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BURKILL-CESARI INTEGRALS OF QUASI ADDITIVE
INTERVAL FUNCTIONS

J. C. BRECKENRIDGE

The Burkill-Cesari B-C integrals arising in L. Cesari's
theory of quasi additive vector-valued set functions need not
be additive as functions of sets. It is shown in the present
paper that these integrals satisfy quasi additivity and
overadditivity properties. These properties are used to prove
Banach-type differentiation theorems for B-C integrals defined
on Euclidean spaces. Variants of Cesari's basic quasi
additivity hypothesis and some simplifications in the formula-
tion of the general theory are also discussed.

The theory of quasi additive vector-valued interval functions z

and associated B-C integrals I [z, A] over an abstract space A was

introduced by Cesari [2]. The integration processes of Cauchy-Riemann
and Lebesgue-Stieltjes were shown to be included in this theory.
More importantly, it was proved that the property of quasi additivity
is preserved by parametric integrands f(p, q) and that Cesari-
Weierstrass integrals over a variety T are the B-C integrals

l[/(T, z), A] of the corresponding composite functions. In [3] Cesari

extended these concepts to subsets of A and determined conditions
under which the Cesari-Weierstrass integral can be represented as a

Lebesgue integral I /(Γ, θ)dμ with respect to a suitable measure μ
JA

and vector θ of Radon-Nikodym derivatives. Further developments
in the theory have been discussed by Nishiura [4], Stoddart [6], and
Warner [7, 8, 9]. In particular, Warner extended the theory to
include quasi additive functions with values in locally convex spaces
and showed that many other integration processes, including those of
Perron and Pettis, are contained in the theory.

In this paper we discuss properties of B-C integrals as functions
defined on the subsets of a given space A. It is convenient to follow
the original setting of Cesari. Thus the B-C integral \[z, M] of z

over an arbitrary subset M of A exists whenever z is quasi additive
on M. We differ from Cesari's procedure, however, by formulating
all quasi additivity relations relative to a single directed system.
This technical device, used by Nishiura [4] in surface area theory,
simplifies Cesari's formulation and allows us to prove, in § 1, that if

z is quasi additive on M and if the B-C integral \[\z\, M] is finite,

635



636 J. C. BRECKENRIDGE

then z is quasi additive on every subset M' of M; hence \ [z, M'] exists

for every Mr c M.
Structure theorems for B-C integrals are discussed in § 2. In

addition to the theorems already proved by Cesari, we prove that if

z is quasi additive on M and l[|s|, Jkf] is finite, then the interval

function \[z, •] is also quasi additive on M and

if, in addition, z is real valued and nonnegative, then Hz, M] is the

total variation of \[z, •] over M.

The structure theorems of § 2 are used in § 3 to prove Banach-
type differentiation theorems for the case in which A is an open set
in Euclidean space. It is shown that if z is quasi additive on A and

I[|21, A] is finite, then the interval function \[z, •] admits a "hard

Γ f
analysis" vector-valued derivative J such that \[|z|, A] ^ 1 \J(w)\ dw;

J JA

equality holds if and only if \[\z\, •] is AC in the sense of [1, p. 411].
This result, which we shall use in a later paper, is obtained by
extracting essential elements in Cesari's presentation of the theory
of generalized Jacobians associated with a parametric surface of finite
area [1].

Stronger types of quasi additivity relations are discussed in § 4.
Necessary and sufficient conditions in terms of the interval function

I[|21, •] are determined for the basic quasi additivity hypothesis to

be equivalent to a stronger hypothesis used by Cesari [3, p. 130].
The connection between the present formulation and that of

Cesari is discussed in § 5. It is observed that Cesari's representation

S r
[f(T, z), A] = 1 f(T, θ)dμ, holds in the present setting also.

J^

1* Definitions and first properties* Let A be a nonempty set,
{1} be a nonempty collection of subsets / of A, {D} be a nonempty
family of nonempty finite systems D = [I] of sets I in {J}, and δ be
a real-valued function defined on {D}. We refer to the sets in {/} as
intervals and to the function δ as a mesh. The axioms

(a) : A is a topological space,
(b): each interval I has a nonempty interior,
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( c ) : the intervals of each system D are nonoverlapping, i.e.,
int (I)Πcl(J) = cl(J) 1Ίint(J) - 0 whenever I,JeΌ,IΦJ,

( d ) : 0 < §(D) < co for each system D and, given ε > 0, there
are systems with δ(D) < ε,
will be assumed. In order to treat some trivial examples in a
uniform manner we allow d(D) = 0 if only the zero (real or vector-
valued) interval function (see below) is being considered.

The norm of a point q = (qlf , qm) in the real Euclidean m-space
Em is denoted by \q\ = [Σrq

2

r]
112, where Σr ranges over r — 1, •••, m.

We set a± = (\a\ ± a)/2 for any real number α.
Let z: {I}—>Em,z = (zu •••,«„), be an interval function and M

be a subset of A. Associated with z are the nonnegative interval
functions \z\, \zr |, £^,and 2:7, r = 1, , m. When needed, 2' denotes
a second interval function having the same range space as z.

