ARCWISE CONNECTIVITY OF SEMI-APOSYNDETIC PLANE CONTINUA

Charles L. Hagopian

Abstract

Suppose M is a bounded semi-aposyndetic plane continuum and for any positive real number ε there are at most a finite number of complementary domains of M of diameter greater than ε. In this paper it is proved that M is arcwise connected.

Let M be a continuum (a closed connected point set) and let x and y be distinct points of M. If M contains a continuum H and an open set G such that $x \in G \subset H \subset M-\{y\}$, then M is said to be aposyndetic at x with respect to y [4]. M is said to be semi-aposyndetic if for each pair of distinct points x and y of M, M is aposyndetic either at x with respect to y or at y with respect to x. In [3] it is proved that every bounded semi-aposyndetic plane continuum which does not have infinitely many complementary domains is arcwise connected. For other results concerning semi-aposyndetic plane continua see [1] and [2].

Let x and y be distinct points of a metric space S. A finite collection $\left\{A_{1}, A_{2}, \cdots, A_{m}\right\}$ of sets in S is a chain in S from x to y provided A_{1} contains x, A_{m} contains y, and for i and j belonging to $\{1,2, \cdots, m\}, A_{i} \cap A_{j} \neq \dot{\phi}$ if and only if $|\mathrm{i}-\mathrm{j}| \leqq 1$. If each element of a chain \mathscr{A} has diameter less than r (a positive real number) then \mathscr{A} is said to be an r-chain. Suppose $\mathscr{A}=\left\{A_{1}, A_{2}, \cdots, A_{m}\right\}$ and $\mathscr{B}=$ $\left\{B_{1}, B_{2}, \cdots, B_{n}\right\}$ are chains in S from x to y. The chain \mathscr{B} is said to run straight through \mathscr{A} provided the closure of each element of \mathscr{B} is contained in an element of \mathscr{A} and if B_{i} and $B_{k}(1 \leqq i \leqq k \leqq n)$ both lie in an element A_{s} of \mathscr{A}, then for each integer $j(i<j<k)$, B_{j} is contained in an element of \mathscr{A} whose intersection with A_{s} is nonvoid.

If M is a bounded plane continuum and for any positive real number ε there are at most a finite number of complementary domains of M of diameter greater than ε, then M is said to be an E-continuum [6, p. 112].

The boundary of a set A is denoted by $\mathrm{Bd} A$.
Theorem 1. Suppose M is a semi-aposyndetic E-continuum is S (a 2 -sphere with metric φ), U is a disk in S, x and y are distinct points which belong to the same component of $M \cap U$, and V is an open disk in S containing U. Then for any positive real number r less than both $\varphi(x, y) / 5$ and $\varphi(B d U, B d V) / 5$ there exists an r-chain $\left\{H_{1}, H_{2}, \cdots, H_{n}\right\} \quad(n>3)$ in S from x to y such that for each positive
integer i less than or equal n, H_{i} is a continuum in $M \cap V$ and $\varphi\left(H_{i}, \mathrm{Bd} V\right)$ is greater than $4 r$.

Proof. Let G be the union of all components of $S-M$ which have diameter less than $r / 3$. Since M is a semi-aposyndetic E-continuum, $M \cup G$ is a semi-aposyndetic continuum which does not have infinitely many complementary domains [5, Th. 2 (proof)]. Let F be the x-component of $U \cap(M \cup G) . F$ is a semi-aposyndetic continuum in S which does not have infinitely many complementary domains [3, Th. 1] (D and M in [3] are $S-U$ and $M \cup G$ respectively). Hence F is arcwise connected [3, Th. 2]. Let A be an arc in F from x to y. There exists a finite point set B in $A-\{x, y\}$ such that each component of $A-B$ has diameter less than $r / 3$. For each component C of $A-B$, let $G(C)$ be C union all components of G which intersect C and let $Z(C)$ be the boundary (relative to S) of $G(C)$. For each component C of $A-B$, since the boundary of each component of G is a continuum [6, Th. 2.1, p. 105] and each point of C that is not in G belongs to $Z(C), Z(C)$ is a continuum of diameter less than r in M. Let \mathscr{K} be the finite coherent collection of continua $\{Z(C) \mid C$ is a component of $A-B\}$. The points x and y each belong to an element of \mathscr{K} and each element of \mathscr{K} intersects U. It follows that any chain from x to y whose elements are members of \mathscr{K} has the specified conditions.

