C-COMPACT AND FUNCTIONALLY COMPACT SPACES

G. Goss and G. Viglino

In the first section of this note a question posed by G. Viglino is resolved by constructing a C-compact space which is not seminormal. In the second section some characterizations of C-compact and functionally compact spaces are introduced. In the final section, embedding theorems of spaces into C-compact and functionally compact spaces are noted.

1. A Counterexample.

DEFINITIONS. (a) A Hausdorff space X is absolutely closed if given an open cover \mathscr{V} of X, then there exists a finite number of elements of \mathscr{V} , say V_i , $1 \leq i \leq n$, with $X \subset \operatorname{Cl} \bigcup_{i=1}^n V_i$.

(b) A Hausdorff space (X, τ) is *C*-compact if given a closed set Q of X and a τ -open cover \mathscr{V} of Q, then there exists a finite number of elements of \mathscr{V} , say V_i , $1 \leq i \leq n$, with $Q \subset Cl_X \bigcup_{i=1}^n V_i$.

(c) An open set V is regular if $V = \overline{V}^{\circ}$.

(d) A space X is seminormal if given a closed subset C of X and an open set V containing G, then there exists a regular open set R with $C \subset R \subset V$.

G. Viglino has shown that a seminormal absolutely closed space is C-compact, and posed the question as to whether or not the converse holds [5]. The following is an example of a C-compact space which is not seminormal. An example has also been obtained by T. Lominac, Abstract \sharp 682-54-33.

EXAMPLE. Let Z represent the set of positive integers. Let

$$X = \left\{ \left(rac{1}{2n-1}, rac{1}{m}
ight) \middle| n, m \in Z
ight\} \cup \left\{ \left(rac{1}{2n}, -rac{1}{m}
ight) \middle| n, m \in Z
ight\} \ \cup \left\{ \left(rac{1}{n}, 0
ight) \middle| n \in Z
ight\} \cup \{\infty\} \ .$$

Topologize X as follows. Partition Z into infinitely many infinite equivalence classes, $\{Z_i\}_{i=1}^{\infty}$, and let $\{Z_i^I\}_{J=1}^{\infty}$ be a partition of Z_1 into infinitely many infinite equivalent classes. Let Φ denote a bijection from $\{(1/(2n-1), 1/m) \mid n, m \in Z\}$ to $Z \setminus \{1\}$. Let a neighborhood system for the points of the form (1/(2i-1), 0) be composed of all sets of the form $U_{(2i-1,0;k)} = V \cup F$ where $V = \{(1/(2i-1), 0)\} \cup \{(1/(2i-1), 1/m) \mid m \geq k\}$ and $F = \{(1/(2n-1), 1/m) \mid m \in Z_i \text{ and } n \geq k\} \cup \{(1/2n, -1/s) \mid m \in Z_i \text{ and } n \geq k\} \}$ $s \in \bigcup_{m \in Z_i} Z_{\Phi(1/(2n-1),1/m)}$ and $h \ge k$ for some $k \in Z$. Let a system for (1/(2i-1), 1/J) be the sets

$$\bigcup_{(2i-1,J;k)} \left\{ \left(\frac{1}{2i-1},\frac{1}{J}\right) \right\} \, \cup \, \left\{ \left(\frac{1}{2n},\,-\frac{1}{s}\right) \middle| s \in Z_{\varPhi(1/(2i-1),1/J)} \, \text{ and } \, n \geq k \right\}$$

for some $k \in \mathbb{Z}$. The points (1/2n, -1/m) are to be open, and a neighborhood system for the points of the form (1/2i, 0) consists of sets of the form $\bigcup_{(2i,0,k)} = V \cup F$ where $V = \{(1/2i, 0)\} \cup \{(1/2i, -1/m) \mid m \ge k\}$ and $F = \{(1/2n, -1/m) \mid m \in \mathbb{Z}_1^i \text{ and } n \ge k\}$ for some $k \in \mathbb{Z}$. Finally, let a system for the point ∞ be composed of those sets of the form $X \setminus T$, where $T = \{(1/n, 0) \mid n \in \mathbb{Z}\} \cup \bigcup_{i=1}^k (\bigcup_{(2i-1,0,k)} \cup \bigcup_{(2i,0,k)})$ for $k \in \mathbb{Z}$.

An argument similar to that given in Example 1 of [4] may be used to show that X is a C-compact topological space. To show X is not seminormal we use the following characterization: X is seminormal if and only if given any closed subset C of X and any closed subset D disjoint from C, then there exists an open set U with $C \subset Cl U$ and $Cl U \cap D = \emptyset$ [5].

