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A STUDY OF H-SPACES VIA LEFT TRANSLATIONS

ROBERT A. NOWLAN

H-spaces are examined by studying left translations,
actions and a homotopy version of left translations to be
called homolations. If (¥, m)is an H-space, the map s: F'— F'¥
given by s(x) = L., i.e. s(x) is left translation by =z, is a
homomorphism if and only if m is associative., In general,
s is an A,-map if and only if (F,m) is an A,.; space.

The action 7: F¥ X F'— F is given by 7(p, x) = ¢(x). The
map s respects the action only of left translations., In
general, s respects the action of homolations up to higher-
order homotopies. Each homolation generates a family of
maps to be called a homolation family, Denoting the set of
all homolation families by H>=(F'), s: F'— F¥ factors through
F— H=(F') and this latter map is a homotopy equivalence,

By a multiplication on a space F, we mean a continuous map
m: Fx F—F. Let m be a given multiplication on F. For any
two points = and y of F, m(x, y) will be denoted by xy and is called
the product of x and y. For any point = of F, the assignment
x— yx and 2 — xy determine respectively the maps

L. F—F, R:F—F

called the left and right translation of F by .

This paper examines H-spaces with strict units by studying left
translations and by the introduction of a homotopy version of left
translations to be called homolations. One way to use left transla-
tions is as follows. If (F, m) is an H-space, the map

st F— FF

given by s(x) = L,, i.e., s(x) is left translation by =z, is a homo-
morphism if and only if m is associative. Other properties of H-
structures on a space F' can also be interpreted in terms of properties
of the map s: FF— F”.

DEFINITION 1. A map f: F— Y is an H-map of the H-space
(F, m) into the H-space (Y, w) if wo(f X f) = fom. (We always use
“=~” to denote “is homotopic to”.)

In §II we prove that s is an H-map if and only if m is homo-
topy associative. In [2], and [3], Stasheff introduces the concepts
of A,-spaces and of A,-maps, the former generalizes homotopy
associativity and the latter generalizes H-maps. We will show that s
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is an A,-map if and only if (F, m) is an A, ,-space.

In §III, H-spaces are studied in terms of actions. The action
r: F'* X F'— F is given by »(®, ) = #(x). The cross-section s: F'— F”
respects the action only of left translations. The question arises: of
which maps in F” does s respect the action up to homotopy? This
leads to the introduction of T-maps, that is maps f: FF— F such
that fom = mo(f x 1). Such maps resemble left translations. De-
manding a closer resemblance leads to the introduction of homolations
which are maps f satisfying fom = mo(f x 1) up to higher order
homotopies.

If (F, m) is an associative H-space, a map w: M x FF— F is a
transitive action if wo(1 x m) = mo(w x 1). The action #:s(F) x
F— F, where s(F') is the set of all left translations is an example
of a transitive action. A homotopy version of a transitive action is
given as follows.

DErINITION 2. Let (F, m) be an associative H-space. A map
w: M x F— F is a T-action if wo(1 x m) = mo(w x 1).
If T(F) is the maximal subset of F such that

7 T(F) x F— F

is a T-action, then T(F') consists of T-maps. Generalizing the notions
of T-actions leads to the concept of T,-actions and T.-actions, that
is actions w: M x F— F satisfying wo(1 X m) = me(w x 1) up to
higher order homotopies. It is then shown that a T..-action of the
set of homolations on F can be given such that s: FF— F¥ is a T.-
map of actions, i.e., s respects the actions of homolations up to higher
order homotopies.

Each homolation generates a family of maps to be called a
homolation family. Denote by H=(F) the set of all homolation
families. In §IV, it is proven that s: FF— F* factors through
F — F=(F) and that this latter map is a homotopy equivalence.

Throughout this paper, we will be working in the category of
k-spaces (i.e., compactly generated spaces) as developed in [5]. The
reason for this is to allow unlimited use of the “exponential law.”
(c.f. Theorem 5, 6 in [5]).

Some of the work included in this paper is contained in my
doctoral thesis [1] completed at the University of Notre Dame.
Other parts of it were suggested by Professor James D. Stasheff.
I deeply appreciate his suggestions and many valuable comments
during the writing of this paper.

