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ON POINT-FREE PARALLELISM
AND WILCOX LATTICES

SHUICHIRO MAEDA

A Wilcox lattice L is constructed from a complemented
modular lattice A, by deleting nonzero elements of some ideal
of A and by introducing in the remains L the same order as
A. The lattice A is called the modular extension of L. Using
the theory of parallelism in atomistic lattices, it was proved
that any affine matroid lattice is an atomistic Wilcox lattice,
that is, an existence theorem of the modular extension in
the atomistic case. The main purpose of this paper is to
extend this result to the general case, by the use of argu-
ments on point-free parallelism.

A matroid lattice is an upper continuous atmistic lattice with the
covering property. In the book [2] of Dubreil-Jacotin, Leisieur and
Croisot, a generalized affine geometry is defined as a weakly modular
matroid lattice of length ^ 4, satisfying the Euclid's weak parallel
axiom. This lattice is called an affine matroid lattice in [4] and [5].
In [2], pp. 311-314, it is proved that any affine matroid lattice has
the modular extension and hence it is a Wilcox lattice. One can see
that the key theorems in the proof of this result are the transitivity
theorem of parallelism and theorems on the incomplete elements.

In this paper, we consider a sectionally semicomplemented lattice
L with some join-dense set of modular elements (see § 1). This is a
generalization of an atomistic lattice. Instead of the parallelism in
matroid lattices, we use the point-free parallelism introduced by F.
Maeda [6]. In §2, we give some fundamental results on point-free
parallelism. In § 3, we introduce three axioms (P 1), (P 2) and (P 3)
on point-free parallelism in L, which are satisfied if L is a Wilcox
lattice. In the subsequent three sections, we assume that L is weakly
modular, left complemented and of length >̂ 4, and that L satisfies
(P 1) and (P 2). The main result in § 4 is the transitivity of point-
free parallelism. In § 5, we define the parallel images of incomplete
elements which generalize those defined in [5], §4. In §6, adding
the axiom (P 3) in a special case, we construct the modular extension
of L and we get two main theorems 6.1 and 6.2.

!• Preliminaries* In a lattice L, we write (a, b)M when

(c V a) A b = c V (a A b) for c g b .

An element a e L is called a modular element when (x, a)M for every
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xeL. The elements 0, 1, if they exist, are modular elements. We
denote by ^£ the set of modular elements of L except 0 and 1. An
element a e L is called a strongly modular element when every element
aγ with aγ< a is modular. We denote by ^ ^ the set of strongly
modular elements except 0 and 1.

A lattice L is called M-symmetric when (α, b)M implies (δ, a)M in
L. In an ikf-symmetric lattice L with 0, we write a JL δ when a Λb = 0
and (α, b)M. The following properties are easily verified (see [9]):
(1) a La implies a = 0, (2) a L b implies b L a, (3) a Lb, aλ^ a imply
ax L b, (4) a L δ, a V b L c imply a L b V c If a L b and a V δ L c
then we have a L b V c and J l α V c by (4), and then we write
(α, 6, c) 1 .

A lattice L with 0 is called left complemented when for every
a,beL there exists bιeL such that

δi ^ δ, α V δ = α V δx, α Λ 62 = 0 and (δx, α)ikf.

By [10], Theorem 2, any left complemented lattice L is M-symmetric,
and hence if a ^ δ in L then there exists ceL such that α V c = δ
and α ± c. Moreover it is easy to show that L is relatively comple-
mented.

A lattice with 0 is called weakly modular when a Λ 6 ̂  0 implies
(α, δ)ikf.

A subset S of a lattice L is called join-dense when every ae L
is the join of some elements in S. We write a < b when a < δ and
there is no element c such that a < c < δ. In a lattice L with 0, an
element p is called an atom when 0 < p. Evidently any atom is a
strongly modular element. The set of atoms of L is denoted by Ω.
A lattice L with 0 is called atomistic when Ω is join-dense. We say
that L has the covering property when p ^a, pe Ω imply a<a\J p.
It is easily seen that this property is equivalent to (p, a)M for every
peΩ and ae L. Hence any M-symmetric lattice with 0 has the co-
vering property.

A lattice L with 0 is called semicomplemented when for every
ae L (with a Φ 1 if L has 1) there exists ce L such that c Φ 0 and
c Λ α = 0, L is called sectionally semicomplemented (in symbols, an
ASSC lattice) when every interval L[0, δ] is semicomplemented, that
is, for α, δ 6 L with a < b there exists ce L such that 0 Φ c ^ δ and
c Λ α = 0. Let ^ be a set of nonzero elements of L. L is called
^-SSC when for a, be L with a < b there exists cecέ? such that
c ^ δ and c Λ α — 0. The following statements are easily verified:
(1) If p is an atom of a ^-SSC lattice then p must be in ^ (2)
L is atomistic if and only if L is Ω-SSC, (3) L is ^-SSC if and
only if L is SSC and c^ is join-dense in L.
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The length of a lattice L is the least upper bound of the lengths
of the chains in L (see [1], p. 5).

LEMMA l . l . 1 Let a < δ in an M-symmetric lattice L. If there
exists a connected chain a = a0 < at < < an — b of length n, then
all chains from a to b have length ^ n.

Proof. If n = 1, the lemma is trivial. Suppose this is true for
n — 1. Let a — α0 •< αx -< -< an = b and a = b0 < bλ < < bm = δ,
and we shall show m^n. When α : ^ bίf we have αx < b2 < < bm =
6. Hence m — 1 <^w — 1 by the induction hypothesis. When a^bx,
let r(<m) be greatest such that ax ^ δ r. For ί = 1, , r, we have
at A b{ = a and (6^ α^ilί, since ^ covers a. Then (αx, 6 ^ ^ by M-sym-
metry. If αx V δί_i = αx V &<, then

6, = (αx V bi) Λbt = (δί_1 V α,) Λ δi = δ,_! V (a, A h) = b^ ,

a contradiction. Hence we have

a, = α, V δ0 < a, V δx < < a, V δr ^ δ r + 1 < δ r + 2 < < δm = δ .

Hence, by the induction hypothesis, we get m — 1 ^ n — 1. There-
fore the lemma is true for n.

It follows from this lemma that if the length of L[a, b] > n then
there is no connected chain of length n from a to δ.

2. Point-free parallelism. Let L be a lattice with 0, and let
a and δ be nonzero elements of L. If a A b — 0 and there exists
ΎΪI e ^f such that m ^ a and m V b = α V δ then we write α < | (m) δ.
If a < |(m) δ and δ < |(w) α then we write a | | ( M ) δ and we say that a
and δ are parallel with axes m and n. We remark that α| | ( m,w ) δ if
and only if a A b — 0 and there exist m, n e ^€ such that m <g α,
n ^ b and m V b = a V n.

LEMMA 2.1. If a < \{m)b then m is maximal in the set {ne ^f:
n ^ α}.

Proof. Let ^ be an element of ^ C with m ^ n ^ a. Then since
% is modular and nAb^aAb = 0, we have

n = (α V δ) Λ w = (m V δ) Λ n — m V (δ Λ n) — m .

LEMMA 2.2. Let a < | ( w ) δ.

( i ) If m ^ a, < a then aι < | ( w ) δ.

1 The author is indebted to the referee for this lemma.
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( i i ) If b < δx and a A bx — 0 then a < | (m) 6X.
(iii) If b < b± and m < bi then a < δ lβ

These statements can easily be proved.

LEMMA 2.3. /w an Msymmetric lattice with 0, if a\\(m,n)b and
a — m then b = n.

Proof. Since L is M-symmetric, we have (m, b)M. Since 6 ^
a V n = m V n and m Λ 6 = 0, we have

LEMMA 2.4. In an M-symmetric lattice with 0,
( i ) if a Λ b = 0 cmώ α V ί ) l c £/&e% α Λ (b V c) = 0,
( i i ) if a < \{m)b and a V b ± c then a < \im) b V c.

Proof. ( i ) Since c _L a V 6, we have (6 V c) Λ (α V 6) = & V
j c Λ ( α V &)} = b. Hence α Λ (6 V c) = a A b = 0.

( i i ) We have a A (b V c) — 0 by (i). Moreover, m V & V c =
α V δ V c by α < | ( m ) 6. Hence α < |(ίΛ) 6 V c.

LEMMA 2.5. Jti a weakly modular lattice,
( i ) i/ α Λ & = 0, m ^ α , n ^ b where m, w e ^ C ίfcβπ α Λ (m V

6) il(m,«)δ Λ (n V α),
(i i ) if a < \{m) b and n^b where ne ^ then a \\im,n) b A (n V α).

