WHITTAKER CONSTANTS FOR ENTIRE FUNCTIONS of SEVERAL COMPLEX VARIABLES

John K. Shaw

Let f be an entire function of a single complex variable. The exponential type of f is given by

$$
\tau(f)=\limsup _{n \rightarrow \infty}\left|f^{(n)}(0)\right|^{1 / n}
$$

The Whittaker constant W is defined to be the supremum of numbers c having the following property: if $\tau(f)<c$ and each of $f, f^{\prime}, f^{\prime \prime}, \cdots$ has a zero in the disc $|z| \leqq 1$, then $f \equiv 0$. The Whittaker constant is known to lie between .7259 and .7378 .

The present paper provides a definition and characterization of the Whittaker constant \mathscr{W}_{n} for n complex variables. The principle result of this characterization, which involves polynomial expansions of entire functions, is

$$
W>\mathscr{W}_{2} \geqq \mathscr{W}_{3} \geqq \cdots .
$$

To simplify notation, the presentation here is given for functions of two variables.

An exact determination of W was obtained by M. A. Evgrafov in 1954 [3]. The determination involves the Gončarov polynomials, defined recursively by

$$
\begin{gather*}
G_{0}(z)=1, \\
G_{n}\left(z ; z_{0}, z_{1}, \ldots, z_{n-1}\right)=\frac{z^{n}}{n!}-\sum_{k=0}^{n-1} \frac{z_{k}^{n-k}}{(n-k)!} G_{k}\left(z ; z_{0}, z_{1}, \ldots, z_{k-1}\right) . \tag{1.1}
\end{gather*}
$$

Let

$$
H_{n}=\max \left|G_{n}\left(0 ; z_{0}, \cdots, z_{n-1}\right)\right|,
$$

where the maximum is taken over all sequences $\left\{z_{k}\right\}_{\}=0}^{n=1}$ whose terms lie on $|z|=1$. Evgrafov proved that

$$
W=\left\{\lim _{n \rightarrow \infty} \sup H_{n}^{1 / n}\right\}^{-1} .
$$

An improvement of this result and further characterizations of W were furnished by J. D. Buckholtz [1]. Using properties of the Gončarov polynomials, Buckholtz proved that

$$
\begin{equation*}
(.4)^{1 / n} H_{n}^{-1 / n}<W \leqq H_{n}^{-1 / n} \tag{1.2}
\end{equation*}
$$

for $n=1,2,3, \ldots$. A consequence of these bounds is

$$
\begin{equation*}
W=\left\{\lim _{n \rightarrow \infty} H_{n}^{1 / n}\right\}^{-1}=\left\{\sup _{1 \leq n<\infty} H_{n}^{1 / n}\right\}^{-1} \tag{1.3}
\end{equation*}
$$

For an entire function f (of two complex variables) the exponential type $\tau(f)$ is given by

$$
\tau(f)=\limsup _{m+n \rightarrow \infty}\left|f^{(m, n)}(0,0)\right|^{1 /(m+n)}
$$

We define the Whittaker constant \mathscr{W} to be the supremum of positive numbers c having the following property: if $\tau(f)<c$ and each of $f^{(m, n)}(0 \leqq m<\infty, 0 \leqq n<\infty)$ has a zero in the poly disc $\left\{\left(z_{1}, z_{2}\right)\right.$: $\left.\left|z_{1}\right| \leqq 1,\left|z_{2}\right| \leqq 1\right\}$, then $f \equiv 0$. The bound $\mathscr{H} \geqq(\log 2) / 2$ was obtained by M. M. Dzrbasjan in 1957 [2].

The estimate furnished by Džrbašjan depends on a system of polynomials defined as follows. Let $\alpha=\left(\alpha_{p q}\right)$ and $\beta=\left(\beta_{p q}\right)$ be infinite matrices of complex numbers. The polynomials $A_{m, n}\left(z_{1}, z_{2} ; \alpha, \beta\right)$ are defined by the recursion formula

$$
A_{0,0}\left(z_{1}, z_{2}\right)=1,
$$

$$
\begin{equation*}
A_{r, s}\left(z_{1}, z_{2} ; \alpha, \beta\right)=\frac{z_{1}^{r} z_{2}^{s}}{r!s!}-\sum_{\substack{p=0 \\ p+q<r+s}}^{r} \sum_{\substack{s}}^{s} \frac{A_{p, q}\left(z_{1}, z_{2} ; \alpha, \beta\right) \alpha_{p q}^{r-p} \beta_{p q}^{s-q}}{(r-p)!(s-q)!} \tag{1.4}
\end{equation*}
$$

for $r, s=0,1,2, \cdots$. Note that $A_{r, s}$ depends only on those parameters $\alpha_{p q}$ and $\beta_{p q}$ for which $p+q<r+s$. Let

$$
H_{r, s}=\max \left|A_{r, s}(0,0 ; \alpha, \beta)\right|
$$

where the maximum is taken over all matrices α and β whose entries lie on $|z|=1$. We show that bound $H_{r s} \leqq(2 / \log 2)^{r+s}$ holds for all r and s. The justifies the definition

$$
H=\sup _{1 \leqq r, s<\infty} H_{r, s}^{1 /(r+s)}
$$

We prove the following expansion theorem.
Theorem 1. Suppose f is entire and $\tau(f)<1 / H$. If α and β are infinite complex matrices whose entries lie in $|z| \leqq 1$, then

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f^{(m, n)}\left(\alpha_{m n}, \beta_{m n}\right) A_{m, n}\left(z_{1}, z_{2} ; \alpha, \beta\right) \tag{1.5}
\end{equation*}
$$

for all $\left(z_{1}, z_{2}\right)$.
The following result shows that the expansion constant $1 / H$ is as large as possible.

