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ERGODIC AUTOMORPHISMS AND AFFINE
TRANSFORMATIONS OF LOCALLY

COMPACT GROUPS

M. RAJAGOPALAN AND B. SCHREIBER

It has been conjectured that if a locally compact group
G has a continuous automorphism which is ergodic with
respect to Haar measure then G must be compact. This is
true when G is commutative or connected. In this paper
further results in support of this conjecture are presented.
In particular, it is shown that the problem can be reduced
to the consideration of compactly generated, totally discon-
nected, locally compact groups without compact, open, normal
subgroups and that the conjecture holds for many automor-
phisms of a certain class of such groups. Finally, the structure
of locally compact groups which admit ergodic affine trans-
formations is investigated.

The question of the existence of ergodic automorphisms on non-
compact groups was first raised by P. Halmos [5, p. 29]. The
commutative case was studied in [10] and [15] and the connected
case in [8] and [14]. Theorem 1.1 below has been announced without
proof in [16], and some of the results in §2 have been obtained
independently and by somewhat different methods by R. Sato [11],
[12] and by N. Aoki and Y. Ito [1].

1* Automorphisms* Let G be a locally compact group and T
an ergodic (whence bi-continuous and measure preserving, as shown
in [10]) automorphism of G. Thus, if λ denotes a left Haar measure
on G, X(A) = 0 or λ(Ac) = 0 for any measurable subset A of G such
that T(A) — A. Let Go denote the identity component of G.

THEOREM 1.1. // G/Go is compact then G must be compact.
Thus if there exists a noncompact group with an ergodic automorphism
then there exists a noncompact totally disconnected one.

Proof. If G/Go is compact there is a unique maximal normal
compact subgroup N of G such that G/N is a Lie group [9, p. 175],
[6, § XV. 3]. Since N must be invariant under Γ, there is induced
an ergodic automorphism T of G/N (cf. [8]). Since (G/N)o is open
and invariant under Γ, G/N is in fact connected, whence compact.
Thus G is compact.

If G is a noncompact group with ergodic automorphism T, then
by the above the totally disconnected group G/Go must be noncompact,
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and it possesses the ergodic automorphism T induced by T as above.
For the remainder of this section G will be assumed to be non-

discrete and totally disconnected with ergodic automorphism T.

THEOREM 1.2. Suppose that G satisfies one of the following
conditions:

( i ) Every compact subset of G is contained in a compact
subgroup of G.

(ii) G has a compact, open, normal subgroup.
Then G must be compact.

Proof. To prove that (i) implies compactness of G it clearly
suffices to prove that G must be compactly generated. Let H be a
compact, open subgroup of G, and for each n let Kn be the group
generated by H U T{H) U U Tn{H). Then K, c K2 c and
T(Kn) c Kn+1, n = 1, 2, . . Set K = U?=ι Kn, so that K and T{K)
are open subgroups of G with T(K) c iί.

Suppose TCK") ̂  isΓ, and let S = K\T(K). Note that

τ w (S) n τ%(S) = 0

if m ̂  n, and λ(S) > 0. Choose P c S with λ(P) > 0 and \(S\P) > 0
and set Q = U?=-- T%(P). Then Γ(Q) = Q and On (S\P) = 0 ,
contradicting the ergodicity of T. Thus T(K) — K, so K = G since
If is closed. Hence T-^iϊ) c Kn for some w, whence T~ι(K%) c ίΓΛ.
Repeating the argument above we obtain T~\Kn) = Kn, so G ~ Kn is
compactly generated.

If (ii) holds, let H be a compact, open, normal subgroup of G
and let the Kn be as defined above. Then each Kn = H- T{H) . . Tn(H)
is compact, so the argument above shows G is compact.

COROLLARY 1.3. If G is the union of an increasing sequence of
compact open subgroups, then G is compact.

COROLLARY 1.4. If G is nilpotent, then it must be compact.

Proof. The proof is by induction on the length of the ascending
central series of G, M c Z{G) c Z\G) c . . . c Z*(G) = G. If n = 1,
then G is abelian, whence compact. In general, since Z(G) is invariant
under T, G/Z(G) has an ergodic automorphism (cf. Theorem 1.1) and
Zn~ι(GIZ{G))= G/Z(G). If we assume that this implies GjZ{G) is com-
pact, we may invoke the main theorem of [4] to conclude that (ii) of
Theorem 1.2 holds, whence G is compact, and the induction is complete.