Theorem 2. If M is a semi-aposyndetic E-continuum, then M is arcwise connected.

Proof. Let S be a 2 -sphere which contains M and let φ be a distance function on S. Let p and q be distinct points of M. Define r_{1} to be a positive real number less than both $1 / 8$ and $\varphi(p, q) / 5$ and let $s_{1}=4 r_{1}$. According to Theorem 1 , there exists an r_{1}-chain $\left\{H_{1}^{1}\right.$, $\left.H_{2}^{\perp}, \cdots, H_{n_{1}}^{\perp}\right\}\left(n_{1}>3\right)$ in S from p to q such that for each positive integer i less than or equal n_{1}, H_{i}^{\perp} is a continuum in M. Let m_{1} be the smallest integer greater than or equal to $\left(n_{1}-1\right) / 2$. There exist a set of disks $\left\{U_{1}^{1}, U_{1}^{2}, \cdots, U_{m_{1}}^{1}\right\}$ and a set of open disks $\left\{V_{1}^{1}, V_{2}^{1}, \cdots, V_{m_{1}}^{1}\right\}$ such that $\left\{V_{1}^{1}, V_{2}^{1}, \cdots, V_{m_{1}}^{1}\right\}$ is an s_{1}-chain in S from p to q and for each positive i less than or equal $m_{1}, H_{2 i-1}^{1} \cup H_{2 i}^{\perp} \cup H_{2 v+1}^{\perp} \subset U_{2}^{1} \subset V_{2}^{1}$ (if n_{1} is even, let $H_{n_{1}+1}^{1}=\dot{\phi}$).

Let $\left\{p_{1}^{1}, p_{2}^{2}, \cdots, p_{m_{1}+1}^{1}\right\}$ be a point set such that $p_{1}^{1}=p, p_{m_{1}+1}^{2}=q$, and for each positive integer i less than or equal m_{1}, p_{i}^{l} belongs to $H_{2 i-1}^{1}$. Let t_{1} be the smallest number in the set $\left\{\rho\left(\mathrm{Bd} U_{i}^{1}, \mathrm{Bd} V_{i}\right) \mid i\right.$ $\left.\leqq m_{1}\right\} \cup\left\{\varphi\left(p_{i}^{1}, p_{\imath+1}^{1}\right) \mid i \leqq m_{1}\right\}$. Let r_{2} be a positive real number less than both $t_{1} / 5$ and $1 / 16$. Define s^{2} to be $4 r_{2}$. For each positive in-
teger i less than or equal m_{1}, there exists an r_{2}-chain \mathscr{C}_{i} in S from p_{2}^{1} to p_{i+1}^{1} such that each element of \mathscr{C}_{i} is a continuum in $M \cap V_{i}^{1}$ and at a distance greater than $4 r_{2}$ from $\mathrm{Bd} V_{i}^{1}$ (Theorem 1). There exists an r_{2}-chain $\left\{H_{1}^{2}, H_{2}^{2}, \cdots, H_{n_{2}}^{2}\right\}$ in S from p to q whose elements belong to $\bigcup_{i=1}^{m_{1}} \mathscr{C}_{i}$ such that for each positive integer i less than or equal $m_{1}, \mathscr{C}_{i} \cap\left\{H_{1}^{2}, H_{2}^{2}, \cdots, H_{n_{2}}^{2}\right\}$ is a coherent collection. Let m_{2} be the smallest integer greater than or equal to $\left(n_{2}-1\right) / 2$. There exist a set of disks $\left\{U_{1}^{2}, U_{2}^{2}, \cdots, U_{m_{2}}^{2}\right\}$ and a set of open disks $\left\{V_{1}^{2}, V_{2}^{2}, \cdots\right.$, $\left.V_{m_{2}}^{2}\right\}$ such that $\left\{V_{1}^{2}, V_{2}^{2}, \cdots, V_{m_{2}}^{2}\right\}$ is an s_{2}-chain in S from p to q and for each positive integer i less than or equal $m_{2}, H_{2 i-1}^{2} \cup H_{2 i}^{2} \cup H_{2 i+1}^{2} \subset$ $U_{i}^{2} \subset V_{i}^{2}$ (if n_{2} is even, let $H_{n_{2}+1}^{2}=\varnothing$). Note that $\left\{V_{1}^{2}, V_{2}^{2}, \cdots, V_{m_{2}}^{2}\right\}$ runs straight through $\left\{V_{1}^{1}, V_{2}^{1}, \cdots, V_{m_{1}}^{1}\right\}$.