Theorem 2. There exists an entire function F, with $\tau(F)=$
$1 / H$, such that each of $F^{(m, n)}(0 \leqq m<\infty, 0 \leqq n<\infty)$ has a zero in the polydisc $\left\{\left|z_{1}\right| \leqq 1,\left|z_{2}\right| \leqq 1\right\}$.

Theorem 1 and Theorem 2 will be proved in §3. We note, however, that the following result is an easy consequence of Theorems 1 and 2.

Corollary 1. $\mathscr{W}=1 / H$.

Therefore, each of the numbers $H_{m, n}^{-1 /(m+n)}$ is an upper bound for \mathscr{W}. In particular, $\mathscr{W} \leqq 1 / \sqrt{H_{1,1}}=1 / \sqrt{3}$. In comparing this with the bound $W>.7259$, one sees that $\mathscr{W}<W$.
2. The Polynomials $A_{m, n}$. Let f be an entire function and let α and β be infinite complex matrices. Writing (1.4) in the form

$$
\frac{z_{1}^{r} z_{2}^{s}}{r!s!}=\sum_{p=0}^{r} \sum_{q=0}^{s} \frac{A_{p, q}\left(z_{1}, z_{2} ; \alpha, \beta\right) \alpha_{p q}^{r-p} \beta_{p q}^{s-q}}{(r-p)!(s-q)!}
$$

we obtain the formal expansion

$$
\begin{align*}
& f\left(z_{1}, z_{2}\right)=\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} f^{(r, s)}(0,0) \frac{z_{1}^{r} z_{2}^{s}}{r!s!} \\
= & \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} f^{(r, s)}(0,0)\left\{\sum_{p=0}^{r} \sum_{q=0}^{s} \frac{A_{p, q}\left(z_{1}, z_{2} ; \alpha, \beta\right) \alpha_{p q}^{r-p} \beta_{p q}^{s-q}}{(r-p)!(s-q)!}\right\} \\
= & \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} A_{p, q}\left(z_{1}, z_{2} ; \alpha, \beta\right)\left\{\sum_{r=p}^{\infty} \sum_{s=q}^{\infty} f^{(r, s)}(0,0) \frac{\alpha_{p q}^{r-p} \beta_{p q}^{s-q}}{(r-p)!(s-q)!}\right\} \tag{2.1}\\
= & \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} f^{(p, q)}\left(\alpha_{p q}, \beta_{p q}\right) A_{p, q}\left(z_{1}, z_{2} ; \alpha, \beta\right),
\end{align*}
$$

which holds whenever the interchange in the order of summation can be justified. In particular, (2.1) holds if f is a polynomial and yields considerable information when f is taken to be one of the polynomials $A_{m, n}$.

Lemma 1. If λ is a complex number, then

$$
\begin{equation*}
A_{m, n}\left(\lambda z_{1}, \lambda z_{2} ; \lambda \alpha, \lambda \beta\right)=\lambda^{m+n} A_{m, n}\left(z_{1}, z_{2} ; \alpha, \beta\right), \tag{2.2}
\end{equation*}
$$

where $\lambda \alpha$ denotes matrix scalar multiplication. Furthermore,

$$
\begin{equation*}
A_{m, n}\left(\alpha_{00}, \beta_{00} ; \alpha, \beta\right)=0 \quad(m+n>0) \tag{2.3}
\end{equation*}
$$

Proof. We will prove (2.2) using mathematical induction. The proof of (2.3) is similar. If $m+n=0$, the result is clear. Suppose
N is a positive integer and (2.2) holds for the polynomials $A_{p, q}$ with $p+q<N$. If r and s are nonnegative integers such that $r+s=N$, then

$$
\begin{aligned}
& A_{r, s}\left(\lambda z_{1}, \lambda z_{2} ; \lambda \alpha, \lambda \beta\right) \\
= & \lambda^{r+s} \frac{z_{1}^{r} z_{2}^{s}}{r!s!}-\sum_{\substack{p=0 \\
p+q<r+=0}}^{r} \frac{A_{p, q}^{s}\left(\lambda z_{1}, \lambda z_{2} ; \lambda \alpha, \lambda \beta\right)\left(\lambda \alpha_{p q}\right) r-p\left(\lambda \beta_{p q}\right)^{s-q}}{(r-p)!(s-q)!} \\
= & \lambda^{r+s} \frac{z_{1}^{r} z_{2}^{s}}{r!s!}-\lambda^{r+s} \sum_{\substack{p=0 \\
p+q<r=s \\
r}}^{s} \frac{A_{p q}\left(z_{1}, z_{2} ; \alpha, \beta\right) \alpha_{p q}^{r-p} \beta_{p q}^{s-q}}{(r-p)!(s-q)!} \\
= & \lambda^{r+s} A_{r s}\left(z_{1}, z_{2} ; \alpha, \beta\right)
\end{aligned}
$$