Proof. ( i ) We have a A (m V b) A b A (n V a) = a A b = 0.
Since a A (m V 6) ̂  m > 0, we have (α, m V b)M and similarly (6,
n V a)M. Hence

n V {α Λ (m V 6)} = (n V α) Λ (m V b) = m V {b A (n V α)} .

Thus, a A (m V b) | | ( M ) 6 Λ (w V α). (ii) follows from (i) evidently.

LEMMA 2.6. In a weakly modular, M-symmetric lattice L, if
α||(m,Λ)δ, then there exist mutually inverse, isomorphic mappings bet-
ween the intervals L[m, a] and L[n, b], which are defined by aι —> b A
(n V αj for ttj. e L[m, a] and bx —* a A (m V &i) /or 6X e L[n, b].

Proof. [6], Theorem 2.12.

LEMMA 2.7. Lβ£ α < | ( m ) c m α weakly modular, M-symmetric,
^/?-SSC lattice L with 1. If ne ^£, n A a = 0 ami % V a < 1 then
there exists beL such that a\\(m,n) b.
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Proof. ( i ) When c ^ n V α, we have (n V a) A c < c. There
exists nf e ^£ such that n' ^ c and %' Λ (% V α) = 0. Putting c' =
c Λ (%' V α), we have α |[(TO,n,> c' by Lemma 2.5 (ii). Since w J_ a and
w V a _L w', we have n±aVn' = a\/c'. Hence, by Lemma 2.4 (ii),
we have a < | ( m ) c

r V %. Putting 6 = (c' V w) Λ (n V α), we have
α ll(w,») δ by Lemma 2.5 (ii).

(ii) When c ^nV α(<l) , we take w' G ̂ # with (n\/ a) An' = 0.
Then c V a ± n'9 since ( c V f l ) Λ % ' ^ ( % V α ) Λ ^ = 0. Putting c' =
c V n', we have α < \(m} c' by Lemma 2.4 (ii). Since c' ^ n V a, by
(i) there exists b such that α ||(m,Λ) b.

3. Parallelism in Wilcox lattices. A Wilcox lattice L is con-
structed in the following manner (see [9] and [6]). Let A be a given
complemented modular lattice whose lattice operations are denoted by
U and Π. Let S be a fixed proper ideal of A with 0 deleted (S may

be empty). As ordering of the set L = A — S we use that of A. Then
L is a lattice having the following properties, where α, 6 G L and we
denote the lattice operations in L by V and Λ:
(W 1) a V δ = a U 6 for all α, 6 e L,

/ τ τ τ , 7 ί α Π δ if α n δ e L
(W 2) α Λ 6 =

; (0 if anbeS ,
(W 3) (α, b)M in L if and only if a f] b e L.
By (W 2) and (W 3), L is weakly modular and M-symmetric. More-
over, α _L 6 in L if and only if a Π b = 0.

We call Λί the modular extension of L. An element in S is called
an imaginary element for L? and when S has a greatest element i
then it is called the imaginary unit. A nonzero element a of L is
called regular when α Π % = 0 for every ue S. The set of regular
elements is denoted by R. Evidently, S is empty if and only if 1 e R.

LEMMA 3.1. Let L = A — S be a semicomplemented Wilcox lattice,
and let a be an element of L with 0 < a < 1. The following three
statements are equivalent.

(a) a is regular, (β) a is modular. (7) a is strongly modular.

Proof, (a) ==> (γ). Let b e L and a, ̂  a in L. If b Π a, e S, then,
since a is regular, we have 0 = a Π (δ Π αj = 6 Π α1? a contradiction.
Hence δ Π a^eL, and then (δ, αJAf by (W 3). Therefore a is strongly
modular, (T) => (/S) is trivial, (β) => (a). Since L is semicomplemented,
there exists ce L such that c Φ 0 and c Λ α = 0. Since α is modular,
we have c Π a e L by (W 3). Hence c Π α = c A a = 0 by (W 2). For
an arbitrary u e S, we put δ = c U (a Π w) Since 6 G L, we have (δ, α)Λί
and hence b ΠaeL. By the modularity of A,
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δ Π a = {(a ίΊ u) U c} f] a = (α Π w) U (c ΓΊ α) = α Π w .

Hence a Γ) ue L, and then α Π % = 0. Therefore α is regular.

LEMMA 3.2.2 ( i ) A Wilcox lattice L = A — S is left comple-
mented if and only if it satisfies the following condition:

(1) If a < b in L then there exists ce L such that 0 Φ c ^ δ,
c Λ a = 0 and (c, a)M.

(ii) If a Wilcox lattice is ^€-SSC, then it is left complemented.

Proof. If L is left complemented then evidently (1) is satisfied.
Conversely, assume that (1) is satisfied in L. Let α, be L. We shall
show that

(2) There exists b,e L such that b = (a Π b) U δ3 and (α n 6) Π
6, - 0.
When a Γ\ be S, we take a complement δx of a Π & in the interval
Λ[0, &]. Then 6XG L, since otherwise 6 = b1 U (α Π 6) e S, a contradic-
tion. Hence bx has the desired property. When a Π δ e L, we may
assume a Π δ < δ- By (1) there exists c e L such that 0 Φ c g δ, c Λ
(α Π δ) = 0 and (c, a Π δ)Λf. Then we have c Π (α Π b) = 0. Let λ
be a complement of (α Π δ) U c in Λ[0, δ], and put δL = c U λ. Since
(a Π δ, c, λ)± in A, bι is a complement of a Π δ in /l[0, δ]. Moreover,
since 0 Φ ceL, we have bλeL. Thus (2) has been proved.

By (2), we have α V δ i ^ α U δ i ^ α U δ ^ α V δ , and since af]b1 =
α Γ) δ D δ! = 0, we have a Λ δL = 0 and (δx, α)lί. Therefore L is left
complemented. The second statement of the lemma follows from the
first one.

REMARK 3.1. Let L = A - S be a Wilcox lattice with the imagi-
nary unit i, and assume that L is SSC. For any nonzero element a
of L, there exists aγ e ^f such that aι ^ a; because a complement a1

of a Π ΐ in Λ[0, a] is regular since αx Π i = 0, and hence a, e ^f by
Lemma 3.1. Therefore L is ^/t-SSC and then it is left complemented.

DEFINITION. An element a of a Wilcox lattice L = /ί — S is called
irregular when there exist me R and % e S such that a = m U u (see
[6]). We call u an imaginary part of α, and denote it by r(α); while
m is called a regular part of α. For a regular element a we put
c(μ) = 0. It is easy to show that if a Wilcox lattice L has the
imaginary unit ΐ, then every nonzero element of 1/ is either regular
or irregular.

LEMMA 3.3. If a is an irregular element of a Wilcox lattice
L = A — S, then an imaginary part c(a) is uniquely determined by

2 This lemma is suggested by the referee.
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α, and it is the greatest element of S contained in a.

Proof. Let a = ml) u, meR and u e S. If v e S and v ^ a, then
since u U v e S, we have m Π (u ΓΊ v) = 0. Hence by the modularity
of Λ,

u = u{J {m Γ) (uU v)} = (u{J m) f) (u[J v) = a f) (u{J v) ^ v .

REMARK 3.2. A regular part of an irregular element a is a com-
plement of c(a) in Λ[0, a]. This is not necessarily unique. It is easy
to show by Lemma 3.3 that a Wilcox lattice L has the imaginary
unit if and only if the unit 1 of L is irregular.

LEMMA 3.4. Let a and b be nonzero elements of a Wilcox lattice
L = A — S. The following statements are equivalent.

(a) a < \{m) b with a Φ me R.
(β) a n be S and a = m U (a Π b) with me R.

Each of (a) and (β) implies that a is irregular and c(a) — a ΓΊ b.

Proof. [6], Theorem 3.8.

REMARK 3.3. In a Wilcox lattice, if α < \{m)b with meR then
a — m U c(a) by Lemma 3.4 and by the fact that a — m implies c(a) =0.

LEMMA 3.5. Let a and b be irregular elements of a Wilcox lattice
L = A — S. If a < | ( m ) b with meR then c(a) ̂  c(b), and if a \\im,n] b
with m, ne R then c(a) — c(b).

Proof. This lemma is evident by Lemmas 3.3 and 3.4.

