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ANALYTIC SHEAVES ON KLEIN SURFACES

NEWCOMB GREENLEAF

Morphisms of Klein surfaces are discussed from the
sheaf-theoretic standpoint, and the cohomology of an analytic
sheaf on a Klein surface is computed.

0* Let 36 be a Klein surface [1], [2]; that is, X consists of an
underlying space X, which is a surface with boundary, and a family
of equivalent dianalytic atlases on X. If (Ua, za) is such an atlas,
then za: Ua-+ C+ is a homeomorphism of the open set Ua in X onto
an open subset of C+ = {z e C | Im(z) ^ 0}. The functions za must
thus be real on Ua Π dX, and it is required that za o zβ

] be dianalytic,
that is, either analytic or antianalytic on each component of
zβ(UaC\Uβ).

In this paper we define the structure sheaf of X, show that the
concept of morphism given in [1], [2] coincides with the concept of a
morphism of ringed spaces, and compute the cohomology of analytic

sheaves on X. If j ^ ~ is an analytic sheaf on X, and ^ is the lift

of J?~ to the complex double X of X, then there is a natural isomor-
phism

1* The structure sheaf £?-&* We define the structure sheaf
^ — &> on X as follows. If U is open in X, let ^(U) be the ring
of holomorphic functions on U (in the sense of [1], [2]). If U z> Z7',
then the inclusion map is a morphism of Klein surfaces and we have
a natural map pτί>\ ^{U) —> &{TJf) (this is not quite an ordinary
restriction map since the elements of έ?(U) are not quite functions).
In particular, if (Ua, za) and (Uβ, zβ) are dianalytic charts on X,
UaZD UβJ then

_ J/: Ua-+C\f(UandX) c R} ,
~ I and / o z~ι analytic

and
ί where za ° zj1 is analytic

pv«(f) = J"J
[f\Uβ where za <> zj1 is antianalytic .

It is easily checked that this defines a sheaf of local i?-algebras
on X.

Let X, 2) be Klein surfaces, /:?)—> X a continuous map. Then /
is a morphism [1] if /(3 Y) c <5X and if for every point p e Y there
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are dianalytic charts (V, w) and (U, z) at p and f(p), and an analytic
function h on w(V), such that

w\ \z

c+ —> c —> c+

h φ

commutes (φ is the folding map, φ(a + bί) = a + \b\i).
Recall that a ringed space morphism 2) —> ϊ is a pair (/, θ) where

/ : Y-^X is continuous and θ: ^ —>/* ̂  is a morphism of sheaves
of rings [4, p. 36]. Here f*έ?% is the direct image sheaf: f*&%(JJ) =

THEOREM 1. Lβί ϊ , 2) be Klein surfaces, and let f: Y—> X be a
nonconstant continuous map. Then the following are equivalent:

( i ) f is a morphism;
(ii) there exists a morphism θ\ έ7τ—>/*^ of sheaves of R-

algebras.
Under these conditions the morphism θ is unique, so f can be made
in a unique way into a morphism of ringed spaces.

Proof. (i)=>(ii). Let U ID U' be open in X. From the com-
mutative diagram:

U* U'

of morphisms of Klein surfaces we deduce a commutative diagram

of morphisms of i?-algebras, and this defines an iϊ-algebra morphism

(ii) => ( i ). Let pe Y, and let (V, w), (Z7, z) be dianalytic charts
at p, f(p), with f(V) c U. Let z* be the image of z in ^(V) under

Set h = z* o w-1. We claim / I F ^ ^ o ^ ^ w , i.e. that z o (/ | V) =
φoz*. It clearly suffices to show that z(f(p)) — Φ(z*(p)) If this does
not hold, then
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g [z- z*(p)][z - z*(p)]

is holomorphic at f(p), and shrinking U, V if necessary, we may-
assume geέ?χ(U). We let g* denote its image under (*) in έ?
But g* — l/[z* — z*(p)][z* — z*(p)] which is not defined at p.