and this completes the proof.
Let $\alpha=\left(\alpha_{p q}\right)_{p, q=0}^{\infty}$ be an infinite complex matrix. If j and k are nonnegative integers, we denote by $R_{j k}$ the operator which transforms α into

$$
R_{j k}(\alpha)=\left(\alpha_{p+j q+k}\right)_{p, q=0}^{\infty}
$$

Lemma 2. If $m+n>0, j \leqq m$ and $k \leqq n$, then

$$
\begin{equation*}
A_{m, n}^{(j, k)}\left(z_{1}, z_{2} ; \alpha, \beta\right)=A_{m-j n-k}\left(z_{1}, z_{2} ; R_{j k}(\alpha), R_{j k}(\beta)\right) \tag{2.4}
\end{equation*}
$$

Proof. By direct computation, $A_{10}\left(z_{1}, z_{2} ; \alpha, \beta\right)=z_{1}-\alpha_{00}$ and

$$
A_{01}\left(z_{1}, z_{2} ; \alpha, \beta\right)=z_{2}-\beta_{00},
$$

so the result is clear if $m+n=1$. Proceeding inductively, let N be a positive integer and suppose the proposition is true for the polynomials $A_{p q}$ with $p+q<N$. If r and s are nonnegative integers such that $r+s=N$, then for $j \leqq r$ and $k \leqq s$ we have

$$
\begin{aligned}
& A_{r, s}^{(j, k)}\left(z_{1}, z_{2} ; \alpha, \beta\right) \\
& =\frac{z_{1}^{r-j} z_{2}^{s-k}}{(r-j)!(s-k)!}-\sum_{\substack{p=0 \\
p=q<r+s}}^{r} \sum_{q=0}^{s} \frac{A_{p, q}^{(j, k)}\left(z_{1}, z_{2} ; \alpha, \beta\right) \alpha_{p q}^{r-p} \beta_{p q}^{s-q}}{(r-p)!(s-q)!} \\
& =\frac{z_{1}^{r-j} z_{2}^{s-k}}{(r-j)!(s-k)!}-\sum_{\substack{p=j \\
p+q<r+s}}^{r} \sum_{q=k}^{s} \frac{A_{p-j q-k}\left(z_{1}, z_{2} ; R_{j k}(\alpha), R_{j k}(\beta)\right) \alpha_{p q}^{r-p} \beta_{p q}^{s-q}}{(r-p)!(s-q)!} \\
& =\frac{z_{1}^{r-j} z_{2}^{s-k}}{(r-j)!(s-k)!}-\sum_{\substack{p=0 \\
p+q<r-j+s-1 \\
r-j}}^{s-k} \frac{A_{p q}\left(z_{1}, z_{2} ; R_{j k}(\alpha), R_{j k}(\beta)\right) \alpha_{p+j, q+k}^{r-j-p} \beta_{p+j, q+k}^{s-k-q}}{(r-j-p)!(s-k-q)!} \\
& =A_{r-j, s-k}\left(z_{1}, z_{2} ; R_{j_{k}}(\alpha), R_{j_{k}}(\beta)\right),
\end{aligned}
$$

and this completes the proof.
Lemma 2 and the expansion (2.1) provide a useful expression for the polynomials $A_{m, n}$. Replacing α and β by γ and δ, respectively,
and applying (2.1) to the polynomial $A_{r s}\left(z_{1}, z_{2} ; \alpha, \beta\right)$, we have

$$
\begin{align*}
& A_{r, s}\left(z_{1}, z_{2} ; \alpha, \beta\right) \\
= & \sum_{p=0}^{r} \sum_{q=0}^{s} A_{r, s}^{(p, q)}\left(\gamma_{p q}, \delta_{p q} ; \alpha, \beta\right) A_{p q}\left(z_{1}, z_{2} ; \gamma, \delta\right) \tag{2.5}\\
= & \sum_{p=0}^{r} \sum_{q=0}^{s} A_{p, q}\left(z_{1}, z_{2} ; \gamma, \delta\right) A_{r-p, s-q}\left(\gamma_{p q}, \delta_{p q} ; R_{p q}(\alpha), R_{p q}(\beta)\right) .
\end{align*}
$$

If each of γ and δ is the zero matrix, it is easy to see that

$$
A_{p, q}\left(z_{1}, z_{2} ; \gamma, \delta\right)=\frac{z_{1}^{p} z_{2}^{q}}{p!q!}
$$