COROLLARY 1.5. If G is maximally almost periodic (i.e., has
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sufficiently many finite-dimensional continuous unitary representations
to separate points) then it must be compact.

Proof. Since we have shown G is compactly generated, it is
known that G, being totally disconnected, must satisfy (ii) of Theorem
1.2 [7, Corollary XII. 3, pp. 58-59].

Miscellaneous Remarks.
( i ) G must be unimodular. This follows either from a calcula-

tion which shows that the modular function, which is continuous, is
invariant under T or from the fact that the modular function is a
homomorphism which must equal one on the finite collection of
compact subgroups which generate G as in the proof of Theorem 1.2.

(ii) In testing the validity of our conjecture it suffices to consider
only metrizable groups. Indeed, if G and T are as above let H be
a compact normal subgroup of G such that G/H is metrizable. Let
K = n~=-~ Tn(H). Then T(K) = K, so G/K has an ergodic automor-
phism and is metrizable.

(iii) If there exists an ergodic inner automorphism, T(x) = a~ιxa
for some a e G, then G must be noncompact and the subgroup of G
generated by a must be discrete (and infinite). For otherwise there
is a compact subgroup K of G containing a. If H is a compact open
subgroup of G, then clearly G = KHK and is thus compact. But
then every neighborhood of the identity in G contains a normal open
subgroup, which is impossible.

We conclude this section by showing, in Theorem 1.8, that the
conjecture in question holds for many automorphisms of a class of
totally disconnected groups which do not, in general, satisfy (i) or (ii)
of Theorem 1.2. We are grateful to A. Borel for his suggestions
regarding the proof of Theorem 1.8.

LEMMA 1.6. Let H be a closed normal subgroup of G such that
G/H is compact and H is the union of an increasing sequence of
compact open subgroups. Then G is also the union of an increasing
sequence of compact open subgroups.

Proof. Let Hλ c H2 c c H as in our hypothesis, and choose
a symmetric compact subset K of G such that G — HK. Since
K2 = K K is compact, it is contained in HnK for some n. Then

K* c HnK
2 c HIK = HnK ,

and so on. Thus, denoting by [K] the subgroup generated by K,

[K] = l)Km(zHnK,
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so [K]~ is compact. Hence we may assume K is a group.
Let Gn be the closed subgroup generated by Hn and K,

n — 1, 2, . Then G = U*=i G*, so by the Baire category theorem
Gn is open for all sufficiently large n. To show each Gn is compact,
notice that, given n, we can find a positive integer m such that
ft* = xhx-1 e Hm for all h e Hn and xeK. It follows that [£ΓW, K] c iίwiΓ,
for every element of [Hn, K] is of the form

h,xx . hrxr = hMW1*2 /tf1—^ ίκr (/ι, G ίί,, ίt i e K)

and hence lies in HmK.

COROLLARY 1.7. If G has a normal series consisting of closed
subgroups whose successive quotients are all unions of increasing
sequences of compact open subgroups, then G is also the union of such
an increasing sequence.

Proof. We have {β} = Go c GL c c Gn — G, and we apply
induction on n. The case n — 1 leaves nothing to prove; in general
Gn-! is normal in G. Let π: G —> G/Gn^ be the canonical map, and
write G/Gn^ = iϊi U H2 U - , the union of an increasing sequence of
compact open subgroups. By the induction hypothesis and Lemma 1.6
we may write π~1(Hm) as the union of such an increasing sequence:

rrι{Hm) = \JHmk, m = 1, 2, • • • ,

and by choosing subsequences we may assume Hm+ljk Z) Hmk for all k
and m. Let us now choose a sequence {G}

m} of compact open subgroups
of G as follows. Let G[ = Hn, and suppose Gl •• ,G1i have been
chosen. Let G°m+1 = Hm+ι k, k being so large that Gi+1 z> G« U Hmm.
Then the G°m are increasing, and it is clear that

U Gl 3 U U Hnk = G .
m---l m —i fc —l

Let & be a nondiscrete, locally compact, totally disconnected field.
If G is a connected (in the Zariski topology) linear algebraic group
defined over k (&-group) [2], [3], G(k) will denote the rational elements
of G over k and Aut^G the group of automorphisms of G defined
over k. The restriction to G(k) of any TeAutkG, denoted also by
T, is a topological automorphism of G(k) when G(k) is given its locally
compact topology obtained by realizing it as a subgroup of GL{n, k)
for some n. Let R be the radical of G and ί7 the unipotent radical.
Recall that R [U] is the unique maximal connected, solvable [unipotent],
Zariski-closed, normal subgroup of G. If k is of characteristic zero,
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then U (whence also R) is always defined over k. However if k has
positive characteristic this need not be the case.