We still need to show that f(dY) c dX. Let qeX. Then
is an J2-algebra which contains a copy of C if and only if q £
The έ?χ,q algebra (f*έ?s)q is isomorphic to

Π <?v,P,
f(P)=Q

so q ί dX, f(p) = q implies p£dY.
We now check that Θ is unique. Let U be open in X, ge έ?χ

pef-'iU). Let (V, w) be a dianalytic chart at p with F c Γ
Let g* be the image of g in ^(V) under (*). Then using the above
arguments, either g*(p) = gf(p) or g*(p) = gf(p) If ^ is nonconstant,
only one of these can yield an analytic function. If g is constant it
can be expressed as a sum of nonconstant functions. Hence g*, and
thus θ, are uniquely determined. The theorem is proved.

By an analytic sheaf of X we mean an ^-module. If J^~ is an
analytic sheaf on X and / : 2) —> X is a morphism then f*j^~ is the
sheaf associated to the presheaf F—> ̂ , ( F ) ® ^ (/Γ)

PROPOSITION 2. // ^ ~ is α coherent analytic sheaf on X,
is α coherent analytic sheaf on 2).

Proof. The proof given in [5, p. 47] for Riemann surfaces carries
over to the Klein surface case.

2* The complex double* Let X be a Klein surface, π: X —> X
its complex double. Recall that if (Ua, za) is a dianalytic atlas on X,
then (ϋa, za) is a dianalytic atlas on X, where Ua = π~ι(Uc) = UάU U"r

Uάf) U" = π-^UaΓidX), and π maps Z7ά and Σ7" each homeomorphically
onto Ua. The function za is defined by

Za{V) = j 7 τ

Uά is identified with ?/£ where ^α o ^ ̂ 1 is analytic, and with U" where
zaozjι is anti-analytic. This construction yields the Riemann surface
(without boundary) X as a double cover of X, folded along dX.

If U is open in X, let U = π~ι(U). We denote the structure
sheaf of X by £?.
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PROPOSITION 3. There is a canonical isomorphism

for every open set U c X.

Proof. We may cover U by dianalytic charts (Ua, za). It then
suffices to verify (f) for Ua, since ^(U) is the difference kernel of

Tίa^iϋ^ztTLa.β^iϋaΠϋβ) and C®β is exact.

Let σ be the canonical anti-involution of X which commutes with
7Γ, and let ic denote complex conjugation. If we identify ^(Ua) with

its image in έ?(Ua) then we see

But any ge^(Ua) can be written as

9 = i(g

and hence the canonical map

is surjective. This map is easily seen to be injective, completing
the proof.

If ^ is an analytic sheaf on % let

THEOREM 4. There is a canonical isomorphism

Proof. We may choose a base for the topology of X consisting
of sets of the form Ua1 where (Ua, za) is a dianalytic atlas on X.
Then sets of the form U'a, [/"(where Uaf]dX = 0) and of the form

f/α(where Uaf)dX Φ 0) form a base J5 for the topology of ϊ . Since

^ = C ® κ J^iU), it suffices to show that the sequence

0 - ^(36)®^) JT(X) - Π
<tt)

=: Π

is exact. When U* and J7̂ ' are disjoint then 2?(Ua) =
so (tf) may be replaced by
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^ Π ^ f t

and this last is exact because of Proposition 3 and the fact that ά^
is a sheaf.

Since the functors ^ —> C ® Λ Ĵ ~(X) and J^~ —> J^(£) are canoni-
cally isomorphic, so are their derived functors [3], and we have

THEOREM 5. Let j ^ " be an analytic sheaf on the Klein surface
Then there is a canonical isomorphism

for all q ^ 0.

COROLLARY. (Cartan Theorem B) Let H be a non-compact Klein
surface, J?~ a coherent analytic sheaf on 36. Then Hq(%, j^~) = 0 for
all q^l

Proof. Use Theorem 5 and Proposition 2 to reduce to the case
of a non-compact Riemann surface [6, p. 270].
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