Given a system Do = [/], let S[z, M, Do] = ΣXI, M)z(I), where
Σr ranges over all Ie DQ and s(I, M) = 1 or 0 according as / c M or
I £ M. If D = [J] is also a system, then S[s, ilf, D] - S[z, M, Do] =
J / S ( Z , M ) [ ^ / S ( J , 7)«(J) - z(I)] + ^ s ( J , M)[l - Σl8(J, 1)8(1, M)]z(J);
the second term on the right is nonnegative whenever z is non-
negative.

The B-C integral of z over M is defined as

\[z,M] = lim S[s, If,

provided this limit, taken as δ(D) —•» 0, exists in ί7m. If 2; is real-
valued, then 00 is also allowed as a value for this integral.

DEFINITION 1.1. z is quasi additive on M if for each ε > 0
there exists rj — η(ε, ikί) > 0 such that if DQ = [I] is any system
satisfying o(D0) < η, then there also exists λ = λ(ε, My Do) > 0 such
that the relations

(qad: Σj s(I, M) \ Σj s{J, I)z(J) - z(I) \ < ε,
(qa2): Σ, s(J, M)[l - Σz s(J, I)s(I, M)] \ z(J) \ < ε,

hold for every system D = [J] with δ(D) < λ. If ^ is real-valued and
if (qa,y) and (qa2) are replaced by the single relation

(qsa): Στ s(I, M)[Σj s(J, I)z(J) - z{I)\~ < ε,
then z is quasi subadditive on M.

PROPOSITION 1.2. ( i ) If z is quasi additive on M, then the

B-C integral \[z, M] exists in Em.

Γ
(ii) If z is nonnegative and quasi subadditive on M, then \[z, M]

r
exists, 0 ^ 1[̂ , M] ^ ^. If, in addition, this B-C integral is finite,
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then z is quasi additive on M.
(iii) If z and zr are quasi additive on M, then az + bzr is quasi

additive on M for every pair of real numbers a and b, and

[[az + bz', M] = a \[z, M] + b J[z', M] .

(iv) If z and zf are nonnegative and quasi subadditive on M and

S r
[z\ M'\ <̂  \[z9 M].

(v) z is quasi additive on M if and only if its components zr,
r — 1, , m, are all quasi additive on M.

(vi) If z is quasi additive on M, then \z\,\zr\,zi, and z~,
r — 1, , m, are all quasi subadditive on M.

The proofs of the preceding statements are analogous to the
proofs given in [2, pp. 97-99] for the case M = A.

If z is quasi additive on M and if there exist systems of arbitrarily

small mesh, none of whose intervals are contained in M, then I [zy M]

is the zero vector. In particular, z is automatically quasi additive
r

on the empty set and \[z, 0 ] is the zero vector.

It follows from relation (qsa) that if z is quasi subadditive on
M, then it is quasi subadditive on every subset of M.

PROPOSITION 1.3. If z is quasi additive on M and if \[\z\, M]

is finite, then z is quasi additive on every subset of M.

Proof. Let Mf c M be given. We shall refer to the statements
of (1.2). By (vi), \z\ is quasi subadditive on M and therefore also

c
on M\ By (ii) and (iv), \[|z|,M'] exists and is dominated by

[\z\, M] < oo. Thus [z I is quasi additive on Mr by (ii). Given ε > 0

we can determine the parameters of (1.1) so that the relations (qaλ)
and (qa2) are simultaneously satisfied relative to z on M and \z\ on
M\ Thus

Σj s(I,

£ Σr 8(1,

Σj s(J,

M)
M)\

Σjs(J

ΣjS(J,

1 - Σ,

I)z(J)
I)z(J)

s(J, I)

-*(i)\

-z(I)\<ε,

s(I,M')λ z{J)

and we conclude that z is quasi additive on M'.
It is convenient to set
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F(M) = \[\z\, M], Fr(M) = \[\zr\, M] ,
J J

F+(M) = j[2r

+, M] , F-{M) = j[2Γ, M] ,

^1{M) = \[zr, M] ,

whenever these B-C integrals exist and are finite, and to set
F(M) = 0, etc., otherwise. We also define

As a consequence of the definitions and preceding propositions we
have the following result.

PROPOSITION 1.4. Suppose that z is quasi additive on M and

that \[\z\, M] is finite. Let Mf c M be given. Then z,zr,\z\,\zr\,

zt, and 27, r — 1, , m, are all quasi additive on M', and

Fί(M') - F~(M') = ^r{M') ,

Fϊ{M') + F~{Mr) = Fr{Mr) ,

F(M') ,

/or each r. Given ε > 0, £/ r̂β exists μ — μ(ε, M'), 0 < μ ^ ε,
i/ Do = [I] is any system with d(D0) < μ, then

IJT(AT) - S[«, M', A ] I < ε, \F(M') - S[\z\, M', Do] \< ε ,

and analogously for J^r, Fr, F? and F~ for each r. Finally, there exists

λ = λ(ε, ikί', Do), 0 < λ ^ //, such that the relations (qaL) and (qa2) of

(1.1) (applied to Mr) hold simultaneously for z, zr, \z\, \zr\9 zΐ, and z~ for

every r and every system D — [J] with d(D) < λ.

2* B-C integrals as interval functions* The total variation
(relative to {D}) of z over M is defined as

V[z,M] = sup S[\z\,M,D]

where the supremum is taken over all systems D e {D}. We have
0 = V[z, 0] ^ V[z, M'\ ^ V[z, M] ^ V[z, A] ^ 00 whenever M' c M.