In this case (2.5) yields

$$
\begin{equation*}
A_{r, s}\left(z_{1}, z_{2} ; \alpha, \beta\right)=\sum_{p=0}^{r} \sum_{q=0}^{s} A_{r-p s-q}\left(0,0 ; R_{p q}(\alpha), R_{p q}(\beta)\right) \frac{z_{1}^{p} z_{2}^{q}}{p!q!} \tag{2.6}
\end{equation*}
$$

Let m and n be integers such that $0 \leqq m \leqq r, 0 \leqq n \leqq s$, and $m+n>0$. In (2.5) choose

$$
\gamma_{p q}=\left\{\begin{array}{l}
0, \text { if } p \geqq m \text { and } q \geqq n \\
\alpha_{p q}, \text { otherwise }
\end{array}\right.
$$

and

$$
\delta_{p q}=\left\{\begin{array}{l}
0, \text { if } p \geqq m \text { and } q \geqq n \\
\beta_{p q}, \text { otherwise } .
\end{array}\right.
$$

In view of (2.3) we have

$$
\begin{align*}
& A_{r, s}\left(z_{1}, z_{2} ; \alpha, \beta\right) \\
= & \sum_{p=m}^{r} \sum_{q=n}^{s} A_{p}\left(z_{1}, z_{2} ; \gamma, \delta\right) A_{r-p s-q}\left(0,0 ; R_{p_{q}}(\alpha), R_{p q}(\beta)\right) . \tag{2.7}
\end{align*}
$$

More generally, we define the operator $P_{j k}$ as follows. If $j+k>0$, then $P_{j k}(\alpha)$ is the matrix ($a_{p q}$), where

$$
a_{p q}=\left\{\begin{array}{l}
0, \text { if } p \geqq j \text { and } q \geqq k \\
\alpha_{p q}, \text { otherwise } .
\end{array}\right.
$$

Then (2.7) becomes

$$
\begin{align*}
& A_{r, s}\left(z_{1}, z_{2} ; \alpha, \beta\right) \\
= & \sum_{p=m}^{r} \sum_{q=n}^{s} A_{p, q}\left(z_{1}, z_{2} ; P_{m n}(\alpha), P_{m n}(\beta)\right) A_{r-p s-q}\left(0,0 ; R_{p q}(\alpha), R_{p q}(\beta)\right) . \tag{2.8}
\end{align*}
$$

Equation (2.8) may be regarded as a separation of variables formula, in the following sense. If $p \geqq m$ and $q \geqq n$, then $R_{p q}(\alpha)$ depends on the parameters $\alpha_{j k}$, where $j \geqq m$ and $k \geqq m$, and $P_{m n}(\alpha)$ depends
on the parameters $\alpha_{j k}$, where $j<m$ or $k<n$. The usefulness of (2.8) is seen in the next lemma.

Lemma 3. If $0 \leqq m \leqq r$ and $0 \leqq n \leqq s$, then

$$
\begin{equation*}
H_{r, s} \geqq H_{m, n} H_{r-m, s-n} \tag{2.9}
\end{equation*}
$$

Proof. If $m+n=0$, the result is trivial. Suppose $m+n>0$ and choose matrices α and β, whose entries lie on $|z|=1$, such that

$$
H_{m, n}=\left|A_{m, n}\left(0,0 ; P_{m n}(\alpha), P_{m n}(\beta)\right)\right|
$$

and

$$
H_{r-m, s-n}=\mid A_{r-m, s-n}\left(0,0 ; R_{m n}(\alpha), R_{m n}(\beta)\right)
$$

For each complex number λ, define the matrices $\gamma=\gamma(\lambda)$ and $\delta=\delta(\lambda)$ by

$$
\gamma_{p q}=\left\{\begin{array}{l}
\alpha_{p q}, \text { if } p \geqq m \text { and } q \geqq n \\
\lambda \alpha_{p q}, \text { otherwise }
\end{array}\right.
$$

and

$$
\delta_{p q}=\left\{\begin{array}{l}
\beta_{p q}, \text { if } p \geqq m \text { and } q \geqq n \\
\lambda \beta_{p q}, \text { otherwise } .
\end{array}\right.
$$

By (2.8) and (2.2),

$$
\begin{aligned}
& A_{r, s}(0,0 ; \gamma, \delta) \\
= & \sum_{p=m}^{r} \sum_{q=n}^{s} A_{p, q}\left(0,0 ; P_{m n}(\gamma), P_{m n}(\delta)\right) A_{r-p, s-q}\left(0,0 ; R_{p q}(\gamma), R_{p q}(\delta)\right) \\
= & \sum_{p=m}^{r} \sum_{q=n}^{s} \lambda^{p+q} A_{p, q}\left(0,0 ; P_{m n}(\alpha), P_{m n}(\beta)\right) A_{r-p, s-q}\left(0,0 ; R_{p q}(\alpha), R_{p q}(\beta)\right) \\
= & \lambda^{m+n} Q(\lambda)
\end{aligned}
$$

where $Q(\lambda)$ is a polynomial in λ. Since

$$
H_{r, s} \geqq \max _{|\lambda|=1}\left|A_{r, s}(0,0 ; \gamma, \delta)\right|=\max _{|\lambda|=1}|Q(\lambda)| \geqq|Q(0)|
$$

