
PACIFIC JOURNAL OF MATHEMATICS
Vol. 37, No. 3, 1971

ARCWISE CONNECTIVITY OF SEMI-APOSYNDETIC
PLANE CONTINUA

CHARLES L. HAGOPIAN

Suppose M is a bounded semi-aposyndetic plane continuum
and for any positive real number ε there are at most a finite
number of complementary domains of M of diameter greater
than ε. In this paper it is proved that M is arcwise connected.

Let M be a continuum (a closed connected point set) and let x
and y be distinct points of M. If M contains a continuum H and an
open set G such that xe G c H c M — {y}9 then M is said to be
aposyndetic at x with respect to y [4]. M is said to be semi-apo-
syndetic if for each pair of distinct points x and y of M, M is
aposyndetic either at x with respect to y or at y with respect to x.
In [3] it is proved that every bounded semi-aposyndetic plane con-
tinuum which does not have infinitely many complementary domains
is arcwise connected. For other results concerning semi-aposyndetic
plane continua see [1] and [2].

Let x and y be distinct points of a metric space S. A finite
collection {Aly A2, , Am} of sets in S is a chain in S from x to y
provided Aι contains x, Am contains y, and for i and j belonging to
{1, 2, , m}, At ΓΊ Aj Φ φ if and only if | i — j | ^ 1. If each element
of a chain sf has diameter less than r (a positive real number) then
ei^ is said to be an r-chain. Suppose J ^ = {Alf A2, , Am} and έ%? =
{Blf B2, •••, Bn} are chains in S from # to y. The chain ^ is said
to run straight through Szf provided the closure of each element of
έ%? is contained in an element of S^f and if 2?< and Bk (l^i^k^n)
both lie in an element As of j y , then for each integer j (i < j < Jc),
Bj is contained in an element of Szf whose intersection with As is
nonvoid.

If M is a bounded plane continuum and for any positive real
number ε there are at most a finite number of complementary domains
of M of diameter greater than ε, then M is said to be an E-continuum
[6, p. 112].

The boundary of a set A is denoted by Bd A.

THEOREM 1. Suppose M is a semi-aposyndetic E-continuum is S
(a 2-sphere with metric <p), U is a disk in S, x and y are distinct
points which belong to the same component ofMΠ U, and V is an
open disk in S containing U. Then for any positive real number r
less than both ψ (x, y)/5 and φ (Bd U, Bd V)/5 there exists an r-chain
{Hίy H21 , Hn) (n > 3) in S from x to y such that for each positive
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integer i less than or equal n, Hi is a continuum in M f] V and
φ(Hi, Bd V) is greater than 4r.

Proof. Let G be the union of all components of S — M which
have diameter less than r/3. Since M is a semi-aposyndetic i?-con-
tinuum, M\J G is a semi-aposyndetic continuum which does not have
infinitely many complementary domains [5, Th. 2 (proof)]. Let F
be the ^-component of U Γ\ (Mu G). Fis a semi-aposyndetic continuum
in S which does not have infinitely many complementary domains [3,
Th. 1] (D and M in [3] are S - U and MU G respectively). Hence
F is arcwise connected [3, Th. 2]. Let A be an arc in F from x to
y. There exists a finite point set B in A — {x, y} such that each
component of A — B has diameter less than r/3. For each component
C of A — B, let G{C) be C union all components of G which intersect
C and let Z(C) be the boundary (relative to S) of G(C). For each com-
ponent C of A — B, since the boundary of each component of G is a
continuum [6, Th. 2.1, p. 105] and each point of C that is not in G
belongs to Z(C), Z(C) is a continuum of diameter less than r in M.
Let JίΓ be the finite coherent collection of continua {Z(C) | C is a com-
ponent of 4̂. — B}. The points # and y each belong to an element of
SίΓ and each element of 3ίΓ intersects U. It follows that any chain
from x to y whose elements are members of J3Γ has the specified
conditions.

THEOREM 2. If M is α semi-αposyndetic E-continuuvi, then M is
arcwise connected.