If 2 is quasi additive on M, then l[ |3 | , M] ^ F[^, M] and strict ine-

quality may hold.

PROPOSITION 2.1. //* {D} is the family of all nonempty finite
systems of nonoverlapping intervals /€{/}, then
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( i ) V[z, M] Ξ> Σ?=i V[z, Mn] for every sequence {Mn} of non-
overlapping subsets Mn of M,

(ii) if each interval Ie{I} is connected, then

V[z, G] = Σ V[z, Gn]
n = l

whenever {Gn} is a sequence of disjoint open subsets of A such that

G = U»=i Gn.

These two properties of the total variation are well-known (cf.
[1, 9.3]). The connectedness of the intervals is assumed in (ii) to
assure that if I a Gy then IaGn for one and only one value of n.

In the next two results we assume that z is nonnegative (real-
valued). In this case we have ^~ = F.

THEOREM 2.2. If z is nonnegative and quasi additive on M, then
the interval function F is also quasi additive on M, and

( 1 ) F{M') - V[F, M'] = [[F, M'}

for every subset Mf of M.

Proof. In view of (1.3), it suffices to take M' = M. We first
prove the equalities in (1). For any two systems Do = [7] and D = [J]
we have

0 ^ Σ , s(J, M)[l - Σ z s(J, 1)8(1, M)]z{J)

- Σ , 8(J, M)z(J) - Σ , 8(J, M) Σ z 8(J, I)s(I, M)z{J)

= S[z, M, D] - Σ z 8(1, M) Σ , s(J, I)z(J)

= S[z, M, D] - Σ z 8(1, M)S[z, /, D] .

As δ(D) —> 0 we obtain

0 ^ F(M) - Σz 8(1, M)F(I) = F(M) - S[F, M, Do] .

Thus

( 2 ) F(M) ^ V[F, M] ^ S[F, M, Do]

for every system Do. If ε > 0 and if Do and D are as in (1.1), then
we also have 0 ^ S[z, M, D] - Σz s(I, M)S[z, J, D] < ε. As δ(D) -^ 0
we thus obtain

(3 ) 0 ^ F(M) - S[F, M, Do] ^ ε

for all systems Do of sufficiently small mesh. The equalities (1) follow
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from (2) and (3) since ε > 0 was arbitrary.
It remains to show that F is quasi additive on M. Let ε > 0 be

given and let DQ = [I] be a system. If \[z, M] = 0, then the problem

is trivial. We thus assume that Hz, M] > 0 and that d(D0) is small

enough that the set M contains at least one interval IeD0. Let JV
be the number of intervals IeD0 with I c M. By (1) there exists
λ = λ(ε, M, Do) > 0 such that

(4) 0 ^ V[F, I] - S[F, I, D] < s/N

for every system D = [J] with δ(D) < λ and for every interval IeD0

with I c M. Since V[F, I] = F(I) for each of these intervals, we
have

8(J, I)F(J) - F(I)]~ < N(e/N) = e

by (4). This proves that F is quasi subadditive on M. By (1) we

have F(M) = \[F, M] and this B-C integral is finite. Thus F is

quasi additive on M by statement (ii) of (1.2).

PROPOSITION 2.3. If z is nonnegative and quasi additive on M,
then F(M) ^ Σ«=i F(Mn) for every sequence {Mn} of nonoverlapping
subsets Mn of M.

Proof. Let {D'} be the family of all nonempty finite systems of
nonoverlapping intervals Ie{I} and let δ' be the mesh on {D'} defined
by δ'(D') = δ(D') if D'e{D) and d'{D') - 1 if D'e{D'} - {D}. z is
obviously quasi additive on M relative to ({D'}, δ'), and F(M') = lim
S[«, M', D'] as δ'(D')->0 for every set Λί'cM. The proposition is
now a consequence of (2.1) and (2.2) applied to ({D'}, δ').

Examples (see [1, p. 400]) show that strict inequality may hold
in the above proposition even if M is the union of extensively
overlapping sets Mn.

We now return to the case in which z = (zu , zm) is vector-
valued.

PROPOSITION 2.4. Assume that each interval Ie{I} is connected.
Let {Gn} be a sequence of disjoint open subsets of A and let

G — ULi Gw. If z is quasi additive on G and if \[\z\, G] is finite,
j

then ^{G) — ΣΓ=i J^~(Gn) and the series is absolutely convergent.
Analogous statements hold for ^,Fy Fr, Ft, and F~, r = 1, , m.
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Proof. As shown in the proof of the preceding proposition, it is
not restrictive to assume that {D} is the family of all finite systems
of nonoverlapping intervals. The desired equalities thus hold for
F, Fr,Ft, and F~ by (2.1) and (2.2). These equalities extend to

and ^ by virtue of the relations ^ = Ft — F~ and ^ =
• ,*^Λ) Absolute convergence for the latter series holds since

r\ £Fr and

Another proof of (2.4) has been given under slightly different
hypotheses by Cesari [3, p. 118].

THEOREM 2.5. If z is quasi additive on M and if \[\z\, M] is

finite, then the interval function J^ is quasi additive on M and

Jt~{M') = \\^M'\ for every subset Mr of M.