and

$$
\begin{aligned}
|Q(0)| & =\left|A_{m, n}\left(0,0 ; P_{m n}(\alpha), P_{m n}(\beta)\right)\right|\left|A_{r-m, s-n}\left(0,0 ; R_{m n}(\alpha), R_{m n}(\beta)\right)\right| \\
& =H_{m, n} H_{r-m, s-n},
\end{aligned}
$$

we have

$$
H_{r, s} \geqq H_{m, n} H_{r-m, s-n}
$$

Lemma 4. There is an infinite subsequence $S=\left\{\left(m_{j}, n_{j}\right): j=\right.$ $1,2,3, \cdots\}$ such that

$$
\begin{equation*}
H=\lim _{j \rightarrow \infty} H_{m_{j}, n_{j}}^{1 /\left(m_{j}+n_{j}\right)} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{m_{j}, n_{j}^{\prime}}^{1 /\left(m_{j}+n_{j}\right)} \geqq H_{p, q}^{1 /(p+q)} \tag{ii}
\end{equation*}
$$

for all p and q such that $p+q \leqq m_{j}+n_{j}$.
Proof. If there is a pair (r, s) such that $H_{r, s}^{1 /(r+s)}=H$, then (2.9) implies

$$
H \geqq H_{j r, j s}^{1 / j(r+s)} \geqq\left(H_{r, s}^{j}\right)^{1 / j(r+s)}=H_{r, s}^{1 /(r+s)}=H
$$

for $j=1,2,3, \cdots$. In this case we take $S=\{(j r, j s): j=1,2,3, \cdots\}$.
Suppose, on the other hand, that $H>H_{r, s}^{1 / r+s)}$ for all r and s. For each positive integer k, let

$$
T_{k}=\max _{p+q=k} H_{p, q}^{1 /(p+q)}
$$

Then $T_{k}<H(1 \leqq k<\infty)$ and $\sup _{1 \leqq k<\infty} T_{k}=H$. We can therefore find a subsequence $\left\{T_{k_{j}}\right\}_{\jmath=1}^{\infty}$ with the properties that

$$
\lim _{j \rightarrow \infty} T_{k_{j}}=H
$$

and

$$
T_{k_{j}}>T_{n}
$$

for $n<k_{j}$. For each j, choose integers m_{j} and n_{j} such that $m_{j}+n_{j}=k_{j}$ and $T_{k_{j}}=H_{m_{j}, n_{j}^{j+}}^{1 /\left(m_{j}+n_{j}\right)}$, and let $S=\left\{\left(m_{j}, n_{j}\right): j=1,2,3, \cdots\right\}$. This completes the proof of the lemma.

COROLLARY 2. $H=\limsup _{m+n \rightarrow \infty} H_{m, n}^{1 /(m+n)}$.

Lemma 5. For each pair of nonnegative integers (m, n) we have

$$
\begin{equation*}
H_{m, n} \leqq(2 / \log 2)^{m+n} \tag{2.10}
\end{equation*}
$$

Proof. The result is trivial if $m+n=0$. Let N be a positive integer and suppose (2.10) holds whenever $m+n<N$. Let r and s be nonnegative integers such that $r+s=N$. The defining relations (1.4) imply

$$
\begin{aligned}
H_{r, s} & \leqq \sum_{\substack{p=0 \\
p \neq q<r=0}}^{r} \sum_{\substack{s}} \frac{H_{p q}}{(r-p)!(s-q)!}=\sum_{\substack{j=0 \\
j+k>0}}^{r} \sum_{k=0}^{s} \frac{H_{r-j . s-k}}{j!k!} \\
& \leqq \sum_{\substack{j=0 \\
j+k>0}}^{r} \sum_{k=0}^{s} \frac{(2 / \log 2)^{r-j+s-k}}{j!k!} \\
& =(2 / \log 2)^{r+s}\left\{\sum_{j=0}^{r} \sum_{k=0}^{s} \frac{((\log 2) / 2)^{j+k}}{j!k!}-1\right\} \\
& <(2 / \log 2)^{r+s}\left\{\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{((\log 2) / 2)^{j+k}}{j!k!}-1\right\} \\
& =(2 / \log 2)^{r+s}\left\{e^{(2 \log 2) / 2}-1\right\}=(2 / \log 2)^{r+s} .
\end{aligned}
$$

Corollary 3. $H \leqq(2 / \log 2)$.
Note that this result, together with Corollary 1, implies Džrbašjan's estimate $\mathscr{W} \geqq(\log 2) / 2$.
3. Main Results. Let

$$
M\left(z_{1}, z_{2}\right)=\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \frac{1}{H_{p, q}} \frac{z_{1}^{p} z_{2}^{q}}{p!q!} .
$$

Note that $M\left(z_{1}, z_{2}\right)$ is an entire function of exponential type 1 or less. Suppose α and β have entries lying in $|z| \leqq 1$. By (2.6),

$$
A_{r, s}\left(z_{1}, z_{2} ; \alpha, \beta\right)=\sum_{p=0}^{r} \sum_{q=0}^{s} A_{r-p, s-q}\left(0,0 ; R_{p q}(\alpha), R_{p q}(\beta)\right) \frac{z_{1}^{p} z_{2}^{q}}{p!q!} .
$$