Let $C = \{(1/(2n - 1), 0) | n \in Z\}, D = \{(1/2n, 0) | n \in Z\} \cup \{\infty\}$, and U any open set with $C \subset Cl U$. If $U \not\subset \{(1/2n, -1/m) | m, n \in Z\}$ then clearly $Cl U \cap D \neq \emptyset$. If infinitely many elements of U are contained in $\{(1/2i, -1/m) | m \in Z\}$ for some *i*, then $(1/2i, 0) \in Cl U$. On the other hand, if $U \subset \{(1/2n, -1/m) | m, n \in Z\}$ and $U \cap \{(1/2i, -1/m) | m \in Z\}$ is finite for each $i \in Z$, then $\infty \in Cl U$. Hence X is not C-compact.

2. Characterizations of C-compact and functionally compact spaces.

DEFINITIONS. (a) A Hausdorff space X is functionally compact if for every open filter \mathcal{U} in X such that the intersection A of the elements of \mathcal{U} equals the intersection of the closure of the elements of \mathcal{U} , then \mathcal{U} is the neighborhood filter of A.

(b) A closed subset C of a space X is regular closed if for any $x \notin C$ there exists an open neighborhood U_x with $Cl U_x \cap C = \emptyset$.

(c) Let S be a subset of a space X. An open cover $\{U_{\alpha}\}_{\alpha \in A}$ of S will be said to be a *regular cover* if $X \setminus \bigcup_{\alpha \in A} U_{\alpha}$ is a regular closed set.

(d) A space X is regular seminormal if given a regular closed set C of X and an open set V containing C, then there exists a regular open set R with $C \subset R \subset V$.

THEOREM 1. The following properties are equivalent.

(i) X is functionally compact.

(ii) Every continuous function from X into any Hausdorff space is closed.

(iii) Given a regular closed subset C of X, an open cover \mathscr{B} of $X \setminus C$, and an open neighborhood U of C, then there exist $O_i \in \mathscr{B}$, $1 \leq i \leq n$, such that $X = U \cup Cl_X \bigcup_{i=1}^n O_i$.

(iv) Given an open regular cover \mathscr{B} of any closed set C, then there exist $O_i \in \mathscr{B}$, $1 \leq i \leq n$ such that $C \subset Cl_x \bigcup_{i=1}^n O_i$.

 (\mathbf{v}) X is absolutely closed and regular seminormal.

Proof. The equivalence of (i) and (ii) has been shown by Dickman and Zame [1]. The statement that (i) and (iii) are equivalent is in [3]. (iii) \Rightarrow (iv). Let $\mathscr{B} = \{O_{\alpha}\}_{\alpha \in A}$ be a regular open cover for the closed set C. Then $D = X \setminus \bigcup_{\alpha \in A} O_{\alpha}$ is regular closed, \mathscr{B} is a cover of $X \setminus D$, and $X \setminus C$ is an open neighborhood of D. Hence there exist $O_i \in \mathscr{B}, 1 \leq i \leq n$, such that $X = (X \setminus C) \cup Cl_X \bigcup_{i=1}^n O_i$; that is, $C \subset Cl_X$ $\bigcup_{i=1}^n O_i$. A similar argument shows (iv) \Rightarrow (iii).

(iii) \Rightarrow (v). That X is absolutely closed may be seen by choosing in (iii) the empty set for both C and U. We show X is regular seminormal. Consider a regular closed set C and open set V containing C. For each $x \in X \setminus C$ choose a neighborhood U_x with $Cl U_x \cap C = \emptyset$. By (iii) there exist U_{x_i} , $1 \leq i \leq n$, with $C \subset X \setminus Cl_x \bigcup_{i=1}^n O_i \subset V$, and clearly $X \setminus Cl_x \bigcup_{i=1}^n O_i$ is regular open.

 $(v) \Rightarrow (iii)$. Let an open cover \mathscr{B} of $X \setminus C$ be given where C is regular closed. Let U be a neighborhood of C. Choose a regular open set R and $O_i \in \mathscr{B}$, $1 \leq i \leq n$, such that $C \subset R \subset U$ and X = Cl $\bigcup_{i=1}^n O_i$. Since R is a regular open set we have $Cl R \setminus R \subset Cl \bigcup_{i=1}^n O_i$ so that $X = U \cup Cl \bigcup_{i=1}^n O_i$.