Continue this process. For $i=3,4,5, \cdots$, there exists a chain $\left\{H_{1}^{i}, H_{2}^{i}, \cdots, H_{n_{i}}^{i}\right\}$ in S from p to q whose elements are continua in M, and there exists an s_{i}-chain $\left\{V_{1}^{i}, V_{2}^{i}, \cdots, V_{m_{i}}^{i}\right\}\left(s_{i}<1 / 2^{i}\right)$ in S from p to q whose elements are open disks in S such that $\bigcup_{j=1}^{m_{i}} V_{j}^{i}$ contains $\bigcup_{j=1}^{n_{i}} H_{j}^{i}$ and $\left\{V_{1}^{i}, V_{2}^{i} \cdots, V_{m_{2}}^{2}\right\}$ runs straight through $\left\{V_{1}^{i-1}, V_{2}^{i-1}, \cdots\right.$, $\left.V_{m_{i-1}}^{i-1}\right\}$. For each positive integer i, let L_{i} be the continuum $\bigcup_{j=1}^{n_{i}} H_{j}^{i}$. The limiting set L of the sequence $L_{1}, L_{2}, L_{3}, \cdots$ is a continuum in M containing p and q. Note that for each positive integer i, L is contained in $\bigcup_{j=1}^{m_{i}} V_{j}^{i}$.

Let x be a point of $L-\{p, q\}$. For each positive integer i, let $V_{j_{i}}^{i}$ be an element of $\left\{V_{1}^{i}, V_{2}^{2}, \cdots, V_{m_{i}}^{2}\right\}$ which contains x. Assume without loss of generality that $4<j_{1}<m_{1}-4$. For each positive integer i, let P_{i} be $\left\{V_{1}^{i}, V_{2}^{i}, \cdots, V_{j_{i}-4}^{i}\right\}$ and let F_{i} be $\left\{V_{j_{i^{+}}}^{i}, V_{j_{i}+5}^{i}, \cdots, V_{m_{i}}^{i}\right\}$. Let $P=\bigcup_{i=1}^{\infty}\left(P_{i} \cap L\right)$ and $F=\bigcup_{i=1}^{\infty}\left(F_{i} \cap L\right) . \quad P$ and F are nonempty disjoint relatively open subsets of L and $P \cup F=L-\{x\}$. Hence x is a separating point of L. It follows that L has only two nonseparating points. Therefore L is an arc [6, Th. 6.2, p. 54]. Hence M is arcwise connected.

Remark. Using [3, Th. 1] and Theorem 2 one can easily prove that if M is a semi-aposyndetic E-continuum, then M has Jones's cyclic property (that is, if p and q are distinct points of M and no point cuts p from q in M, then there exists a simple closed curve lying in M which contains p and q).

REfERENCES

1. C.L. Hagopian, Arc-wise connectedness of semi-aposyndetic plane continua, to appear in Trans. Amer. Math. Soc., 158 (1971).
2. An arc theorem for plane continua, soon to appear in Ill. J. of Math.
3. - A class of arcwise connected continua, soon to appear in Proc. Amer. Math. Soc.
4. F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math., 63 (1941), 545-553.
5. , A characterization of a semi-locally-connected plane continuum, Bull. Amer. Math. Soc., 53 (1947), 170-175.
6. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, Rhode Island, 1963 (Revised edition).

Received December 4, 1970 and in revised form April 28, 1971.
Sacramento State College