LEMMA 3.6. In a Wilcox lattice L = A — S, let a = m U u and
b = n U u where m, ne R and ue S. If either a A n — 0 or b A m = 0
then a | | ( M ) b.

Proof. [6], Lemma 3.10.

PARALLEL AXIOMS. Let ^ be a subset of ^/ί. We consider the
following three parallel axioms with respect to c^.
(P 1) If a |!(TOl>Λ) &! and a \\{m9.n) b2 where mly m2, ne <g% then bγ = b2.
(P 2) If a, ||(m,w) &! and α2 ||(TOιΛ) b2 where m , % e ? and if (a, V α2) Λ

π = 0, then a, V α2 | | ( M ) δx V 62

(P 3) If aι < | (m) bx and α2 < |(TO) b2 where me^ and if aι V α2 = 1,
then for any α with m < α < 1 there exists 6 such that a < | ( m ) &.

LEMMA 3.7. If L = A — S is a semicomplemented Wilcox lattice
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then (P 1), (P 2) and (P 3) are satisfied for any subsets cέ? of Λ? .

Proof. ( i ) We have ^ c R by Lemma 3.1. Let a ||(mi>Λ) δx and
α||(m2,»)&2 where mL, m21 ne^7 a R. It follows from Remark 3.3 and
Lemma 3.5 that δ; = n U *(&<) (i = 1, 2) and ^ δ j = c(a) = ί(δ2). Hence
&i = δ 2 .

(ii) Let αi. 11 (»,„,&! and α 2 | | ( W l Λ ) δ 2 where m, nec^, and assume
that (αx V α2) Λ w = 0. We have α ^ m U φ&<), δ* = n U '(δ*) and
φ ; ) = (̂6.) (i = 1, 2). We put u = φ j (J φ 2 ) = *(bj) U ̂ (δ2). Then we
have ue S, ax V a2 = ^ u α2 = w U ̂  and δi V δ2 = 6X U b2 = n u M
Hence αx V «2||(m^)&i V δ2 by Lemma 3.6.

(iii) Let ax < | ( m ) bx and α2 < | ( w ) δ2 where mer^, and assume that
aγ V α2 = 1. Since ê  = m U ̂ (α<), putting t6 = φ j U ̂ (α2), we have
ue S and m U ̂  = aL U α2 = αx V α2 = 1. If m < α < 1, then we have
m U (u Π α) = (m U ̂ ) Π α = a, and moreover ^ f i α e S , since otherwise
u f) a = 0 and then m — a. Since L is semicomplemented, there exists
ceL with c Φ 0 and c Λ α = 0. Then cf]aeS^ {0}. Putting δ =
c U (u Π a), we have

α Π δ = {(w Π α) U c} Π α = (% Π α) U (c Γ) a) e S .

Moreover,

a = m U (u Π α) = m U (w Π α) U (c Π α) = m U (α Π δ) .

Hence α < | ( w ) 6 by Lemma 3.4.

4. Transitivity of parallelism* We consider the following con-
dition for a subset c(f of ^/S\
(C 1) If m e ^ 7 and 0 < m1 < m then mi e ^
For instance, in a lattice with 0, both the set Ω of atoms and the
set ^ C of strongly modular elements satisfy (C 1), and also the set
of regular elements of a Wilcox lattice does. Evidently, if ^ satisfies
(C 1) then <af c ^ C

In this and the next sections, let L be a weakly modular, left
complemented lattice, with 0 and 1, of length ^ 4 (may be infinite),
and assume that for some fixed subset ^ of ^f, satisfying (C 1), L is
^-SSC and L satisfies the axioms (P 1) and (P 2) with respect to ^ .

For any m e ^ , L[m, 1] is a modular lattice, since L is weakly
modular. We put <g=" = {m e if; the length of L[m, 1] ^ 3}. Evident-
ly? c^?t satisfies (C 1). Since the length of L ^ 4, it is easily seen
that for any m e r^ there exists mx e ^ ' such that mι <5 m. Hence
L is ^'-SSC. Therefore, taking cέ?' instead of ^ , we may assume
that
(C 2) the length of L[m, 1] ;> 3 for every m e ^ 7 .
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LEMMA 4.1. In L, if a ||(mi,w) δ1? a < [(m2, δ2 and n S b2 where mly

m2, nec^ then δx ̂  δ2.

Proof. We have α| | ( m 2,n ) b2 A (n V a) by Lemma 2.5 (ii). Hence
by (P 1), bL = b2 A (n V a) ̂  δ2.

LEMMA 4.2. Iw L, i/ a |1 (Wl,Λl) δx, a \ | (m2>n2, δ2 w&ere m^ m2, nt1 n2 e
and (α, n l 5 w2)JL ί̂ ew δi ||(%1,%2) δ2 and α Λ (\ V δ2) = 0.

Proof. Since ^ l α V w2, we have δx Λ b2 ̂  (α V nx) A (a V w2) =
α V K Λ ( α V ^2)} = ^. Hence 6X Λ δ2 = a A &i Λ δ2 = 0. Next, since
α V &i = α V nlf we have α V bι _L w2. By Lemma 2.4 (ii), we have
a < l(mx) δi V wa Hence δ2 ̂  δx V ^ 2 by Lemma 4.1. Similarly δx ^
δ2 V nx. Therefore, bx V n2 — b2 V ^i, and hence δ : ||{Λl,»2) δ2. Moreover,
a A (δi V δ2) = a A (δ V w2) = 0.

DEFINITION. Let me^. An element α of L is called an incom-
plete element over m when there exists be L such that α < | ( m ) δ. The
set of all incomplete elements over m is denoted by Im. It follows
from Lemma 4.2 (i) that if ae Im and m ^ αx ̂  α then ^ e I m . The
following theorem shows a fundamental property of incomplete ele-
ments.

THEOREM 4.1. If ae Im and n A a = 0 where rn, ne^, then there
exists a unique element b such that α | | ( m , w ) δ.

Proof. The uniqueness follows from (P 1). We shall show the
existence. When a = m, we may take δ = n. When n\J a <1, the
existence of δ follows from Lemma 2.7. Now we assume that m < a
and n V α = 1.

When w is not an atom, there exist nu n2e^ such that n —
nλ V n2 and wx ± n21 since L is left complemented and ^ satisfies
(C 1). Since {a,nun2)l_, we have wf V α < 1(£ = 1, 2), and hence
there exist δ^ δ2 such that α |[ ( w > n i, b{ by Lemma 2.7. By Lemma 4.2 we
have a A (h V δ2) = 0. Moreover, a V n = α V wx V w2 = m V δ : V δ2.
Hence we have α ||(m,%) δx V δ2.

When n is an atom, we have α < α V ^ = l by the covering pro-
perty. Since L[m, 1] is a modular lattice of length ^ 3 by (C 2),
there exists aγ such that m < αx < α. Since L is left complemented,
there exist nonzero elements cx and c2 such that m V cλ = αA, m ± cly

aί\yc2 = a and αL J_ c2. Since (α1? c2, n)±9 we have w V αx < 1. Put-
ting a2 — m\J c2, since (α2, cx, w) JL , we have % V α2 < l Since αx,
a2elm, there exist δ1? δ2 such that α J l ^ ^ δ ; . Then by (P 2) we have
a ||(Wf», δi V δ2.
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COROLLARY. If alf a2 e Im where m e & and if ax V a2 < 1, then

#! V α2 G J w .

Proof. Since L is ^-SSC, there exists n e ^ such t h a t (αx V <x2) Λ

% = 0. By Thorem 4.1, there exist 6X and 62 such t h a t a{ | | ( M ) 6*(i =

1, 2). Hence αx V α2 | | ( w, f t ) δx V δ2 by (P 2).

LEMMA 4.3. If α l l ^ ^ & i and α||(TO,n2>62 where m,7hun2e^ and

n — nγ V n2 e ^ and if a A n = 0, έλ,ew α ||(»>Λ) δx V δ2.

Proof. I t follows from Theorem 4.1 that there exists δ such that

0 ll(»,») 6. Since α | | ( m,% l ) bl9 a < \{m)b and ^ ^ w ^ ό, we have δx ̂  6

by Lemma 4.1. Similarly δ2 ̂  δ. Hence a A (δx V δ2) ̂  a A δ = 0.

Moreover α V n = a V ^ V n2 — m V δx V δ2. Hence α \\{m,n) bx V δ2.

LEMMA 4.4. / / a | | ( m,% l ) δi and a | | ( M 2 ) δ2 ^fcere m, ̂ , ^ 2 e ^

if bλ A n2 = 0 then b2 A nλ — 0.