DEEINITION (e). A Hausdorff space (X, τ) is rim C-compact (rim functionally compact) if there exists a neighborhood system for each point of X consisting of open sets, V, with the property that given a closed set Q of $Cl V \setminus V$ and a τ -open cover (regular cover) \mathcal{V} of Q, then there exists $V_i \in \mathcal{V}, 1 \leq i \leq n$, with $Q \subset Cl_X \bigcup_{i=1}^n V_i$.

THEOREM 2. A Hausdorff space X is C-Compact (functionally compact) if and only if it is absolutely closed and rim C-compact (rim functionally compact).

Proof. A C-compact space is clearly absolutely closed and rim C-compact. To prove the converse we use the following obvious characterization of C-compactness: X is C-compact if and only if given any open cover \mathscr{V} of X, and any $V \in \mathscr{V}$ then there exist $V_i \in \mathscr{V}$, $1 \leq i \leq n$, with $X \subset V \cup Cl \bigcup_{i=1}^n V_i$. Let then $V \in \mathscr{V}$ where \mathscr{V} is an open cover of X. Choose for each $x \in V$ a rim C-compact neighborhood V_x with $V_x \subset V$. Select from the cover $(\mathscr{V} \setminus \{V\}) \cup \{V_x \mid x \in V\}$ elements

 $V_i \in \mathscr{V} \setminus \{V\}, \ 1 \leq i \leq n, \ \text{and} \ V_{x_i} \in \{V_x | x \in V\}, \ 1 \leq i \leq m, \ \text{with}$

$$X = \mathit{Cl} \Bigl(igcup_{i=1}^n \, V_i \cup \, igcup_{i=1}^m \, V_{x_{m{i}}} \Bigr)$$
 .

Let $V_J^{(i)} \in \mathscr{V} \setminus \{V\}$, $1 \leq J \leq n_i$, be such that $Cl \ V_{x_i} \setminus V \subset Cl \bigcup_{J=1}^{n_i} V_J^{(i)}$, $1 \leq i \leq m$. Then

$$X = V \cup Cligg(igvee_{i=1}^n V_i \cup igcup_{\substack{1 \leq i \leq m \ 1 \leq J \leq n_i}} V_J^{(i)}igg)$$
 .

A functionally compact space is clearly absolutely closed and rim functionally compact. The converse may be proved by using Theorem 1 (iii) and an argument similar to the one given above.

3. Embeddings. The absolute closed extensions constructed in the following theorem are of the type described by Fomin [2].

THEOREM 3. Any rim C-compact (rim functionally compact) space can be embedded as a dense subspace of a C-compact (functionally compact) space.

Proof. Let X be rim C-compact (rim functionally compact). Let \mathscr{B} denote the base of all open sets whose boundaries are C-compact (functionally compact). Let $X = \{\xi_x | x \in X\}$ where $\xi_x = \{0 \in \mathscr{B} | x \in 0\}$ and let Y denote the set of all maximal \mathscr{B} -filters with empty adherent set. Topologize $E = X \cup Y$ as follows. Let a neighborhood system for an element $\xi \in E$ be composed of all sets of the form $O_E = \{\xi' \in E | O \in \xi'\}$ for $O \in \xi$. Since \mathscr{B} is a complemented base, that is $\overline{O^{\circ}} \in \mathscr{B}$ for $O \in \mathscr{B}$, we have that E is an absolutely closed extension of X [2]. To show that E is C-compact (functionally compact) it is sufficient, by § 2 Theorem 2, to show that E is rim C-compact (rim functionally compact). To do this we note that for any open set 0 of X, $Cl_E O_E \setminus O_E = O_E \cup \{\xi_x | x \in Cl_x O\}$, so that $\{O_E | O \in \mathscr{B}\}$ is an open base for E with boundary of O_E C-compact (functionally compact).

REFERENCES

1. R. F. Dickman, Jr. and A. Zame, *Functionally compact spaces*, Pacific J. Math., **31** No. 2 (1969), 303-312.

2. S. Fomin, Extensions of topological spaces, Annals of Math., 44 No. 3 (1963), 471-480.

3. G. Goss and G. Viglino, Some topological properties weaker than compactness, Pacific J. Math., (to appear)

680

4. G. Viglino, C-compact spaces, Duke J. Math., 36 No. 4 (1969), 761-764.

5. ____, Seminormal and C-compact spaces, Duke J. Math., (to appear).

Received February 18, 1971.

WESLEYAN UNIVERSITY