Since

$$
\left|A_{r-p, s-q}\left(0,0 ; R_{p q}(\alpha), R_{p q}(\beta)\right)\right| \leqq H_{r-p, s-q} \leqq H_{r, s} / H_{p, q}
$$

it follows that the coefficients of $A_{r s}$ are bounded by the respective coefficients of $H_{r, s} M\left(z_{1}, z_{2}\right)$; i.e., $A_{r s}$ is majorized by $H_{r, s} M\left(z_{1}, z_{2}\right)$. In particular,

$$
\begin{equation*}
\left|A_{r, s}\left(z_{1}, z_{2} ; \alpha, \beta\right)\right| \leqq H_{r, s} M\left(\left|z_{1}\right|,\left|z_{2}\right|\right) \tag{3.1}
\end{equation*}
$$

We are now ready to prove Theorem 1.
Suppose f is an entire function, with $\tau(f)<1 / H$, and suppose α and β are matrices whose entries lie in $|z| \leqq 1$. In order to justify the expansion (2.1) we show that the series

$$
\begin{equation*}
\sum_{r=0}^{\infty} \sum_{s=0}^{\infty}\left|f^{(r, s)}(0,0)\right| \sum_{p=0}^{r} \sum_{q=0}^{s} \frac{\left|A_{p . q}\left(z_{1}, z_{2} ; \alpha, \beta\right)\right|}{(r-p)!(s-q)!} \tag{3.2}
\end{equation*}
$$

is convergent. Equation (3.1) implies

$$
\left|A_{p, q}\left(z_{1}, z_{2} ; \alpha, \beta\right)\right| \leqq H_{p}{ }_{q} M\left(\left|z_{1}\right|,\left|z_{2}\right|\right) \leqq H_{r s} M\left(\left|z_{1}\right|,\left|z_{2}\right|\right) / H_{r-p s-q} ;
$$

therefore

$$
\begin{aligned}
& \sum_{p=0}^{r} \sum_{q=0}^{s} \frac{\left|A_{p_{q}}\left(z_{1}, z_{2} ; \alpha, \beta\right)\right|}{(r-p)!(s-q)!} \\
\leqq & H_{r} M\left(\left|z_{1}\right|,\left|z_{2}\right|\right) \sum_{p=0}^{r} \sum_{q=0}^{s} \frac{1}{H_{r-p} \frac{1}{s-q}(r-p)!(s-q)!} \\
< & H_{r} M\left(\left|z_{1}\right|,\left|z_{2}\right|\right) M(1,1) .
\end{aligned}
$$

The series (3.2) is therefore convergent provided that

$$
\begin{equation*}
\sum_{r=0}^{\infty} \sum_{s=0}^{\infty}\left|f^{(r, s)}(0,0)\right| H_{r s} \tag{3.3}
\end{equation*}
$$

converges. Choose $\varepsilon>0$ such that $\tau(f)+\varepsilon<1 / H$ and let N be a positive integer such that $r+s \geqq N$ implies

$$
\left|f^{(r, s)}(0,0)\right|^{1 /(r+s)}<\tau(f)+\varepsilon .
$$

Then

$$
\sum_{r+s \leqq N}\left|f^{(r, s)}(0,0)\right| H_{r, s} \leqq \sum_{r+s \geqq N} \sum_{s}[H(\tau(f)+\varepsilon)]^{r+s}
$$

Let $\rho=H(\tau(f)+\varepsilon)$ and $K=\sum \sum_{r+s<N}\left|f^{(r, s)}(0,0)\right| H_{r, s}$. Then (3.3) is less than

$$
K+\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \rho^{r+s}=K+\frac{1}{(1-\rho)^{2}}
$$

and the convergence of (3.2) follows.
Proof of Theorem 2. Let $S=\left\{\left(m_{j}, n_{j}\right): j=1,2,3, \cdots\right\}$ be an infinite sequence such that

$$
H=\lim _{j \rightarrow \infty} H_{m_{j}, n_{j}^{1}}^{1 /\left(m_{j}+n_{j}\right)}
$$

and

$$
H_{m_{j}, n_{j}^{\prime}}^{1 /\left(m_{j}+n_{j}\right)} \geqq H_{p, q}^{1 /(p+q)}
$$

for all p and q such that $p+q \leqq m_{j}+n_{j}$. For each $(r, s) \in S$, let $\alpha=\alpha(r, s)$ and $\beta=\beta(r, s)$ be matrices with entries on $|z|=1$ such that

$$
\left|A_{r, s}(0,0 ; \alpha, \beta)\right|=H_{r, s}
$$

Let

$$
P_{r, s}\left(z_{1}, z_{2}\right)=\frac{A_{r, s}\left(z_{1}, z_{2} ; \alpha, \beta\right)}{A_{r, s}(0,0 ; \alpha, \beta)}
$$

and

$$
Q_{r, s}\left(z_{1}, z_{2}\right)=P_{r, s}\left(\frac{z_{1} H_{r, s}^{1 /(r+s)}}{H}, \frac{z_{2} H_{r, s}^{1 /(r+s)}}{H}\right)
$$