II. A,-maps and A,-spaces We first study H-spaces in relation
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to cross-sections to evaluation maps. Let F be any space. Let the
evaluation map v: F¥ — F be defined by v(®) = ®@(¢), where @ is in
F? for some ¢ in F. The map v has a cross-section s: F— F7 if
and only if F' admits a multiplication with right unit e. Given such
a cross-section s we can define

m(z, y) = s(x)(y) for ¢,y in F
so that m has e as a right unit. Since
s(x)(e) = v(s(x)) = =,

this multiplication has a two-sided unit if sis a base point preserving
map, that is s(¢) = identity. We will make this assumption through-
out this paper.

If F' has a multiplication m with e as right unit, we define s(x) =
L,, where L, is left translation by x. It follows that s is a homo-
morphism if and only if m is associative.

Thus certain properties of H-structures on a space F' can be
interpreted in terms of properties of the map s: F— F”. As an
example we have the following proposition.

PROPOSITION 1. The map s: F'— F* 1s an H-map if and only if
m 1s homotopy associative.

Proof. If s is an H-map of (F, m) into (F”, c¢) (where ¢ is com-
position of maps), there exists a homotopy
G:IxX F*— F"
such that
G0, z, y) = co(s X 8)(x,y) = L,oL,
and
G, z,y) = som(z,y) = L,, .

Then m can be shown to be homotopy associative by defining a
homotopy

G:Ix FPF—b> F'
by
(1) G't, », y,2) = G, », y)(2)

Conversely, if m is homotopy associative, a homotopy G’ exists such
that
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G0, z,y, 2) = x(yz)
and
G'(1, x, 9, 2) = (vy)z

and the homotopy G can be defined as in (1).

In seeking to generalize this proposition, we first need generali-
zations of the concepts of homotopy associativity and of H-map. In
[2] and [3], Stasheff introduces the concepts of A,-spaces and of
A,-maps; the former generalizes homotopy associativity and the latter
generalizes H-maps. A space which is an A,-space for all » is said
to be an A.-space. Any associative H-space is an A.-space. A.-
spaces are homotopy equivalent to associative H-spaces.

DEFINITION 3. An A,-structure on a space X consists of an
n-tuple of maps

X=FKCcFE,c...CEH,

b s o

*=B cB,C.--CB,

such that p,:7,(E; X) — 7,(B;) is an isomorphism for all ¢, together
with a contracting homotopy h:CE,_,— E, of the cone of E,_,,
CE,_, such that R(CE,_) c E,. Such an A,-structure will be denoted
by (p,, -+, p,). If there exists an infinite collection p,, p,, -+ such
that for each n, (p, --+, ,) is an A,-structure, then we call (p,, 0., + )
an A.-structure.

Theorem 5 of [2] asserts that an A,-structure on a space X is
equivalent to an “A,-form”, that is a family of maps{M,, ---, M,}
where each

M:I?x X{—bs X
is suitably defined on the boundary I*™* in terms of M; for j < i.

DEFINITION 4. A space X together with an A,-form will be
called an A,-space.

In this paper, we are more interested in A,-forms than A,-
structures, so we introduce the former in some detail. It is first
necessary to become acquainted with a special cell-complex K; which
is homeomorphic to I** for ¢ = 2. The standard cells K; are objects
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similar to standard simplices 4° and standard cubes I?, having faces
and degeneracies. The difference between the K; and the simplices
and the cubes is that:

(1) The index ¢ does not refer to the dimension of the cell but
rather to the number of factors X with which K is to be associated.

(2) K, has degeneracy operators s, ---, s; defined on it.
and

(3) K, has (i(¢ — 1)/2) — 1 faces.

The following description of the indexing of the faces of K, is
due to Stasheff. Consider a word with ¢ letters, and all meaningful
ways of inserting one set of parentheses. To each such insertion
except for (¢, ---, x;), there corresponds a cell of L; the boundary
of K,. If the parentheses enclose z, through z,.,.,, we regard this
cell as the homeomorphic image of K, x K, (r +s =1+ 1) under a
map which we denote by d,(r, s). Two such cells intersect only on
their boundaries and the “edges” so formed correspond to inserting
two sets of parentheses in the word. We obtain K; by induction,
starting with K, = * (a point), supposing K, through K, , have been
constructed. Then construct L; by fitting together copies of K, x K,
subject to certain conditions given in §2 of [2], that is the fitting
together of copies of K, x K, as dictated by the above description of
the indexing. Finally, take K, to be the cone on L;.