Proof. If δ2 Λ tij. ̂  0, then putting tiΊ = δ2 Λ n19 we have ti' e ^ ,

< ^ δx and < ^ δ2. Since a < | f m ) δ̂  (i = 1, 2), we have α \\{m,n[) δ̂  Λ

« V α) by Lemma 2.5 (ii). Hence δ : Λ « V a) = δ2 Λ « V a) by

(P 1), and hence

n2 A (n[ \/ a) = n2 Ab2 A (n[ V a) = n2 A bγ A (n[ V α) = 0 .

Thus we have (α, nl, n2) ±. I t follows from Lemma 4.2 that δ2 Λ

(n[ V a) ||(W/,Λ2) δ2, which is a contradiction since 0 < δ2 Λ (n[ V α) g δ2.

THEOREM 4.2. (Transitivity of parallelism) // α | | ( m i f W l ) 5i and

a ll(»2,n2) &2 'u /̂ βrβ mx, m2, ̂ , n2e^ and if δ : Λ n 2 = 0, then b1 \\{%vn2) b2.

Proof. ( i ) When (α V 60 Λ n2 — 0, we have (α, nu n2) ±. Hence

it follows from Lemma 4.2 that bx \\{nvn2) 62.

( i i ) When % 2 ^ α V ί > i < l , there exists n e ^ such t h a t α V & i l ^ .

Since n A a = 0, it follows from Theorem 4.1 that there exists δ such

that a \\{mvn) δ. Since (α V 60 A w = 0, we have 6, |[ ί Λ l,n ) δ by (i). On

the other hand, since α V δ2 = a V n2 ^ α V δ1? we have (α V δ2) Λ n = 0.

Hence 62||(W2>Λ)6 by (i). Now, we have {n2jbun)L, since n2\fb^

a \y h ± n. Since δ V % = bι V w, we have (6, wx, w2)± . Hence,

6i||(Wlf»2, δ2 by Lemma 4.2.

(iii) When a V δx < 1, we put < = (α V δθ Λ n2. Since L is left

complemented, there exists n2 such that w2 = n2 V ^ ' and n2 1 n".

If ^ 2 = 0 or w" = 0 then we have bx \\{nv%2) δ2 by (i) or (ii). Let n2 Φ 0

and n2 Φ 0. Then n[, n2 e <£*, and by Theorem 4.1 there exist δ2 and

δ2' such that α | | ( m 2 > n 2 ) δ 2 and a\\{m2yn^}b2. Since a | |(m2,%2) δ2 V b" by
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Lemma 4.3, we have δ2 = δ2 V δ2' by (P 1). Since n2^ a\/ b19 we

have δx IUlfW/) &2 by (ii), and since n" A (a V δx) = n " Λ (α V δx) Λ w2 =

^ ' Λ ^2 = 0, we have bx ||(ΛlfΛ//) δ" by (i). By Lemma 4.3 again, we

get δ J l ^ j δ ί Vδί ' - δ».

(iv) Let α V δx = 1. When nγ is not an atom, there exist n[,

n" e ^ such t h a t 7^ = n[ V wj' and < 1 n". As above there exist b[

and 6J' such t h a t α| | ( W l f W ί ) b[, a||(mi,»//,b" and bx = δ[ V δ". Since δ[ Λ w2 = 0

and α V b[ = a V n[ < 1, we have δj ||(»if«2) δ2. Similarly, 6Γ||<»ί,»2> δ2.

Since δ2 Λ nx = 0 by Lemma 4.4, we have δx \\{nvn2) b2 by Lemma 4.3.

When nx is an atom, we have a < a V nt = 1. Then, by the same

way as in the proof of Theorem 4.1, there exist elements a! and α"

such t h a t mx ^ α' Λ α", α' V α" = α, α' V ^1 < 1 and α" V ^ < 1. Since

α' < | ( W l ) b{ and α" < | { W l, b{(i = 1, 2), by Lemma 2.5 (ii) there exist

6:, ft? ^ 6, such that α' | | ( W l t Λ i J δj and α" | | ( m i f W ί ) 6J'. Since α Λ (δί V δί') ^

α Λ δi = 0 and

we have a | | ( m i f W i ) δ V δj'. Hence δ* = δ V δ ' by (P 1). On the other

hand, since a' V b[ = α' V ^1 < 1, it follows from (iii) t h a t b[ | | ( n i,Λ 2 ) δ .̂

Similarly, δj'||(»lf«2) δί'. Hence δx ||(WlfW2, δ2 by (P 2).

C O R O L L A R Y . // α ||(WfΛ) δ , δ ||(Λ,r) c α π d c \\{r,m)d w h e r e m , n , r e ^
then a — d.

Proof. Since b | | ( Λ, r ) c, δ \\{n,m)a and c Λ m = 0, it follows from

Theorem 4.2 t h a t c | | ( r , w ) α. Hence α = cZ by (P 1).

LEMMA 4.5. If a | | ( w > Λ l ) δx, &! | | ( W l, r ) cx, α ||(TO>n2) δ2 and &2|U2,r) c2 ^fcerβ

m, nu n2, r e g 7 ίfeβw cx — c2.

Proof. ( i ) When r Λ α = 0, it follows from Theorem 4.2 t h a t

a \\{m,r) c, and a | | ( m, r ) c2. Hence c, = c2 by (P 1).

( i i ) When ^ ^ n 2 and r ^ α, then since bL \\{ni,r) 6, &! < | ( n i, a and

r ^ a, we have cx ^ α by Lemma 4.1. Moreover we have δx g δ2,

since a | | ( m > n i, δ^ α < | ( m ) δ2 and nx^nz<L b2. Since cx | | ( r > Λ l, δi and cx Λ δ2 ^

α Λ &2 = 0, we have c1 < | ( r ) δ2 by Lemma 2.2 (ii). P u t t i n g br

2 = b2 Λ

(n2 V Cx), we have cx | | ( r > n 2, δ2 by Lemma 2.5 (ii). Since cx ^ α and

α Λ ί>2 ̂  a A b2 = 0, we have b2 < |(%2) a by Lemma 2.2 (ii). Moreover,

since bλ ^ nλ W cλ ^ n2 V cly we have bx ^ 62> and hence a rg m V b1 ^

m V δ2- Therefore α| | (»,»2)δ2. By (P 1), we have δ2 = δ2, whence

δ2 ! | ( Λ 2 > r ) cx. By (P 1) again, we have c, = c2.

(iii) When ^ ^ n 2, we put r' = r Λ α and take r " such t h a t

r = r' V r" and r ' Λ r " = 0. If r ' = 0 or r" = 0, then we have cγ — c2

by (i) or (ii). Let r ' ^ 0 and r " ^ 0. Then r', r " e ^ . By Theorem
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4.1 there exist c and c'/(i = 1,2) such t h a t b{ ||(Λi,»/> c and b{ \\{ni,r") cϊ-

Then bi \\{n.,r) c[ V c[f by Lemma 4.3. Hence c- = c\ V c'/ by *(P 1).

Since r ' ^ α, it follows from (ii) t h a t cj = c2, and since r " Λ a = 0,

it follows from (i) t h a t c" = c2. Hence cx = c2.

(iv) When wx ^ δ2, then ^ Λ δ? < n19 and hence there exists

n[e^ such t h a t < ^ n, and < Λ δ2 = 0. P u t t i n g b[ = b, A (n[ V α),

we have a ||(WfΛ/) δί by Lemma 2.5 (ii). Since b[ A r 5* δ : Λ r = 0, by

Theorem 4.1 there exists cί such t h a t δ( ||(Λ/,r, cί. Since w[ ^ Wi, we

have c[ = cx by (iii). On t h e other hand, since δ2 Λ n[ = 0, it follows

from Theorem 4.2 t h a t δ2 \\in2,n[)b[. Since c2 | | ( r,Λ 2, δ2 and δ[ | | ( % ί, r )c;, we

have c2 = c[ by Corollary of Theorem 4.2. Hence cλ = c2. When

n2^Lbx1 then we have ct = c2 by the same way.

( v ) When nx ^ δ2 and n2 ^ δ1? we have bL ̂  δ2 and δ2 ̂  δx by

Lemma 4.1. Hence bλ = δ2, which implies cx = c2 by (P 1).