Then $Q_{r, s}(0,0)=P_{r, s}(0,0)=1$, and

$$
\begin{equation*}
Q_{r, s}^{(j, k)}\left(\frac{H \alpha_{j k}}{H_{r, s}^{1 /(t+s)}}, \frac{H \beta_{j k}}{H_{r}^{1 /(s+s)}}\right)=0 \quad(j<r, k<s) \tag{3.4}
\end{equation*}
$$

Moreover, (2.6) implies

$$
Q_{r, s}\left(z_{1}, z_{2}\right)=\sum_{p=0}^{r} \sum_{q=0}^{r} \frac{A_{r-p, s-q}\left(0,0 ; R_{p q}(\alpha), R_{p q}(\beta)\right) H_{r, s}^{(p+q) /(r+s)}}{A_{r, s}(0,0 ; \alpha, \beta) H^{p+q}} \frac{z_{1}^{p} z_{2}^{q}}{p!q!}
$$

and

$$
\begin{aligned}
& \left|\frac{A_{r-p, s-q}\left(0,0 ; R_{p q}(\alpha), R_{p q}(\beta)\right) H_{r, s}^{(p+q) /(r+s)}}{A_{r, s}(0,0 ; \alpha, \beta) H^{p+q}}\right| \\
\leqq & \frac{H_{r-p, s-q} H_{r, s}^{(p+q) /(r+s)}}{H_{r, s} H^{p+q}} \leqq \frac{H_{r, s}^{(r-p+s-q) /(r+s)} H_{r, s}^{(p+q) /(r+s)}}{H_{r, s} H^{p+q}}=\frac{1}{H^{p+q}},
\end{aligned}
$$

since $(r, s) \in S$. Therefore $Q_{r, s}$ is majorized by

$$
\varphi\left(z_{1}, z_{2}\right)=\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \frac{1}{H^{p+q}} \frac{z_{1}^{p} z_{2}^{q}}{p!q!} ;
$$

$\varphi\left(z_{1}, z_{2}\right)$ is an entire function of exponential type $1 / H$. The sequence $\left\{Q_{m_{j}, n_{j}}\right\}$ is therefore uniformly bounded on compact sets. Extract a uniformly convergent subsequence from $\left\{Q_{m_{j}, n_{j}}\right\}$ and let F denote the limit function. Then F is entire, $F(0,0)=1$, and $\tau(F) \leqq 1 / H$. Since $F^{(j, k)}$ is the uniform limit of a subsequence of $\left\{Q_{m_{j}, n_{j}}^{(j, k)}\right\}$, then (3.4) implies that $F^{(j, k)}$ has a zero in $\left\{\left|z_{1}\right|=1,\left|z_{2}\right|=1\right\}$. The expansion (1.5) implies that F has exponential type exactly $1 / H$, and this completes the proof.
4. The Whittaker Constants W and \mathscr{W}. We have already seen that $\mathscr{W}<W$. The following result provides a precise relationship between \mathscr{W} and W, and a determination of W different from [3] and [1].

THEOREM 3. $\quad \limsup _{m+n \rightarrow \infty} H_{m, n}^{11(m+n)}=1 / \mathscr{W}$,

$$
\liminf _{m+n \rightarrow \infty} H_{m, n}^{1 /(m+n)}=1 / W
$$

Proof. The first equation is a consequence of Corollary 1 and Corollary 2. To prove the second, we require the use of the Gončarov polynomials $G_{n}\left(z ; z_{0}, \cdots, z_{n-1}\right)$ and the sequence

$$
H_{n}=\max \left|G_{n}\left(0 ; z_{0}, \cdots, z_{n-1}\right)\right|
$$

If m is a positive integer, the defining relation (1.4) implies

$$
\begin{equation*}
A_{m, 0}(0,0 ; \alpha, \beta)=-\sum_{p=0}^{m-1} \frac{A_{p, 0}(0,0 ; \alpha, \beta) \alpha_{p, 0}^{m-p}}{(m-p)!} \tag{4.1}
\end{equation*}
$$

In comparing (4.1) with (1.1), one sees that

$$
A_{m, 0}(0,0 ; \alpha, \beta)=G_{m}\left(0 ; \alpha_{00}, \alpha_{10}, \cdots, \alpha_{m-1,0}\right)
$$

It follows that $H_{m, 0}=H_{m}$ and, similarly, $H_{0, m}=H_{m}$. By Lemma 3 and (1.2), we have

$$
\begin{aligned}
& H_{m, n}^{1 /(m+n)} \geqq\left(H_{m, 0} H_{0, n}\right)^{1 /(m+n)}=\left(H_{m} H_{n}\right)^{1 /(m+n)} \\
> & \left(\frac{.16}{W^{m+n}}\right)^{1 /(m+n)}=\frac{(.16)^{1 /(m+n)}}{W}
\end{aligned}
$$