The following is part of Theorem 5 of [2].

THEOREM 2. A space X adwmits an A,-structure if and only if
there exist maps M;: K; x X' — X for 2 < ¢ < nsuch that

(1) My(* e 2) = My(*,®,¢) = jor  in X, * = K, and

(2) For peK, 0eK,,r+s=1+ 1, we have

Mi(ak(ry S)(,O, G)y Lyy =0y xi)
= Mr(lor Ly voey Tpy MS(01 Ly = * 2y xk+$—1)’ ) xi) .

We note that an A,-space is just an H-space. In the case ¢ =
3, K, is homeomorphic to I and (2) asserts that M, is a homotopy
between M,o(M, x 1) and M,-(1 x M,), to be imprecise between (zy)z
and x(yz). Thus M, is an associating homotopy and M, is a homotopy
associative action.

In the case 7 =4, we consider the five ways of associating a
product of four factors. If the multiplication M, is a homotopy
associative multiplication, the five products are then related by the
following string of homotopies:

a(y(zw)) = s((y)w) = (x(y)w = ((y)2)w = (vy)(zw) = a(y(zw)) .
Thus we have defined a map of S' x X*— X and the map M, can
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be regarded as an extension of the map to I* x X*.
If X is an associative H-space, it admits A.-forms; it is only
necessary to define

Mz, %, +++,2;) = @2, ++-2; for 7 in K; and 1 < 7.

This will be called a trivial A.-form. If X is an A.-space then there
is an associative H-space Y of the homotopy type of X.

DEFINITION 5. Let (X, {M;}) be an A,-space and (Y, w) be an
associative H-space. A mapf: X— Y is an A,-map if there exists
maps ki K;., x X*— 7Y, 1 <7<, called sputnik homotopies, such
that %, = f and for p in K,, ¢ in K,(r + s = ¢+ 1), we have

hi(ak(ry S)((O, 0)9 Lyy *2 0, xz)
= hr—l(loy Ly 220y Lpyyy Ms(ay Ly =02,y xk+s——1>y M) xl) if k#nr
= hr—l (10) Lyy oo, xr—l)hs—l(ay Lpy =0y x’b) ifk=nr.

Note that when n = 2, f is just an H-map, as h, is a homotopy
between foM, and wo(f x f). In the case n = 3, since K, is homeo-
morphic to I?, we have a map of S' X X*— Y and %,;: K, x X*—> Y
can be thought of as an extension of this map to I* x X*.

Consider the following cross-section of I* x X* showing a typical
I*. Assign to the “faces” of I* the homotopies /,o(M,x 1), wo(hyxh,),
wo(h, X hy), hyo(1 X M,) and h,oM, as indicated

hyoM,

hyo (M, 1) hyo(1x M)

wo(hy X hy) wo(hy X hy)

The broken line represents a point. The map h, then appropriately
fills in the figure.

A map which is an A,-map for all n will be called an A.-map.

We are now in a position to prove the following generalization
of proposition 1.

THEOREM 3. (A) Let (F,{M;}) be an A,-space; then s: F — F*
s an A,_, map.
(B) s can be shown to be an A,-map if and only if (F, {M;}) can
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be given the structure of an A,., space.

Proof. (A) Given that (F,{M;}) is an A,-space, all that 1is
necessary to show that s is an A,_, map is to define h, =s and
hi(ak('ry t)(p: O-)a .’L'“ ct ey ww)(y) = Mq‘—l(ak(r, t)(py J)y xly R xi; y) .

B) It is clear that (F,{M;}) can be extended to an A,.,-space
(that is there exists a map M,.: K,., X F*"" — F) if and only if
there exists a map h,: K,., x F*— F*¥ given by

hn(ak(”'y t)(py 0)7 Lyy o, xn)(y) = Mn+1(ak(/rv t)(p, 0)7 Lyy oo0y Ly y) .

COROLLARY 4. An A.-form on F 1is equivalent to the existence
of sputnik homotopies h;: K;., x F'— FT for all i making s an A.-map.

I1II. T,-maps and Homolations. We assume throughout this
section that (F, m) is an associative H-space with a strict unit. In
that case, the map

s: F—— F7¥
given by
s(f)(w) = m(f, y)

is a homomorphism.
We now study left translations via actions. The space F7 acts
on F by
r " X F— F
(P, ) = 2(f) .