5 • P a r a l l e l images of i n c o m p l e t e elements* Let m 6 c^ and

let α be an incomplete element over m, t h a t is, a e Im. For any

ne^, we define the parallel image of α at n, denoted by φn(a), as

follows:

( i ) When n A a = 0, it follows from Theorem 4.1 t h a t there

exists a unique element δ such t h a t a | | ( w, n ) δ. We define ψn{a) — δ.

( i i ) When n ^ α, there exists n§ecέ? such t h a t %0 Λ α = 0, since

α < 1. Then there exists δ such t h a t a ||(m,Wo) δ, and since b An ^

b Aa = 0, there exists c such t h a t δ | | ( % 0 , w ) c. I t follows from Lemma

4.5 t h a t c is independent of the choice of nQ. We define φn(a) = c.

Note t h a t we have φn{a) ^ a by Lemma 4.1, since δ ||(%0>w) φja), δ < |(%o) α

and ^ ^ α.

(iii) When % Λ α ^ 0 and n ^ a, we have n Λ α e g 7 and hence

we get φnAa(a) by (ii). We define φn(a) = φnAa(a) V n.

REMARK 5.1. Let ae Im. Evidently φjμ) = α, and φn{a) <Ξ, a\/ n

for every n e ^ . When n A a Φ 0 and n ^ a, put t ing nγ = n A α,

there exists n2e^ such t h a t n = π : V n2 and % Λ w2 = 0. Since

n2 A a = 0, we have φni(a) ||(ni,»2) ^W 2(α) by the definition of φni(a).

Hence φ%1(α) V ^ Λ 2 (α) = ^ Λ l (α) V n2 = φ%1(a) V n = φn(a).

LEMMA 5.1. Let ae Im and nly n2e ^ . If (a V nλ) A n2 — 0

Proof. ( i ) When nx A a = 0, we have (α, nl9 n2) 1. Since

α||(m,n ί)9>» i(α)(i= 1,2), we have ^ Λ l (α) | | ( Λ l ι W 2, φ%2(α) by Lemma 4.2.

When n, ^ α, then ^ Λ l (α) ||(Wl,n2, φn2(a) by the definition of φnι{a).

( i i ) When ^ Λ a Φ 0 and nγ S &i we put n[ = nλ A a and take

%'' such t h a t
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nγ = n[ V n" and n[ A n" — 0 .

By (i) we [have φn[,(a) | | κ w φnj,a) and φn[(a) ||(Λ,>n2, <pnz(a). Now we

shall show t h a t φn2(a) A nx = 0. We have nλ = wj V n" ^ aV n" and

Φn2{o) ^ a V n2. Moreover (α, w", w2) 1 . Hence

<pn2(a) A n, ^ (a V w2) Λ ( α V w") = α V {π2 Λ (a V <')} = α .

Therefore φ%2(a) A nγ <S £\2(α) Λ α = 0. By Remark 5.1, we have

Ψn'^P) V ^ Γ ( α ) = φni(a). Hence we have ^ ( α ) | | { n i f W 2 ,φ Λ 2 (α) by Lemma

4.3.

LEMMA 5.2. Lei ae Im(me <&) and n z ^ . Then n is a maximal

element of cέ? contained in <pn(a).

Proof. ( i ) When n A a = 0, we have φn(a) \\{n,m) a. By Lemma

2.1, n is maximal in the set {nf e ^f; n' ^ <pn(a)}. Since ^ c ^ C ^

is maximal in {nr e^; nf <S ̂ Λ (^)}.

( i i ) When n ^ a, tak ing noe & with α Λ n0 = 0, we have

<Pn(a) \\(n:nQ)ΨnQ(a)' Hence w is maximal as in (i).

(iii) When n A a Φ Q and n ^ α, we put w Λ α = ^ Ί and take n%

such t h a t n ~ nx\/ n2 and ^ Λ w2 = 0. Then nlf n2e ^ . Let nf be

an element of ^ such t h a t ^ ^ n' ^ ^ ( α ) . Since ^ ( α ) = φni{a) V w

and φni(a) S a, we have n' A a S (φnjβ) V n) A a = <pni(a) V (n A a) =

<pni{o). Since w ^ ί i ' Λ f l G ^ 7 , we have nf /\a — n^ by (ii). If we

had n < ri, then there would exists t ^ 0 G ^ such t h a t %0 ^ w/ and

^ 0 Λ ^ = 0. Since (nu n2, n0) JL , we have

a A (n2 V n0) = a A n' A (n2 V n0) ~ nλ A (n2 V n0) = 0 .

Hence (α, n2, n0) ±. But n0 ^ n' ^ ψn{a) ^ a V n = a V n2, a contra-

diction. Therefore n = n'', and hence ^ is maximal.

LEMMA 5.3. Le£ α e /TO(m e ^ ) α^d n ^ n where n19 n e ^ . Then

<Pn{a) = ΨnSβ) V w.

Proof. We may assume nγ<n. Take n2e
r^ such t h a t n = nγy nt

and %! Λ w2 = 0.

( i ) When π Λ a = 0, we have a \\{m,n) φn{a) and α ||(m>w., φn.{a)

(i = 1, 2). By Lemma 4.3 and (P 1) we have φn(a) = φni(a) V <pnz(a).

Since n, ^ ^ Λ l (α) Λ π ^ <^%1(α) and φni(a) A n e ^ we have ^ ( α ) Λ n =

wL by Lemma 5.2, and hence 9>Λl(α) Λ n2 = φnχ{a) A n A n2 = nγ A n2 = 0.

Hence ^ % l (α) ||(Λl,W2, <pn2(a) by Theorem 4.2. Therefore

<P«{a) = ^%(α) V 9>»2(α) = ^W l(α) V ^ 2 = <pni(a) V ^ .

( i i ) When n <Ξ α, tak ing n^c^ wi th α Λ ^ 0 = 0> we have
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ΨnQ{o) ||(Wo>w) φja) and φno(a) ||(no,w., 9>Λ.(α)(i = 1, 2). Hence by the same
way as (i), we have φn(a) = φnι(ά) V n.

(iii) When nAa^O and n, A a = 0, we have 9>nΛα(α) I L A ^ ^ O - ) .

Hence

<P»(α) = ^»Λ«(α) V n = φΛΛα(α) V % V ^ = φWjL(α) V (n V α) V n

= ^ ( α ) V w .

When ^ Λ α ^ O , it follows from (ii) that φnAa{(i) = 9>WlAa(a) V ( ^ Λ α ) .
Hence

^n(α) = ΦnΛaiά) V tt = 9> lΛa(α) V W = ^Λαfa) V ^ V % = ΨnSfl) V W .

THEOREM 5.1. Let ae Im(me c^) and nz^. The mapping x —•
φn(x) is an isomorphism of the interval L[m, α] onto L[n, φn(a)].

Proof, ( i ) When nAa—Q, we have a\\{m,n)φn{a). For any
xeL[m,a], we have xelm and a? ||(m,Λ) ^*(»). Hence φn{x) = φn{a) A
(n V x) by Lemma 2.5 (ii) and (P 1). It follows from Lemma 2.6
that φn is an isomorphism of L[m, a] onto L[n, φn(a)].

(ii) When w ̂  α, taking ^ O G ^ with τ̂ 0 Λ α = 0, we have
a\\{m,no)<Pno(a) and ^ ( α ) ||(Λo,n) φn(a). It follows from (i) and Lemma
2.6 that the composed mapping x —> ^%0(x) —> φjx) A (n V 9>Λo(&)) is an
isomorphism of L[m, α] onto L[w, 9>n(α)]. On the other hand, since
(x V n) A n0 ^ a A nQ = 0, we have 9>Λ(α) ||(w>1lo) 9>no(«) by Lemma 7.1.
Hence φn(x) = φn(a) A (n V 9>Λo(a?)) by (P 1).

(iii) When n A a Φ 0 and n ^ a, we put nt = n A a. Then we
have <pw(α) = 9Λl(α) V n, and moreover ^%1(α) Λ n — nι since ^i ^
^ ( α ) Λ π ^ a A n = ^ . Since L [ ^ , 1] is modular, the mapping y—>
7/ V w is an isomorphism of L[nl9 φni(a)] onto L[^, φja)]. By (ii), the
composed mapping x —> φni(x) —> φnί(x) V ^ is an isomorphism of L[m, α]
onto L[^, %(α)]. Moreover φnι{x) V w = ^w(^) by Lemma 5.3.

LEMMA 5.4. Lei α e Im(m e <&) and n = ntv n2 where n, n19 n2 e <&.
Then φn{a) = <pni(a) V ^«2(α).