Proof. The interval functions Ft and F~, r = 1, « ,m, are
quasi additive on M by (2.2). The functions ^~r — Ft - F~ are thus
quasi additive on M by (1.2) (iii). Hence ^~ is quasi additive on M
by (1.2) (v). From (1.4) and (2.2) we have

f) = Ft(M') - F-(M') = ^[Ft, Mf] - \[F7, M'] = j [ ^ , M']

and we conclude that ^{M') = \[J^ M'] for every subset M' of M.

THEOREM 2.6. If z is quasi additive on M and if \[\z\, M] is

finite, then

F(M') = l im W o ) _ o Σ z 8(1 M')[Σr Fid)]111

for every subset Mr of M. Here, Do = [I] e {D}.

Proof. By (1.3) it suffices to take Mf = M. Let ε > 0 be given. Let
μ = μ(ε, M) w i t h 0 < μ < : ε , Do = [I] w i t h δ(D0) < μ,X = λ ( ε , M, Do)

with 0 < λ ^ μ, and D = [J] with δ(D) < λ be as in (1.4). Then

\F(M) - Σzs(J, M)\z{J) I - |s r(I) | | < ε ,

Σ i β(I, M) I Σ , s(J, I) I zr(J) I - M I ) || < ε ,

for each r = 1, , m. For each r and l e Do, let

By substitution and Minkowski's inequality we obtain
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F(M)<Σ,Is(I,M)\z(I)\ + ε

= Σ/s(I, M){Σr [ Σ , s(J, I) \zr(J)[ - ar(I)]ψ> + ε

<; Σ/ s(I, M){Σ, [ Σ , s(J, I) \zr(J)I + |o r (J)|]2}1/2 + e

^ Σ , s(I, M){Σr [ΣJ S(J, I) \zr(J) I]2}1'2

<: Σ/ β(7, Λf){Σ, [Σ,β(J, I) \zr{J)I]2}1'2

+ Σ , Σ ί s ( J , M)|α r(7)| + β

< Σ,8(1, Λf){Σ, [Σ,s(J, I) \zr(J)I]2}1'2 + (m + l)ε .

As δ(D) —»• 0 and with the help of (2.2) we obtain

F(M) ίS Σ/ s(/, M)[Σr ^;(/)] ι / 2 + (m + 1)6

for all systems A = [/] with aiD^) < μ(ε, M) ^ ε. As s > 0 was
arbitrary, we have

F{M) rg limJ(Dj).o Σ/ «(/, M)[Σr ^(I)] 1 / 2 , A = [/]

By (2.2) and (1.4), on the other hand, we have

F{M) :> Σ/ s(I, M)F(/) ̂  Σ . 8(7,

for every system Do = [I], This competes the proof.
Note that we have also proved

F(M) = sup Σz s(I, ilf )[Σr

where the supremum is taken over all systems Do = [/].

3* Derivatives* Points of Ek, k ^ 1, will be denoted by
w = (wl9 •••, tt;fe). The interior and frontier of a set E in 2?̂  will be
denoted by E° and E'*, respectively. The term a.e. (almost every-
where) will be used relative to A>dimensional Lebesgue measure Lk

on Ek.
Throughout this section A will denote a nonempty open subset

of Ek and {/} the collection of all nondegenerate closed intervals
I = {w e Ek: a{ ^ w{ ^ b{, i = 1, , k} contained in A. {D} will denote
the family of all non-empty finite systems D — [I] of nonoverlapping
sets Ie{I}. We assume that a mesh δ on {D} is given. The defini-
tions and results of this section may also be used if {/} is replaced
by the collection of all polyhedral regions or simple polyhedral regions
(see [4]) contained in A.

We recall some definitions. A real-valued interval function z is
said to be

( i ) overadditive if z(I) ^ Σi^(Λ) f° r each set Ie{I} and each
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finite subdivision I— \j3Ίd of I into nonoverlapping sets Ij-e{I},
(ii) additive if equality holds in (i),
(iii) BV if the total variation V[z, A] (relative to {D}) is finiter

(iv) AC if (a) z is additive, and (b) for each ε > 0 there exists
7] > 0 such that S[\ z |, A, D] < e for each system D with S[Lky A, D] < η*.
Conditions (a) and (b) in (iv) are independent [1, p. 216].

Given w e A, let Q be generic for a closed fc-cube, Q a A, with
faces parallel to the coordinate hyperplanes of Ek and with weQ°..
The derivative of a real-valued interval function z at the point w is
defined as

(1) D(w,z) = \imz(Q)/Lk(Q)

provided this limit, taken as Lk(Q) —> 0, exists and is finite; otherwise
we set D(w, z) — 0. For the following theorem, see [1, Section 27]
and [5. Section III. 2].

THEOREM 3.1. Suppose z is nonnegative, overadditive, and BV.
Then the limit (1) exists and is finite a.e. in A, D(w, z) is Borel

measurable and L-integrable on A, and V[z, A] ^ \ D(w, z)dw. The
JA

same inequality holds if A is replaced by any open set G c A or by

any set Ie {/}. The equality V[z, A] = \ D(w, z)dw holds if and only
JA

if z is AC and, in this case, the same equality holds if A is replaced
by any G or I as above.