The cross-section s respects the action only of left translations,
for consider the diagram:

1Xs

F* x F— — F" x F*

(1) j 1

F— % L pr.

Suppose
s(P(f) = pos(f) .

Since s is left translation, we have @(fy) = @(f)y, that is the
following diagram is commutative.
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FxF—2 _ L F
(2) Mj jss
FxF—"_ ,F.

In particular,

Py) = Pley) = Pe)y

and @ is left translation by ®(¢). So diagram (1) commutes only on
s(F) x FC F*" x F where s(F) is the set of left translations. Thus
s is a map of spaces on which s(F') acts.

The result tells us something about the action

r:s(F) x F— F

namely, it is transitive.
Note that the following diagram is commutative

1Xm

S(F) x FX F—————3(F) x F
(3) Txll lr
FxfF—" _ L F

Let us consider the following question: what is the nature of
the action » when diagram (1) is only required to be homotopy
commutative. Denote by 7.(F') the maximal subset of maps ¢ in
F" such that

slp(N] = Pes(f)
in the sense that there exists a homotopy
0,2 I X Ty(F) x F—— F*
such that
0.0, @, f) = Pos(f)
and
0.1, @, ) = s[p(A)] -

In this case, it follows that for each @ in 7,(F") there exists a
homotopy

@il X F?— F

depending continuously on @ such that
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2,0, £, y) = 2(fy)
and

1, f,v) = P(fy)y -

DEFINITION 6. Let (F,m) be an associative H-space. A map
f:F—F is a T-map if there exists a homotopy I x F?— F' such
that fom = mo(f x 1).

Thus we see that the maps in T,(F') are T-maps. The homotopy
is given by

P:(t, [, y) = 0:(¢, P, )W) -
In particular, we note that for each @ in T.(F)
Py) = Pley) = P(e)y

indicating that up to homotopy @ acts like left translation by @(e).
Thus the maps in T,(F') in this sense resemble left translations. We
will investigate this resemblance further.

Our results show that the action

r: T(F) x F—> F”

is a T-action in the sense that there exists a homotopy

N I x T, (F) x F*— F
such that

Nt 7ol X m) = mo(r x 1) .
In fact, we can take )\, to be adjoint to 0,:

Nolt, @, f, ¥) = 0:(8, P, )W) -

If ¢ is a true left translation, it follows that
P(xyz) = Plry)z = P(x)yz for =, y,z in F

however for a map ® in Ty(F'), the most we can claim using a
rather loose notation is that:

Playz) = Play)z = P@)yz = P(ryz) .
This string of homotopies defines a map
IPxF—F

where I? is the boundary of I*.
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This can be illustrated in the following diagram, representing
I* x F* showing only I® with “faces” labeled by the homotopies
connecting the maps given above. Note that the edge of I* re-
presented by the broken line is just a point. (This is because F is
an associative H-space. If F were only homotopy associative, this
face would be labeled by the associating homotopy applied to @(x), ¥, 2.
The following discussion could be carried out for A,-spaces but the
details are bad enough in the associative case, which is the case of
interest for applications [1].)

P(ay)z mo(py x 1)
l
I
Po(mx 1) I Py
|
|
I
|
|
I
l
I
Poo(Lxm) :
J
P(xyz)

The problem of making a map @ in T,(F') more closely “resemble”
a left translation, requires that we be able to extend the map

I’'x FPF—s F
to a map
I* x F?— F'.

Thus we will need higher homotopy conditions on the maps @ in
T,(F). Suppose for the moment that there exists a map

Py I? X F?°— F

such that
@3((), t27 xa yy Z) = SDZ(th xyy z)
Qs(tiy Oy my yy z) = @2(t1y xy yz)
Pl 1, @, ¥, 2) = P(v)yz

and @3(251; 19 x! yy Z) = @2(tly x; y)'z .

Let Ty(F) denote the maximal subset of T,(F) such that for
each @ in Ty(F'), there exists ¢, and @, depending continuously on
@ and @, subject to the conditions already mentioned. In this case,
the action r: Ty(F') x F— F' is such that there exist maps
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Nt I % Ty(F) x F* — F

such that
Aot (1 X m) = m(r x 1)
and
Nt 2 X Ty(F) X F?P — F

such that

M0, E, @, @, Y, 2) = N(ty, P, Y, ?)