Proof. Since n = ntV n2^ φnι(a) V <Pn2{<i), it follows from Lemma
5.3 t h a t 9>w(α) = 9>Λl(α) V ^ V 9>W2(α) V n = 9>Wl(α) V 9>»a(α).

T H E O R E M 5.2. If a ||(mιW) 6 wfeere m, ̂ e ̂  ίΛ,e^ <?r(α) = φr(b) for
every r e^.

Proof. ( i ) W h e n r <£ α, w e h a v e 6 ||(Λ>r) 9>r(δ) s ince r Λ δ ^ α Λ
h — 0. On t h e o t h e r h a n d , s i n c e w Λ a = 0, w e h a v e φr(a) \\{r>n) b. H e n c e
ψr{o) = <Prφ) b y ( P 1) W h e n r ^ 6, s i m i l a r l y w e h a v e φr(a) = φr(b).
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(ii) When rAa = rAb=0, we have φr{a) | | ( r,w ) α, a | |(w,n) b and
* \\{ntr)Φτ(J>) Hence φr(a) = ^>r(6) by Corollary Theorem 4.2.

(iii) When r Λ α — 0, we put ^ = r Λ i and take r2 such that
r = r1 V r2 and n Λ r2 = 0. If rx = 0 or r2 = 0 then φr{a) = ^r(6)
holds by (ii) or (i). Hence we may assume rl9 r2e^. Then φr{a) —
ΦTSP) V Ψr2{

a) a n d ^r(&) = ^ ( δ ) V φrft>) by Lemma 5.4. We have
φr.(a) = ?>r.(δ)(i = 1, 2) by (i) and (ii). Hence φr(a) = φr(b).

(iv) When r Λ a Φ 0 and r ^ a, we put rx = r Λ a and take r2

such that r = n V r2 and n Λ r2 = 0. Then rx, r2 e ^ , and then
-Φr(a) = <pri(α) V <£V2(α) and ^v(δ) = £>ri(δ) V φrβ>) by Lemma 5.4. We
have Φriμ) = ^ ( δ ) by (i) and (iii). Hence <£>r(α) = Φr(b).

LEMMA 5.5. Let aelm(me^) and ne^. If φn{a) < 1, then
φn{a) e In and φr(φn(a)) = φr(a) for every r e r ^ .

Proof. ( i ) When a A n = 0, we have a ||(m,w) φn{o) Hence
•9>n(α) e / n , and φr(a) = φr(φn{a)) by Theorem 5.2. When α V w < 1,
we take w o e ^ such t h a t (α V w) Λ %0 = 0. Then 9>n(α) ||(%,Wo) 9>Λo(α)
by Lemma 5.1. Hence φn{a) e In. Moreover, since a \\im,no) Φno(a), we
have φr(a) = φr(φ«Q(a)) = φr(φn(a)) by Theorem 5.2.

(ii) When a Λ n Φ 0 and a\J n = 1, we put nγ — a /\n and take
?i2 such that n — nγ\J n2 and ^ Λ ^ 2 = 0. Since a < 1, we have n ^ a,
and hence Wj, ^ 2 e ^ We have φni{a) < α, since otherwise φnι{a) — a
and then φn{a) = ^ ( α ) Vw = α V ^ = l, a contradiction. Hence there
exists ^ G ^ 7 such that n0 ^ a and <pWl(α) Λ ^ 0 = 0. Since nu n0 ^ a
.and α Λ w2 = 0, we have φni(

a)\\(nvn2)Φn2(a) and φ%0(a) ||(Λo,Λ2) % » .
Moreover ?>ni(α) ||(%1,%o) ^%0(α) by Theorem 4.2. Since (^no(α) V ^ ) Λn2^
a A n2 = 0, we have (φnQ(a), nu n2) ±, and hence φno(a) A (n, V n9) = 0.
Hence, by Lemma 4.3, we have φnQ(a) \\{no,n)φni(a) V φn2(a) = φn(a).
Therefore φn(a) e In. Since α||(mi,Λ2,^n2(α), we have φr(a) = φr(φn2(a)) =
φr(Φno(a)) = Φr(φn(a)) by Theorem 5.2.

LEMMA 5.6. Let a e Im(m e c<f) and nly n2 e ^. If φni(a) A n2 = 0
then Φni(a) |[(Wl>n2, φn2(a).

Proof. Since ψ%ι{a) < 1, we have φni{a) e J%1 by Lemma 5.5. Hence

Φn2(φnS°>)) Win^Φnfa)- ^ L e ™ a 5«5^ W β ^Vβ φ^φn^β)) = Φn2(d).

DEFINITION. Let ^ 0 be the subset of ^ deleting maximal elements
in cέ? which are not atoms, that is, ^ 0 = (^—{maximal elements})^Ω.
Then, it is evident that for any m e & there exists m1 £ c^ 0 such that
mj ^ m. Hence L is &

LEMMA 5.7. J / α e Im(m e r#) and n e ^ 0 , then φn{a) e In.
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Proof. If we had φn(a) — 1, then n would be maximal in <& by
Lemma 5.2. Hence n would be an atom by the definition of ^ If
a Λ n = 0, then a \\im,n) φn{a) — 1, a contradiction. If α Λ ^ ^ O , then
n ^ α, and then 1 = φn(a) <Ξ aelm, a contradiction. Therefore, we
have φn(a) < 1, and hence φn(a) e In by Lemma 5.5.

LEMMA 5.8. If m, ne^0, then Im and In are isomorphie by
mutually inverse mappings φn and φm.

Proof. We have φn(Im) c In and φm{Q c Im by Lemma 5.7. It
follows from Lemma 5.5 that φm(φn(a)) — φm(a) — a for a e Im and
ΨniΨmΦ)) = φJJ>) = δ for 6 G I%. Moreover <£>m and <̂ % are order-pre-
serving by Theorem 5.1. Hence Im and In are isomorphie.

LEMMA 5.9. Let m e ^. If m is not an atom and if there exist
aί9 a2 e Im such that aι V a2 = 1, then m £ ̂ 0

Proof. Since L is left complemented, there exists b ̂  α2 such
that α! V ί> = «Ί V a2 and α : ± b. Putting ar

2 = m V b, we have

α̂  e /m,, αx V ^ = αL V 6 = aι V <x2 = 1

and

aι A a2 = (m V b) Λ αL = m V (6 Λ at) = m .

Hence we may assume that α: Λ α2 = m. Since m is not an atom,
there exists m, e ctf such that mL ^ m. Since φmι{a^) g αx, we have

φmι{ax) A a2 = φmχ{a?) A av A a2 = φmχ{aι) A m = mL

by Lemma 5.2. Since L is weakly modular and φmι{a^) A a2 Φ 0, we
have (<pmi(α2) V ^m i(α0) Λ α2 = ζPmi(α2) V (<?Wl(O Λ α2) = φWl(α2) Λ m, =
<pmι(a2). Since <pWl(α2) A m = mίy we have 9>TOl(α2) < α2, and hence the
above equation implies that ^ ( α ^ V φmi(o^) < 1. Putting

we have α o e l m i by Corollary of Theorem 4.1, and by Theorem 5.1
we have

<pm«> = φmφmι{ad v φmφmi{°^ = ^-(αi) v ^w(α2) - αx v α2

By Lemma 5.7, we have m e ^ 0

LEMMA 5.10. If for some m e ? 0 ίfeβrβ β.τisί aua2£lm such that
aι V α2 = 1, ίfcβ^ e^βr?/ element n of ^ ^ ^^ αiom (hence L is ato-
mistic) and φn(ax) V φn(a2) = 1.
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Proof. It follows from Lemma 5.9 that m is an atom. Let % e %
If we had φn{a^} V <P%(α2)< 1> then as in the proof of Lemma 5.9, we
would have m£ ^ 0 . Hence φn{a^ V Φ X&ύ — 1> and then % is an atom
by Lemma 5.9.

6* Construction of modular extensions* As in §§ 4 and 5, let
L be a weakly modular, left complemented lattice, with 0 and 1, of
length ^ 4, and assume that for fixed subset cέ? of ^ C satisfying
(C 1), L is <tf-SSC and L satisfies the axioms (P 1) and (P 2) with
respect to <&. (We may assume that <& satisfies (C 2).)

Let ^o be the subset of r<f given in § 5. We say that L is of
type A when for some m e ^ there exist α1? α2 e Im such that ĉ  V
α2 = 1. It follows from Lemma 5.8, Corollary of Theorem 4.1 and
Lemma 5.10 that we have the following results.