Let z = (zlf , zm) be vector-valued. If z is quasi additive on A and

if \[\z\, A] is finite, then the nonnegative interval functions F, Fr, F?,

and F~,r = l, * ,m, are overadditive and BV by (2.2) and (2.3)..
It is convenient to use the notations

D{%v) = D(w, F) , Dr(w) = D(w, Fr) ,

Dt{w) = D(w, Ft) , D-{w) - D(w, FT) ,

Jr(w) = Dt(w) - D7(w) , J(w) = (J^w), ~,JJw)) .

From (1.4) we obtain \JT\ = \Dj - Dv\ ^ D; + Dv = Dr ^ D a.e. in
A for each r.

In the next two results we assume that z is real-valued.

PROPOSITION 3.2. If z is real-valued and quasi additive on A

and if \[\z\y A] is finite, then D+(w)B~(w) — 0 and \J(w)\ — D(w) a.e*.

in A.
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Proof. Let ML = {w e A: D+(w) > 0} and M2 = {we A: D~(w) > 0}.
For each integer n = 1, 2, , let Mln = {w e A: D+(w) > 1/n} and
M2n = {we A: D~(w) > 1/n}.

Let ε > 0 and n be given. Let μ = μ(εf2n, A) be as in (1.4) and
let Do = [I] satisfy δ(D0) < μ. Let A1 be the union of all IeD0 such
that z+(I) > 0, and let A2 be the union of all IeD0 such that
z~~(I) > 0. Then the sets G1 — A ~ At and G2 = A — A2 are open.
We show first that L^G, Π Mίn) ^ ε and that Lk(G2 Π Λf2n) ^ ε.

Let λ = λ(ε/2w, -A, Do) with 0 < λ ^ /̂  be as in (1.4) and let D = [J]
be any system with δ(D) < λ. Let ZZi be the closure of Gλ in A.
Thus Gx a Hi c A and 2+(/) = 0 for every interval Ie DQ with / c H^
Also, if JeD^JaH,, and Jζz! I for any IeD0 with / c F 1 ( then
./<£ / for any IeD0. Hence,

0 ^ S[«+, Gu D] ^ S[z+, Hu D] = Σ , s(J, HJz+iJ)

+ Σ / s(/, A)[l - Σ z 8(J, I)8(

< εβn + ε/2n = εjn

and, as 3(D)-+0, we obtain 0 ^ F+{G,) <* εjn. From (2.2) and (3.1)
we now have

0 g Lk{Gyf]M,n) ^ w[ D+(w)dw < n

An analogous argument shows that Lk(G2ΠM2n) ^ ε.
Since A c [G.U G2\J {Af Π A2*)J and LΛ(4fnA2*) = 0, we have

Lk(Mln n iif2n) = Lk(Mln n Jif2n n A)

fln n GO] + Lk[Mίn n (M2Λ n G2)]

^ Lk(Mιn n GO + L,(M2% Π G2) < 2ε .

As ε > 0 and n were arbitrary, we conclude that Lk(MlnΓ\M2n) = 0
for each n. From the construction of the sets Mln and M2n we
conclude further that Lk(MLΠM2) = 0. Therefore D+D~ = 0 a.e. in
A and | J | = \D+ — D~ \ = D+ + D~ = D a.e. in A. This completes
the proof.

THEOREM 3.3. Suppose that z is real-valued and quasi additive

On A and that \[\z\, A] is finite. Then
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F(A) ^ ( \J(w)\dw , F+(A) ^ ( D+(w)dw ,
)A JA

F-(A) ^ ( D~(w)dw ,
J

and the same inequalities hold if A is replaced by any open subset G

of A or by any set Ie {I}. The equality F(A) = \ \J(w)\ dw holds if
JA

and only if F is AC. If F is AC, then

F{A) = [ \J(w)\dw , F+(A) = [ D+(w)dw ,

F~{A) = \ D-(w)dw , ^~(A)=\ J(w)dw ,
JA JA

and the same equalities hold if A is replaced by any G or I as above.

Proof. Recalling that F, F+, and F~ are nonnegative and
overadditive and that F = F+ + F~, it is easily verified that F is
AC if and only if F+ and F~ are both AC. The theorem now
follows from (2.2), (3.1), (3.2), and the relation j r = F+ - F~.

We return now to the case in which z = (ziy

 m',zm) is vector-
valued.

PROPOSITION 3.4. Suppose that z is quasi additive on A and

that \[\z\, A] is finite. Then F is AC if and only if the functions

Fr, r = 1, , m, are all AC.

Proof. It is clear that F satisfies condition (b) in the definition
of AC if and only if each Fr also satisfies this condition. It remains
to show that F is additive if and only if each Fr is additive. Let
/ be an interval and I — U 3 Ij be a finite subdivision of I into
nonoverlapping intervals I3. Let

d = F(I) - Σ i F{h) , dr = Fr(I) - Σ ;

For each system D — [J] let

d(D) = ΣJS(J, I)[l - Σ,iS(J, IS)]F{J)

= S[Fr, I, D] - Σy S[Fr, Iit D] .

As d(D)-*0, we have d(D)-*d and dr{D)-*dr by (2.2). From the
inequalities Fr(J) g F(J) ^ ΣrFr(J) we obtain dr(D) ^ d(D) ̂  Σ r
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and, after a passage to the limit, dr <^ d <Ξ Σ A Since Fr is
overadditive and dr ^ 0, we conclude that d = 0 if and only if dr = 0
for each r. This completes the proof.