Nty 0, @, 2, ¥, 2) = No(by, @, @, YR)

Ns(L, L, P, @, Y, 2) = 7(P, @)Yz
and

Nty 1, @, @, y, 2) = Nt P, 2, )02
This latter map is given by

Nt by P, &, Y, 2) = Pty L, X, Y, ?) .
On the other hand, there exist maps

0,: 1 x Ty(F) x F—> F¥

such that
02 pos(f) = slp(f)]
and
Oy I* X Ty(F) x F?* — F*
such that

03: (tly tZy g)y xy ’y)(Z') = Ka(tly t2y @y fl), y) Z) M

Parallel to every demand that a map @: F— F more closely
resemble a left translation by satisfying higher homotopy conditions
will be the requirement of higher homotopy conditions on the action
r and similar higher homotopy conditions on the map s.

DErFINITION 7. Let (X, m) be an associative H-space. A map
p: X— X is a T,-map of X into itself if there exists a family of
maps

P I x Xt—s X 1<1=n

such that ¢, = ¢ and
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q)'i(th ) ti—ly xly A xz)
= @i—-l(tly Tty tk; ) ti—-ls xia M) xkxk';’-ly ct xz) if tlc = 0
= Pullyy ey by, By oo, B (Tpiy Tpro o0 T) ift,=1.

In case @; exists for all 4, we call ® a homolation, that is, a
homotopy translation. Denote the set of all homolations by 7..(F).

DErFINITION 8. Let (F, m) be an associative H-space. A homo-
lation family on F' is a collection of maps {p;: I*™' x Fi— F,V, > 1}
where @, is a homolation and @,: FF'— F' is a homotopy equivalence.
We will denote by H>=(F'), the set of all homolation families. H=(F')
is a subspace of C(F; F') x C(I x F* F) x «+- where C(I’ x F*'; F)
is the set of all continuous maps f: I’ x F7*'— F' (with the k-topology
derived from the compact-open topology).

DerFINITION 9. Let (X, m) be an associative H-space. A map

wiMx X— X
of M on X is said to be a T,-action if there exist maps
w7t x Mx XP— X 1<7i<n
such that w, = w and
wi(tly ct ti—iy gy Xyy =0y xi)
= /u;'i—-l(tly M} Ek, tt ti—ls gy *°° Xplpig, 00y 0*;1‘) if tl’ =0

= wk(tly ° 0%y tk~1y g, :‘017 00y xk)q(xk"lka2 M fci) if t/ = 1 °

If a map w: M x X — X is a T,-action for all #, then w is said to
be a T..-action.

THEOREM 5. Let T,(F) denote the maximal subset of F* such
that there exist maps Ni: [T x T, (F) x Fi— F for 1 <1< n making
r: T,(F) x F— F a T,action; then T,(F) consists of T,-maps.

Proof. We may define the maps

eIt x FiPF— F 1<i<n
by
@i(tly tty ti—laflr ”’sfi) = >"i(tly ) ti——l, gjffla ”'yfi) .
DEFINITION 10. Let (X, m) and (M, v) be associative H-spaces

and w: M x X— X be a T,-action. A homomorphism f: X — M is
said to be a T,-map of actions if there exist maps
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O I ' x Mx X' — M
such that ¢, = 1, and
0i(tly ) ti—ly g, Ty =0, mi—l)
= 0i—1(t1y Sy tk: M) ti—-ly Gy =0y Oplprry 0y xi—l)
ift, =0, k+1—1

= 'v[‘?i—l(tu M) licsy 9, @y * 0, 954;——2), f(xz—l)] if li, = 0
= f[m(wk(tly ) tk—ly g, xn M} xk)s mk-‘,—lmk-iﬂ M x%)] if tk = 1 .

If 6, exists for all 7, then f is said to be a T.-map of actions.

COROLLARY 6. The map r: T.(F) x F' is a T.-action and s is
then a T.-map of actions.

Proof. Define \;: I'"" x T.(F) x FP— F by
Nilte, oo, tiny @, Fay ooy [ = Pulty, + ooy by foy o=, £
and
0217 X T(F) x F*'' — F”*
by

‘9'Z(t1y t ti—-l; P, vfly °te ;fi—l)(fi) = A"i(th Y ti—-l; P, fu . '7fi) .