(1) For any m, ne ^ 0 , Im and In are isomorphic by the mappings
φn and φm.

( 2 ) If L is not of type A then Im is an ideal of the lattice
L[m, 1] for every m e ^ 0 .

( 3 ) If L is of type A then L is atomistic and r ^ 0 = Ω. If more-
over L satisfies the axiom (P 3) with respect to Ω then Im = L[m, 1] — 1
for every m 6 ^ 0 .
Hereafter, whenever L is of type A, we assume that L satisfies (P 3)
with respect to Ω. In this case, it is convenient that we set 1 e Im

and φm(l) — 1 for every me ^ 0 Then Im = L[m, 1] and moreover Im

and In are isomorphic by φn and φm.

DEFINITION. For an incomplete element α, we denote by [a] the
set of parallel images of a at all elements of ^0, that is, [a] = {φm(a);
me^o}. We denote by £ the set of all [a] deleting [m]. For [a],
[b] e Sf we define [a] ^ [b] by φm(a) ^ Φm(b) for some me^ (and hence
for every m e ^ 0 ) . Hence S is isomorphic to Im — {m} for every
mec^Q. If L is of type A, then S» has the greatest element [1] and
S ~ L[m, 1] - {m}.

LEMMA 6.1. In the set A = L^S, we define a partial order by
the following conventions:

(0 1) For a, be L, we have a ^ b in A when a ^ b in L. For
[a], [b] e S, ive have [a] ^ [b] in A when [a] ^ [6] in S.

(0 2) For [a] e S and be L, we have [a] < b when φm(a) ^ b for
me ^o with m ^ b. (Especially, [1] < b only when b = 1.)

(O 3) For [a] e S and be L, we have b < [a] only when b = 0.
Then A is a lattice where the lattice operations U and Π have

the following properties:
(1) If a, be L then a U b = a V b.
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(2) If 0 Φ a e L and [δ] e S then for me^0 with m^awe have
aΌ[b] = ay φm{b).

(3) 1/ [a], [b] e S then for mertf0 we have [a] U [6] = [φm(a) V

(4) If a, be L and a A b Φ 0 £&ew a f) b = a A b.
(5) If a, be L and a A b = 0 cmώ if m, ne &Ό s^cA £fcα£ m ^ a

and n ^ b then a f] b — [a A (m V δ)] = [6 Λ (w V α)].
(6 ) //* α G L, [6] G S and if me^0 such that m ^ a then a Π [b] =

[a A φm(b)].
( 7 ) If [α], [6] G S αwd m G ̂ 0 ί / ^ [α] n [6] - [<Pm(a) A φm{b)].

Note that in (5), (6) and (7) we set 0 — [m] for convenience. (If L is
of type A then especially we have a U [1] = 1, [α] U [1] = [1], af] [1] =
[α] and [α] n [1] - [α].)

Proof. (1) Let a,beL. To prove (1), we may assume α ̂  0
and 6 ^ 0 . By (0 3), any upper bound of {a, b} in A belongs to L.
Hence a U b exists and (1) holds.

(2) We have [b] <φm{b) by (0 2). Hence αV φm(b) is an upper
bound of {a, [b]} in Λ. If c is an upper bound of {α, [b]} then ceL
by (0 3). Since m ^ a ^ c and [6] < c, we have φm{b) ̂  c. Thus
a U [δ] exists and (2) holds.

( 3 ) This follows from (0 1) evidently.
( 4) Take me^0 such that m^a A b. If c e L is a lower bound

of {α, 6} in A then c ̂  a A b by (0 1). If [d] e S is a lower bound of
{a, b} in Ay then ^m(d) ^ a A b and hence [d] <; α Λ 6. Therefore αflfr
exists and (4) holds.

(5) We have a A (m V b) \\{m,n) b A (n V a) by Lemma 2.5 (i).
Hence, [a A (m V &)] = [ί) Λ (% V α)] is a lower bound of {α, 6}. Since
a A b = 0, any lower bound is either an element of S or 0, and hence
it has the form [c] where c^ m. Since [c] <̂  α, 6, we have <pm(c) ̂  α
a n d φ n ( c ) ̂  6 . S i n c e φ m ( c ) An^aAb = 0, w e h a v e ^ m ( c ) \\{m,n)φn{c)
by Lemma 5.6. Hence φm{c) ̂  α Λ (m V ^Λ(c)) ^ α Λ (m V 6). There-
fore [c] ̂  [α Λ (m V δ)] Thus α f l δ exists and (5) holds.

(6) It is evident that [a A ψm{b)\ is a lower bound of {a, [b]} +
Any lower bound of {α, [6]} has the form [c] where c ^ m. We have
[c] ^ [α Λ φm(b)] since ^m(c) ^ α, 9?w(δ). Hence α Π [δ] exists and (β)
holds.

(7) For [a], [b]eS, taking me^0, [φm(a) A φm(b)] is a lower
bound of {[α], [δ]}. For any lower bound [c] of {[α], [δ]}, we have
[c] ^ [<Pm(a) Λ ^m(δ)], since ^w(c) ^ ^ w (α), <^m(δ). Hence [α] Π [δ] exists
and (7) holds.

LEMMA 6.2. T/ie lattice A constructed in Lemma 6.1 is comple-
mented.
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Proof. ( i ) Let 0 Φ ae L. Since L is left complemented, there
exists be L such that a V δ = 1 and alb. We have a[jb = a\/ b — 1
by Lemma 6.1 (1). We take mec^0 with m ^ a. Since (δ, a)M, we
have α A (m V δ) = (m V δ) A α = m V (δ A a) — m. Hence, by Lemma
6.1 (5), a Π δ = [a A (m V δ)] = [m] = 0. Therefore, δ is a complement
of a in A.

(ii) Let [α] G S. We take m e ^ 0 with m ^ a. Since L is left
complemented, it is relatively complemented. Hence there exists be L
such that a V δ — 1 and α A δ = m. By Lemma 6.1 (2), we have
[a] U δ = 9>w(α) Vδ = α V δ = l . By Lemma 6.1 (6), we have [a] Π δ =
ΫPmia) Λ δ] = [α A δ] = [m] = 0. Hence δ is a complement of [a] in A.
(Especially, if L is of type A, then m is a complement of [1].)

LEMMA 6.3. The lattice A constructed in Lemma 6.1 is modular.

Proof. ( i ) Let a, be L and we shall show (α, b)M in Λ. When
α A δ Φ 0, we have α Γι δ = α A δ by Lemma 6.1 (4), and hence the
interval A[a Π δ, 1] of A coinsides with L[a A δ, 1] which is modular
since L is weakly modular. Hence (α, b)M in A[a Π δ, 1] and then
(a, b)M in /f. When a A b — 0, we may assume α ̂  0 and δ Φ 0. Let
λ be an element of /I with 0 < λ < δ. If λ e L, then we put λ = bi

and take w e ^ 0 with n ^ bL. Since (ίi V α) Λ δ ̂  % > 0 and since L
is weakly modular, we have (n V a, b)M in L. Hence

(δj U α) Π δ = (δx V α) Π δ = (δL V a) A b = (δx V w V α) A 6

= 6i V {(^ V α) A δ} .

On the other hand, by Lemma 6.1 (5) and (2), we have

δi U (α Π δ) = δi U [δ A (n V a)] = δx V {δ A (^ V a)} .

Hence (δ: U a) Π δ = δL U (α Π δ).
If λ G S, then Λve put λ = [c] and take m, ne^0 with mtίa and

n ^ b. We shall prove (<pw(c) V α) A δ = 0. Since [c] < δ, we have
φn(c) ^ δ, whence m A ^»(c) ̂  α A δ = 0. Hence φm(c) \\im,n) φn(c) by
Lemma 5.6, while a A (m V δ) ||(TO,W) δ A (% V α) by Lemma 2.5 (i).
Since (φn(e) V {δ A (n V α)}) A m ^ δ A a = 0, by (P 2) we have

( * ) <Pm(c) V {α A (m V &)} || ψjfi) V {δ A (^ V α)} .
(TO,-«,)

Now we have (α, m V b)M since L is weakly modular. Since φm{c) ^

w- V ^»(c) ̂  m V δ, we have

9m(c) V {α A (m V δ)} = (<?m(c) V α) A (m V δ) .

Moreover, since (n V α, δ)M, we have
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<Pn(c) V {b A (n V a)} = (φjc) V w V a) A b = (φjc) V a) A b .