Therefore

$$
\liminf _{m+n \rightarrow \infty} H_{m, n}^{1 /(m+n)} \geqq 1 / W
$$

In the other direction,

$$
\liminf _{m+n \rightarrow \infty} H_{m, n}^{1 /(m+n)} \leqq \liminf _{m+0 \rightarrow \infty} H_{m, 0}^{1 /(m+0)}=\lim _{m \rightarrow \infty} H_{m}^{1 / m}=1 / W,
$$

and this completes the proof.
Using (2.10) and the estimate $W<.7378$, one easily obtains an interesting bound on \mathscr{W}. For all r and s, we have

$$
H_{r, s} \leqq(2 / \log 2)^{r+s}<\left(\frac{2}{\log 2} \frac{.7378}{W}\right)^{r+s}<\left(\frac{2.13}{W}\right)^{r+s}
$$

and therefore

$$
W>\mathscr{W} \geqq \frac{W}{2.13}
$$

Some remarks should be made relative to stating the above results in terms of k complex variables, $k>2$. For $j=1,2, \cdots, k$, let $\alpha^{(j)}=\left(\alpha_{n_{1}, n_{2} \cdots, n_{k}}^{(j)}\right)$ denote a k-parameter sequence of complex numbers. The recursion relation corresponding to (1.4) is

$$
A_{0,0, \ldots 0}\left(z_{1}, z_{2}, \cdots, z_{k}\right)=1
$$

and

$$
\begin{aligned}
& A_{n_{1}, n_{2}, \cdots, n_{k}}\left(z_{1}, z_{2}, \cdots, z_{k}\right) \\
= & \frac{z_{1}^{n_{1}} \cdots z_{k}^{n}}{n_{1}!\cdots n_{k}!}-\sum_{p_{1}=0}^{n_{1}} \cdots \sum_{p_{k}=0}^{n_{k}} \\
& \times \frac{A_{p_{1}, \cdots, p_{k}}\left(z_{1}, \cdots, z_{k}\right)\left[\alpha_{p_{1}, \cdots, p_{k}}^{(1)}\right]^{n_{1}-p_{1}} \cdots\left[\alpha_{p_{1}, \cdots, p_{k}}^{(k)}\right]^{n_{k}-p_{k}}}{\left(n_{1}-p_{1}\right)!\cdots\left(n_{k}-p_{k}\right)!}
\end{aligned}
$$

where $p_{1}+\cdots+p_{k}<n_{1}+\cdots+n_{k}$.
The numbers $H_{n_{1}, \cdots, n_{k}}$ are also defined in the obvious way and we have

$$
\begin{aligned}
H_{n_{1}, \cdots, n_{k}} & \geqq H_{m_{1}, \cdots, m_{k}} H_{n_{1}-m_{1}, \cdots, n_{k}-m_{k}}, \\
H_{n_{1}, \cdots, n_{l}, 0, \cdots, 0} & =H_{n_{1}, \cdots, n_{l}} .
\end{aligned}
$$

The definition of \mathscr{V}_{k}, the Whittaker constant in k complex variables, is analogous to the definition of \mathscr{W} in $\S 1$. Apart from notational difficulties, it is a direct extension of the above results to see that

$$
\lim \sup H_{n_{1}, \ldots, n_{k}}^{1 /\left(n_{1}+\ldots+n_{k}\right)}=1 / \mathscr{W}_{k}
$$

and

$$
\lim \inf H_{n_{1}, \ldots, n_{k}}^{1 /\left(n_{1}+\cdots+n_{k}\right)}=1 / W
$$

If $1 \leqq l \leqq k$, we also have

$$
\lim \sup H_{n_{1}, \ldots, n_{l}, 0, \ldots, 0}^{1 /\left(n_{1}+\cdots+n l\right)}=1 / \mathscr{W}_{l}
$$

and

$$
\lim \inf H_{n_{1}, \ldots, n_{l}, 0, \ldots, 0}^{1 /\left(n_{1}+\ldots+n l\right)}=1 / W,
$$

and it follows that $\mathscr{W}=\mathscr{W}_{2} \geqq \mathscr{W}_{3} \geqq \mathscr{W}_{4} \geqq \cdots$.

References

1. J. D. Buckholtz, The Whittaker constant and successive derivatives of entire functions, Journal of Approximation Theory, (3) 2 (1970).
2. M. M. Džrbašjan, On the integral representation and expansion in generalized Taylor series of entire functions of several complex variables, Mat. sb. (N.S.), (41) 83 (1957), 257-276 (Amer. Math. Soc. Translations, (2) 32 (1963), 289-310).
3. M. A. Evgrafov, The Abel-Gončarov interpolation problem, Gosvdavstr. Izdat. Tehn.Teor. Lit., Moscow, 1954.
4. S. S. Macintyre, An upper bound for the Whittaker constant, London Math. Soc. J., 22 (1947), 305-311.
5. - On the zeros of successive derivatives of integral functions, Trans. Amer. Math. Soc., 67 (1949), 241-251.

Received October 30, 1970.
Virginia Polytechnic Institute and State University