IV. The homotopy equivalence of F and H>(F). As we
have seen, we can identify an associative H-space with the set of
left translations of that space. We note that this identification of
F in F7 as left translation is not homotopy invariant: o(fx) = @(f)x
is not a homotopy statement. Our definition of homolation is homo-
topy invariant and it characterizes F — F“ from a homotopy point
of view.

We are now in a position to prove the following theorem. Re-
call that H=(F') is the set of all homolation families.

THEOREM 7. If (F,m) is a connected associative H-space, the
map s: F—F* factors through H=(F'), and the factor F— H>(F') is a
homotopy equivalence.

Proof. Define a map
i F—— H>(F)

as follows:
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o(f) =0, = {9, 9f, -}
where
pl:F— F
is given by
Pl(9) = fg
that is left translation of F. @/ is a homotopy equivalence since F’
is connected (see [4]).

The remaining maps are given by

@i(tu“'ytk—ufh“'5fk):ff1"’fk fOI‘ allk.

The map 7 is continuous, since the composition of maps

F--5CF;F)x C(Ix F5 F) -+ 22 o < B F)

is continuous for each k£ and p® is projection onto the corresponding

factor.
On the other hand, define the map

p: H*(F) — F
by
(L) = 7.(e)
where I = {7, V,, +-+} is in H=(F') and e is the unit of F.
The map p is continuous, since it is the composition of maps
H>(F) -2 H=(F), = T(F)-**> F

where p, is projection of H>=(F') on that part of H=(F) contained in
FF, namely the set of homolations, here denoted by H*(F'),, and the
map w, is the evaluation map at ¢ (continuous in the k-topology).
Note that p(z(f)) = u(@,) = ®{(e) = fe = f so that por = 1,.
On the other hand

’Z'o#([') = ’Z'('Yl(e)) = @fl(e) — {@{l(ﬂ, @51(8) .. .} .
We claim that zop = 1,,, that is there exists a map
H;: H*(F) — H"(F)

such that H, = 1,=; and H, = topu.

To see this, let H=(F'), be the subspace of H=(F) which is
contained in C(I** x F'*; F). The map H, = {H/}, H?, ---} will consist
of homotopies
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{Hf}: H>(F) — H=(F"), for each k&
such that H} = ly=y, and Hf =copu|H=(F), and the H are
compatible.

Define H}: H*(F') — H=(F'), as follows:
HID)(ty ooty fiy o0y Fr) = Yera€y Ey ooy by €, f1y o AR

The map is continuous as each <v,., in I" is continuous and I — v,
is continuous being projection.
Note if t; =0

Htk(F)(tly coey by, fu °c 'yfk)
= ’Yk(t: tly ce i\iy e tk~1y eyfl) "'fjfj+1y "')flc)
= Hik—l(P)(tl’ c ey E.’iy M) tlc—nfn ""fa'fj+1, "'fk)

while if t; =1

HZC(F)(tI! '."tk—lyfh “'yfk)
= 7i+1(t9 tu °t % ti—ly eaflr "'fi)(f]'+1y "'yfk)
:H!j([')(tu“'tj—lyfu "'yfi)(fi+ly "'yfk)'

Thus {H}} is in H=(F'). Further

HOk(F)(tlv Yy tk—-ly fl; "'7fk) = /Yk(tly ey, tk-—ly ef‘ly '.'fk)
= 7k(t1) ) tk—bfl? "'1fk) .

Thus Hf = 10, {H(I)} = I and

Hlk(r)(tl) oy by Siy oy S
=7(Of, -+ fu
POy « oy timsy iy 200y S
= Totl(I)(ty, + ooy by fiy » 20, S3) -

Thus H}f = topt | H>(F),, {HH")} = top(I"). This completes the proof
that F and H=(F') are homotopy equivalent.

Il

Now H=(F') is itself an H-space; we can define composition of
families as well as just maps F — F' (see [1]). The map F — H=(F)
is an A.-map and hence induces B, — By« which is again a homo-
topy equivalence if F'is a C W-complex.

In my thesis [1], I show that B~y is a classifying space for
fibrations with A.-actions of F' on the total space. The above homo-
topy equivalence then shows a fibre space admits such an A.-action
if and only if it admits an associative action.
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