PROPOSITION 3.5. Suppose that z is quasi additive on A and

that \[\z\, A] is finite. Then D(w) ^ \J(w)\ a.e. in A and equality

holds if F is AC.

The proof is essentially the same as given in parts (a) and (b)
of the proof of [1, 30.1 (ii)]: simply replace the letter V by F and
the references to [1, 9.1] and [1, 12.1] by a reference to (2.6) in the
present paper.

THEOREM 3.6. Suppose that z is quasi additive on A and that

1 [|21, A] is finite. Then F(A) ;> I \J(w)\dw and the same inequalities
J JA

hold if A is replaced by any open subset G of A or by any set Ie {I}.

The equality F(A) = \ \J(w)\dw holds if and only if F is AC and,
JA

in this case, the same equality holds if A is replaced by any set G
or I as above.

This theorem is a consequence of (2.2), (3.1), and (3.5).

4* t>quasi additivity* We assume axioms (a)-(d) of § 1 throughout
this section. In addition, let there be associated with each subset E
of 4 a set ff satisfying the condition

(tL): Eι is contained in the interior of E,
(t2): E* c Gι whenever E c G c A.

DEFINITION 4.1. z is t-quasi additive on M if, under the circum-
stances of Definition (1.1), z satisfies

(tqa,): Σz *(/, M) | Σ./ s(J, P)z(J) - z(I) \ < ε,
(tqa2): Σ , s(J, M)[l - Σz s(J, Γ)s(I, M)] \ «(J) | < e.
An analogous definition of "£-quasi subadditivity" may be for-

mulated if z is real-valued. The statements of § 1 remain valid if
the terms "quasi additive", "quasi subadditive", and "s(J, I ) " are
consistently replaced by "£-quasi additive", "£-quasi subadditive", and
"s(J, /*)", respectively. (We do not modify the definition of the B-C
integral.)

PROPOSITION 4.2. If z is t-quasi additive on M, then z is also
quasi additive on M.
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Proof. For any two systems Do = [I] and D =-[J] we have

Σ (, )[Σ (
I J

+ Σ 8(7, Λf)Σ
I J

Let ε > 0 be given and let η = )?(s/2, Λf) > 0, A = [I] with 5(Z>0) < ̂ ,
λ = λ (ε/2, Λf, A) > 0, and D = [J] with <?(D) < λ be as in the
definition of ί-quasi additivity. Then

(2) Σ *(I, AT) IΣ «(/, ΓM )̂ -
I J

(3) Σ s(J, M )[1 - Σ β(J, I 'M', Λf)] I «(J) | < e/2 .

The last term in (1) is less inclusive than the term in (3) and from
(l)-(3) we obtain

( 2)' Σ 8(1, M) IΣ s(J, I)z(J) - z(I) | < ε/2 + ε/2 - ε .

The term in (3)' below is also less inclusive than the term in (3) and
hence

( 3 )' Σ 8(J, M)[l - Σ s(J, I)8(I9 M)] I z(J) | < ε/2 .
J I

Relations (2)' and (3)' show that z is quasi additive on M.

PROPOSITION 4.3. Assume that each interval l£{I} is connected.

If z is t-quasi additive on M and if \[\z\, M] is finite, then F(Mt) =

F(M).

Proof. Let ε > 0 be given and let μ = μ(e/29 Λf), DQ = [I] with
δ(D0) < μ, λ = λ(e/2, Λf, Do), and D = [J] with δ(D) < λ be as in the
ί-quasi additivity version of Proposition (1.4). Then

\F(M) - S[\z\, M, Do]\ < e/2 ,

\F(M)-S[\z\,M,D]\<e/2,

Σ 8(J, M) | Σ 8(J, P) I z(J) I - \z(I) || < ε/2 .
I J

Let Λf' denote the union of the sets F such that IeD0 and Id Λf.
Then Λf' c Λf * c Λf. Since each Jέ is contained in the interior of I
and since the intervals J are connected, each interval JeD with
J c Λf' is contained in /* for one and only one interval IeD0 with
I c Λf. Hence
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Σ s(J, W) I z(J) I = Σ 8(1, Λf)Σ 8(J, Γ) I z(J) I
J I J

and therefore

\F(M)-Σs{J,M')\z{J)\\
J

+ IΣ s(J, M')I z(J) I - Σ 8(1, M)I z(I)\\
J I

< e/2 + Σ 8(1, M) IΣ s(J, Γ) I z(J) \ - | z(I) ||
/ J

< e/2 + e/2 = ε .

Thus, given ε > 0, there is a set ΛΓ = Λf'(e), Λf' c Λf * c Λf, and a
number λ = λ(ε) > 0 such that

F(M) - ε < S[\z\, M', D] £ S[\z\, M\ D] ^ S[\z\, M, D] < F(M) + ε

for every system D with δ(D) < λ. Thus,

PROPOSITION 4.4. If z is quasi additive on M, \[\z\, M] is

finite, and FiM1) = F(M), then &~(M%) = ̂ "(Λf) α^ώ similarly for
, Fr, Ft, and F~, r = 1, , m.

Proof. We show that ^~(Mι) = ̂ "(Λf); the other parts are
proved in an analogous manner. All limits below are taken as
δ(D)->0,D = [I]. Since

= lim(Σ8(1, M>) \z(I)I + Σ8(1, M)[l - s(I, M')] \z(I)|}

/ 1

and

F(M) = F(M*) = lim Σ s(I, Mι) \z(I) | < oo ,

we conclude that

and therefore

lim Σ 8(1, M)[l - s(I, M^MI) - 0 .