Hence, by (*), we have 0 = (φjc) V a) A (m V 6) Λ (9>Λ(c) Vα)Λί> =
(<P*(<0 V α) Λ (φjc) V α) Λ b. Since

φm(c) V α ^ m V 9>n(c) V α = ?>Λ(c) V α ,

we get (<£>m(c) V α) Λ b — 0. By Lemma 6.1 (2) and (5), we have

([c] U α) Π δ = (^m(c) V a) f) b = [(^m(c) V α) Λ (m V b)]

= [̂ m(c) V {α Λ (m V 6)}] .

On the other hand, by Lemma 6.1 (5) and (3),

[c] u (α n 6) = [c] U [a A (m V 6)] = [^w(c) V {α Λ (m V 6)}] .

Hence flc] U α) Π 6 = [c] U (α Π b). Therefore, (λ U a) Π b = λ U (a Π 6)
for any λ e -4 with λ <£ 6.

(ii) Let [a] e S and 6 e L, and we shall show ([α], b)M. We may
assume b Φ 0. Let λ e i with 0 < λ < δ. If λ = δ xe L, then we take
n e ^o with w ^ 61# Since φn(a) A b Φ 0, we have

(6i U [α]) n 6 = (6i V <PM) Π & = (&I V 9> (α)) Λ & = 6X V (^.(α) Λ b) ,

while by Lemma 6.1 (6) we have

&i U ([α] Π 6) = &! U [9>Λ(α) Λ 6] = δx V (9> (α) Λ δ) .

If \ — [c] e Sy then we take ne^Q with n ^ b. Since £>w(c) ^ δ, we
have

([c] U [α]) Π δ - [^(c) V ΨM\ Πb = [(φn(c) V φn{a)) A δ]

= ί^.W V {φn{a) A δ)] ,

while

[c] U ([α] Π δ) - [c] U [^n(α) Λ δ] - [^%(c) V (φn(a) A &)] .

Hence (λ U [α]) Π b = λ U ([α] Π δ) for any λ e ^ with λ ^ δ.
(iii) Let ae L and [δ] e S, and we shall show (a, [b])M. We may

assume a Φ 0. Let λ e i with 0 < λ < [6]. Then, since λ e S , we put
\ = [<•]. We take me^Q with m ^ a. Since ζPm(c) ̂  ^m(δ), we have

([c] U α) Π [δ] - (^m(c) V α) n [b] = [(<pm(c) V α) Λ ?>w(δ)]

- [^m(c) V (a A <Pn(b))] ,

while

[c] U ( α Π [δ]) = [c] U [ α Λ <pm(b)\ = [φm{c) V (a A φmψ))] .

(iv) Let [α], [δ] e S and let [c] < [δ]. We take m e ίT0 with m ^ a.
Since 9>w(c) <; 9>»(6), we have
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(M U [a]) Π [6] - [φm(c) V a] Π [b] = [(φm(c) V a) A φm(b)\

= [<P*(c) V (α Λ 9>*(6))1 ,

while

[c] U ([α] Π [&]) = [c] U [a A φmφ)] = [<PΛ<>) V (α Λ <?„(&))] .

Hence ([α], [δ])Λf.

REMARK 6.1. We shall show that if an ^/t-SSC lattice, with 0
and 1, has a finite connected chain from 0 to 1, then it is atomistic.
It suffices to prove that any nonzero element a includes an atom, since
t h e l a t t i c e is SSC. L e t 0 = a0 < a1< ••• < an = 1 a n d l e t r(<n) b e
greatest such that a <£ ar. Since a A ar < a, there exists me ^f such
that m ^ α(ίgαr+1) and m Λ ar — 0. If 0 < x fg m, then ar < ar V x ^
α r + 1, whence αr V »τ = α r + 1 . Hence

m — m A ar+1 = (x V αr) Λ m = x V (ar A m) — x .

Therefore m is an atom included in α.

THEOREM 6.1. (Non-atomistic case) Let L be an ^fs-SSC lattice
with 0 and 1 which is not atomistic. Then, L is a Wilcox lattice if
and only if L is weakly modular, left complemented and satisfies two
parallel axioms (P 1) and (P 2) with respect to ^€s.

Proof. If L is a Wilcox lattice, then evidently L is weakly
modular and it is left complemented by Lemma 3.2. Moreover L
satisfies the parallel axioms by Lemma 3.7. We shall prove the con-
verse statement. We remark that L is of infinite length by Remark
6.1 and that L is not of type A. Putting & — ̂ C , L satisfies all
the conditions stated at the beginning of this section. Hence it fol-
lows from Lemmas 6.1, 6.2 and 6.3 that L is a Wilcox lattice.

THEOREM 6.2. (Atomistic case) Let L be an atomistic lattice,
with 0 and 1, of length ^ 4. Then, L is a Wilcox lattice if and only
if L is weakly modular, left complemented and satisfies three parallel
axioms (P 1), (P 2) and (P 3) with respect to Ω.

Proof. As the proof of Theorem 6.1, the "only if" part follows
from Lemmas 3.2 and 3.7 and the "if" part follows from Lemmas 6.1,
6.2 and 6.3, by putting <if = Ω.

REMARK 6.2. We remark that two axioms (P 2) and (P 3) can be
replaced by the following one axiom (assuming that L satisfies (P 1)):
(P 4) If aλ < |(m) blf α2 < | (m) b2 where me^ and if m < a ^ α : V a3
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then for any nec^ with a Λ n = 0 there exists b such that

Proof. Since L is rέ?-SSC, it is evident that (P 4) implies (P 3).
We shall show that (P 4) implies (P 2). Let α, ||(w>n) b^i = 1, 2) and
(di V α2) Λ % = 0. By (P 4) there exists 6 such that aι V α2 ||(»,Λ) δ-
Then, α< ||(W>Λ) & Λ (n V α*) by Lemma 2.5 (ii), whence 64 = b Λ (w Λ a{)
by (P 1). Therefore, b, V δ2 ^ δ> and hence (αx V α2) Λ (bL V δ2) = 0-
On the other hand, we have aλ V a2 V n — m V bι V δ2. Hence αL V
2̂ ||(m,n) δi V δ2. Conversely, we assume that (P 2) and (P 3) are satisfied-

Then we may use the results in § 4. Let a{ < | ( m ) δ*(i = 1, 2), m < a ^
^ V α2 and α Λ w = 0. If αL V a2 = 1 then ae Im by (P 3). If α : V
α2 < 1 then ^ V a2 e Im by Corollary of Theorem 4.1 and hence ae I m .
Therefore it follows from Theorem 4.1 that there exists b such that

REMARK 6.3. We can show that an application of Theorem 6.2
to the upper continuous atomistic case implies the theorem on affine
matroid lattices given in [2], p. 314. A matroid lattice is defined as
an upper continuous atomistic lattice with the covering property ([4],
Definition 1.8), which is left complemented and ikf-symmetric (see [8]).
In an matroid lattice we write a < | b when a < \ip) b for some atom
p <£ α, and write a\\b when a < [ b and b < | α. (In [2], p. 272, it is.
written b\\a instead of α < | δ.) A weakly modular matroid lattice L
of length ^ 4 is called an affine matroid lattice ([4], Definition 3.3)
when L satisfies the following axiom (the join of two different atoms
is called a line):
(EP) If I, fa and k2 are lines such that I \\ ku 11| k2 and if kt ί\k2φ 0

then kt = k2.

THEOREM. Let L be an upper continuous atomistic lattice of
length ^ 4. Then, L is a Wilcox lattice if and only if L is weakly
modular, Msymmetric and satisfies the axiom {EP), that is, L is an
affine matroid lattice.

This theorem follows from Theorem 6.2, by Remark 6.2 and by
the results given in [2], pp. 307-309 (Theorem 5 and Prop. 9). Note
that our definition of an incomplete element (^1) coinsides with that
in [2], p. 307.

REMARK 6.4. About the uniqueness of the modular extension of
a Wilcox lattice, we can prove the following results (see [11]). Here
the proofs are omitted.

(1) Let L = A — S be a semicomplemented Wilcox lattice of
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length >̂ 3. Then L is modular if and only if S is empty.
(2) Let L be an ^ί€-SSC Wilcox lattice of length ^ 3. The

modular extension of L is uniquely determined up to isomorphism.
We remark that any ^^-SSC Wilcox lattice of length 2 has ex-

actly two modular extensions and that a Wilcox lattice of length ^ 3
may have two modular extensions if it is not ^f-SSC.
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