For what values of m and n does (***) hold without the requirement that M and N be chainable [cf. 5, p. 622]?

References

1. R. H. Bing, Snake-like continua, Duke Math. J., 18 (1951), 653-663.

2. C. E. Burgess, Separation properties and n-indecomposable continua, Duke Math. J., **24** (1956), 595-600.

3. H. S. Davis, D. P. Stadtlander, and P. M. Swingle, Properties of the set function T_n , Portugaliae Mathematica, **21** (1962), 113-133.

4. J. B. Fugate, A characterization of chainable continua, Canadian J. Math., 21 (1969), 383-393.

5. C. L. Hagopian, Mutual aposyndesis, Proc. Amer. Math. Soc., 23 (1969), 615-622.

6. F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math., **63** (1941), 545-553.

 Concerning non-aposyndetic continua, Amer. J. Math., 70 (1948), 403-413.
 R. L. Moore, Foundations of Point Set Theory, Rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R.I., 1962.

9. P. M. Swingle, Generalized indecomposable continua, Amer. J. Math., 52 (1930), 647-658.

10. E. S. Thomas, Jr., Monotone decompositions of irreducible continua, Rozprawy Matematyczne, **50** (1966), 1-74.

11. G. T. Whyburn. Semi-locally-connected sets, Amer. J. Math., 61 (1939), 733-749.

Received July 9, 1970 and in revised form September 22, 1970. This paper represents part of the author's doctoral dissertation under the direction of Professor F. Burton Jones. This work was supported by a NASA Graduate Fellowship.

UNIVERSITY OF CALIFORNIA, RIVERSIDE AND UNIVERSITY OF WYOMING