Hence,

- lim {Σ s(I, M*)z(I) + Σ s(I, Λf)[l - s(I, Jlf *)]»(/)}
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THEOREM 4.5. Assume that each interval Ie{I) is connected,

z is quasi additive on M, and \[\z\, M] is finite. Then z is t-quasi

additive on M if and only if F(F) = F(I) for each interval I a M.

Proof. The condition is necessary by (4.3). Assume now that
F(Γ) = F(I) for each interval I a M. We must show that z is
ί-quasi additive on M. Let Do — [I] and D — [J] be any two systems *
Then

Σ*s(I, M)\Σ*s(J, Γ)z(J) - z(I)\
I J

^ ( Σ 8(1, M) I Σ s(J, Γ)z(J) - JF (I) \)
I J

+ (Σ 8(1, M) \jr(i) _ Σ s(J,
/ J

and

Σ s(J, M)[l - Σ 8(J, Γ)s(I, M)] I z(J) I
J I

= Σ s(J, M) I z{J) I - Σ Σ s(J, Γ)s(I, M) I z(J)

^ {I Σ s(J, M) I z(J) I - Σ Σ 8(J, 1)8(1, M) IJ I

+ (I Σ Σ s(/, /)s(/, M) I z(J) I - Σ 8(1, M)F(I) |}
/

{\Σ,8(I, M)F(I) - Σ Σs(/, Γ)8(I, M)\z{J)\\)
1 J I

Let ε > 0 be given and let ηL = η(z, e/3, M) and ^2 = ^( |^ | , ε/3, ikf) be
as in Definition (1.1). Let rj = min [η^ τ/2] and let Do — [I] satisfy
δ(D0)<η. Let λ, = λ(z, ε/3, M, Do) and λ2 = X(\z\, ε/3, M, Do) be as
in Definition (1.1) and let λ = min [λ:, λ2]. Let N be the number of
intervals IeD0 and let ε' = ε/N. For each IeDQ with I c ikf let
μ7 = μ(ε'/3, I) and //J = μ(e'β, Γ) be as in (1.4). Let μ = min
{λ, μl9 μ\\ IeD0, I a M} and let D = [J] satisfy δ(D) < λ. Then

( 4 ) I J^"(Γ) - S[z, Γ, D] \ < ε'/3 for each Ie Do with I a M ,
(5 ) I J^~(/) - S[z, I,D]\< ε'/3 for each Ie Do with / e Λf ,
( 6 ) Σz s(I, M) Σ , s(J, I)z(J) - 2(1) I < ε/3,
( 7 ) Σ , ̂  M)[l - Σz s(Jf /)s(I, M)] 12(J) I < ε/3,
( 8 ) \F(I) - S[\z\, I,D]\< ε'/3 for each Ie Do with I a M,

(9 ) \F(F) - S[\z\, I\ D] I < ε'/3 for each Ie Do with / c f .
Hence,
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0 ^ a, = Σ 8(1, M) IΣ s(J, Γ)z(J) - jr(I) I
I J

= Σ s(I, M) IΣ s(J, Γ)z(J) - jr(Γ) I
J J

< N(ε'/Z) = e/3 by (4.4) and (4),

0 ύ s2 = Σ β(I, M) I^-(J) - Σ 8(J, I)z(J) I

< N(e'β) = e/3 by (5) ,

0 £ s3 = Σ s(I, M) IΣ β(J, I)z(J) - z(I) I < e/3 by (6) ,
I J

0 ^ st = IΣ β(J, M) I z(J) I - Σ Σ s(J, 1)8(1, M) I 2(J) II
J J I

^ Σs(/, M)[l - Σβ(J, /)s(7, M) \z(J)I < e/3 by (7) ,
J I

, 1)8(1, M)I z(J) I - Σ8(1, M)F(I)I
I

<ΊL*(I,M)\?i8(J,I)\z(J)\-F(I)\
I J

< N(ε'β) = e/3 by (8) ,

0 ^ s6 = I Σ 8(7, M)F(I) - Σ Σ s(/, /')«(/, iW) I z(J) ||

^ Σ β(Z, M) I F(I) - Σ s(/, Z ) I z(J) ||

= Σ 8(1, M) I F(P) - Σ 8(J, Z') I z(J) 11
/ J

< iV(ε'/3) - e/3 by (9) .

Thus sx + s2 + s3 < ε, s4 + s5 + s6 < ε, and we conclude that z is
ί-quasi additive on M.

We remark that the connectedness of the intervals JΓG{/} is not
used in the sufficiency part of the above proof.

5* Remarks. Definition (1.1) was used under axioms (a)-(d) by
Cesari [2] for the case M = A. In [3] Cesari extended the notions
of B-C integral and quasi additivity to a class {G} of nonempty
subsets of A as follows. For each G in {(?} let {D}G be the family
of all systems DG = {Ie D: I c G} obtained as D ranges over the
family {D}, and let 3G be a mesh satisfying axiom (d) relative to {D}G.
In addition, assume the axiom

(e): given τ > 0, there exists v = v(τ, G) > 0 such that if D is
any system in {D} with δ(D) < v, then the associated system
DG = {Ie D: I a G} is nonempty and δG(DG) < r.
Cesari then defined B-C integrals over G and quasi additivity on G
relative to the directed system ({D}G, δG); axiom (e) was used to
obtain properties of the B-C integrals as set functions.