Proof. Let S be a 2-sphere which contains M and let φ be a
distance function on S. Let p and g be distinct points of M. Define
rx to be a positive real number less than both 1/8 and φ (p, q)/5 and
let sλ — 4i\. According to Theorem 1, there exists an ^-chain {if},
if,1, , i f y (%! > 3) in S from p to q such that for each positive integer
i less than or equal nly H\ is a continuum in M. Let mι be the smal-
lest integer greater than or equal to (nι — l)/2. There exist a set of
disks {U\, U\, •••, Um) and a set of open disks {V}, F2\ •••, ViJ such
that {V}, FJ, , F i J is an s^chain in S from p to q and for each
positive i less than or equal mlf Hl

2i^ U ίίJi U if2\n c= Z7ί c VI (if ^ t

is even, let if»1+1 = ^).

Let {p\, pi, •••, ί>i1+,.} be a point set such that p\ — p, ̂ i 1 + 1 = q,
and for each positive integer i less than or equal mL, p\ belongs to
Hzt-i Let ίL be the smallest number in the set {<£>(Bd U\, Bd Fl) | i
^ w j U {̂  (p\, Pl+i)\i ^ ^i} Let r2 be a positive real number less
than both tJ5 and 1/16. Define s2 to be 4r2. For each positive in-
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teger i less than or equal m19 there exists an r2-chain <ĝ  in S from
pi to p\+1 such that each element of ^ is a continuum in M Π VI
and at a distance greater than 4r2 from Bd V\ (Theorem 1). There
exists an r2-chain {HI, H\, , H2

2} in S from p to q whose elements
belong to (jSi ^ such that for each positive integer i less than or
equal m19 ^ Π {H\, HI, •••, H2

2} is a coherent collection. Let m2 be
the smallest integer greater than or equal to (n2 — l)/2. There exist
a set of disks {U2

19 U2

21 •••, Z/jy and a set of open disks {Ff, F 2 , •••,
V£2} such that {VI, VI, , Fjy is an s2-chain in S from p to g and
for each positive integer i less than or equal m2, -ffL-i U H2

2i U H]ί+i c
U\(zV2 (if ^ 2 is even, let ίί%

2

0+1 - 0 ) . Note that {V% VI •••, v y
runs straight through {V\, F 2 Λ , V^}.

Continue this process. For i = 3, 4, 5, •••, there exists a chain
{iϊj, HI , iϊi.} in S from p to q whose elements are continua in
M, and there exists an s rchain {V[, V\, •••, F^.} (st < l/2{) in S from
p to q whose elements are open disks in S such that UΓ=ι V] contains
U"ii H) and {V\, Fj , V,l} runs straight through {VΓ\ VΓ\ •••,
^m^J For each positive integer ί, let L^ be the continuum \J]iiHj.
The limiting set L of the sequence A, L2, L3, is a continuum in
ikf containing p and q. Note that for each positive integer i, L is
contained in (JΓ=i ^y

Let x be a point of L — {p, q}. For each positive integer i, letF*.
be an element of {V[, V\, , F^J which contains x. Assume without
loss of generality that 4 < j \ < m1 — 4. For each positive integer
i, let Pi be {Fί, FL •••, V^} and let F . be {V]i+i1 V}^ ••., F i J .
Let P = UΓ=i ( ^ Π I/) and .F = (JΓ=i (Ft ί l i ) . P and F are nonempty
disjoint relatively open subsets of L and P (J i^ — L — {x}. Hence x
is a separating point of L. It follows that L has only two nonse-
parating points. Therefore L is an arc [6, Th. 6.2, p. 54]. Hence M
is arcwise connected.

REMARK. Using [3, Th. 1] and Theorem 2 one can easily prove
that if M is a semi-aposyndetic jE-continuum, then M has Jones's
cyclic property (that is, if p and q are distinct points of M and no
point cuts p from q in M, then there exists a simple closed curve
lying in M which contains p and q).
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