To see that Cesari's formulation is contained in that of the
present paper we observe the following two statements.
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( i ) lim δίD)^0 S[z, G, D] = lim iQ{DQ)^ S[z, G, DG] whenever axiom

(e) holds and the limit on the right exists.
(ii) If z is quasi additive [subadditive] on G relative to ({D}G, δG)

and if axiom (e) holds, then z is quasi additive [subadditive] on G
relative to ({J9}, δ).
Statement (i) was proved by Cesari [3, p. 117], and (ii) may be
proved in an analogous manner. Since simple examples show that if

\[\z\, G] — 0 there may no mesh δG satisfying axiom (e), some improve-
ment is gained by formulating all quasi additivity relations relative
to the single directed system ({D}, δ) as in the present paper. The
theorems proved by Cesari [3] carry over to the present setting,
moreover, with only the obvious changes in the mesh conditions
required. For the sake of completeness, we shall next restate the
most important of these theorems.

Let ^ denote the topology on A, 5f be a topology on A coarser
than ^ 7 and & be the σ-algebra on A generated by 2 .̂ In addition
to the axioms (a)-(d) of § 1, assume the following four additional
hypotheses.

(Hi): z is quasi additive on A and \[\z\, A] is finite.

(H2): Each interval Ie{/} is ^^connected.
(iJ3): If G = UnGn is a countable union of sets Gne&Ί then

F(G) S ΣnF(Gn), and analogously for Fr, Fj, and Fϊ, r = 1, , m.
(H4): If G e ^ , then F(G) = sup F(G') where the supremum is

taken over all sets G'eg 7 whose ^"-closure is contained in G, and
analogously for Fr, F+, and F~, r = 1, , m.
Neither (Hs) nor (H4) is a consequence of the axioms or preceding
hypotheses. Finally, for each subset M of A, define

μ(M) = inf F(G) , μr(M) - inf Fr(G) ,

μΐ(M) - inf Fϊ(G) , μτ{M) - inf F7(G) ,

vr{M) = μi(M) - μ~{M) , v{M) = (^(M), , vm{M)) ,

where the infima are taken over all sets G e g^ with I c G .
With the help of (fli) and Theorem (1.4), we see that

μr(M) - μt(M) + μ~(M) ,

M),

< μ(M) ^ Σ μr(M),

for each r and M Moreover, the set functions μ, μr, μ+, μ~, vr, and
v agree on & with the set functions F, Fr, Ft, F~, ^ , and
respectively.
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PROPOSITION 5.1. Under hypotheses (flΊ)-(Ji3i), the set functions
μ, μry μ+, and μ~, r = 1, , m, are outer measures on A and are
finite measures on £%?.

It follows that the set functions vr are signed measures on &
which are absolutely continuous with respect to the measure μ.
Thus we may define the Radon-Nikodym derivatives

θr = dvr/dμ , θ = (θl9 *>,θm) .

As Cesari observed, the relations vr = μi — μ~ need not represent
Jordan decompositions of the signed measures vr. This situation is
rectified by replacing (H^ by the slightly stronger hypothesis

CHΊ)': z is ί-quasi additive on A and \[\z\, A] is finite, where t

denotes the interior operator for the topology 5 .̂
By (4.5), {Hy and (H2) are equivalent to (.Hi), (H2), and the statement
that F(I) = F(P) for every interval I.

PROPOSITION 5.2. Assume {Hy and (H2)-(H4). Then
( i ) vr — μΐ — μ~ represent Jordan decompositions,
(ii) μ(B) = sup Σ i [Σr Λr(^i)]1/2 = sup Σ;M#;)I> where B is an

arbitrary set in & and the suprema are taken over all finite
decompositions B = U 3Bj of B into sets B3 in &,

(iii) \θ\ — 1 μ — a.e. in A.

We turn now to Cesari?s theorem on the existence and representa-
tion of Cesari-Weierstrass integrals. Let T: A—> K, x = T{w), be a
mapping from A into a metric space K, and let f: KxEm—+El9

a = f(χ, q), be a real-valued function defined on the product space
KxEm. Let S™"1 = {qeEm: \q\ = 1} be the unit sphere in En.
Finally, let wI denote an arbitrary point of /for each interval I e {/}.

THEOREM 5.3. Suppose
( i ) max {diameter T(I): IeD} ^ δ(D) for each De{D},
(ii) f is bounded and uniformly continuous on KxSm~ι

y

(iii) f(x, tq) = tf(x, q) for all t ^ 0, x e K, and qe Em.
Then, under hypothesis (ί/Ί), the real-valued interval function

is quasi additive on A, the parameters of Definition (1.1) can be
determined independently of the choice of wΣ e I, and the value of the
B — C integral

j[/(Γ, z), A] = \[Z, A)
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is independent of the choice of wΣ e I. Further, under the hypotheses
{Hy and {H2)-{H,), the function f[T(w),θ(w)], w e A, is μ-integrable
on A and

\[f(T,z),A] = \Af[T(w),θ(w)]dμ.

The proof, given in [2, 3] for K a subset of some Euclidean space,
is valid if K is simply a metric space.
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