THEOREM 1.8. Let G be a connected linear algebraic group defined
over the nondiscrete, locally compact, totally disconnected field k such
that U is defined over k, and let TeAatkG. If T is ergodic on G(k),
then G(k) is compact and solvable. In fact, if char k = 0 then G is
an anίsotropic torus.

Proof. Since R/U is the (Zariski-) connected component of the
identity of the center of G/U [3, Proposition 11.21], R is defined
over k. Let G' = G/R and π: G —> G/R the canonical map. Gr is
connected, defined over k, and semi-simple. And T{R) = R, so T
induces an automorphism T of G', defined over k, whose restriction
to π(G(Jή) = G(k)/R(k) is an ergodic automorphism. Since Gf is semi-
simple, Aut Gf is a fc-group, and we have (Aut G') (k) — KvXk Gr.
Furthermore the semi-direct product H — Gr (Aut G') is also a
/b-group, so H(k) = G'(k) (Aut/, Gr) may be realized as a subgroup of
GL(n, k) for some n. Let H(k) be so realized. Then T is given on
G(k) by conjugation by some element of GL(n, k). Given λefe,
consider the continuous mapping φλ: π(G{k)) —> k given by

φλ{x) = det (x — λe).

φλ is invariant under T", whence constant on π(G(k)). Thus

<Pι(x) = <Pι(e) = (1 - λ)« , \ek,xe π(G(k)) .

Hence every element of π(Gk)) has as characteristic polynomial (1 — λ)%
i.e., π(G(k)) consists of unipotent matrices.

Recall that G(k) has a natural structure as a ^-analytic variety
of analytic dimension equal to the dimension of G [13, Appendix III].
Since G is connected G(k) cannot be contained in any proper analytic
subset of G. Thus G(k) is Zariski-dense in G, so π(G{k)) is dense in
G'. Thus G; is both unipotent and semi-simple, whence trivial.

Thus G = R is solvable, so G/U is a torus [3, Theorem 10.6],
whence abelian. As above T induces an ergodic automorphism of
G(k)/U(k), soG (k)/U(k) is compact. Moreover, U is trigonalizable over
k [3, Corollary 15.5], and k is the union of an increasing sequence of
compact open subgroups. By Lemma 1.6 and Corollary 1.7 we conclude
that U(k) is the union of such a sequence, and hence so is G(k).
Corollary 1.3 then implies G(k) is compact.

If k is of characteristic zero, whence perfect, and if U were
nontrivial, then U(k) would have a normal series of closed subgroups
whose successive quotients are isomorphic to the additive group of k.
But G(k) being compact, this is impossible, and it follows that G is
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an anisotropic torus.

REMARK. Using some deeper results from the theory of algebraic
groups, Theorem 1.8 can be generalized in several directions. These
generalizations will be presented elsewhere.

2* Affine transformations* Let G be a locally compact group
and T an affine transformation of G. That is, T(x) = aτ(x), x e G, for
some continuous automorphism τ of G and aeG. As in § 1, we are
interested in structural results about G implied by the assumption
that T is ergodic. We no longer expect that G must be compact;
for example, T(x) = x + 1 is ergodic on Z.

The proofs of our first two lemmas are analogous to those of the
corresponding facts about automorphisms found in [8] and [10].

LEMMA 2.1. If T is ergodic then it must be bicontinuous and
measure preserving.

LEMMA 2.2. Let H be a closed normal subgroup of G such that
τ(H) — H, and let τ denote the induced automorphism of G/H. If T
is ergodic on G then the affine transformation T(x) — aτ(x) is ergodic
on G/H.

LEMMA 2.3. Let G be discrete and T ergodic on G. Then G is
finitely generated.

Proof. A computation shows that for n > 0,

(1) Γ»(e) = aτ{a)--.τn-\a),
( 2) T~n(e) = (r-»(α)r-(*-1}(α) r^α))- 1 = (τ-(T^e)))-1.

There exists peZ such that Tp(e) = τ(α). Clearly p = 0 (i.e., T an
automorphism) is impossible, while p — 1 gives T(an) = anΔrl and this
is the example cited above.

Suppose p > 1. Then from (1) we have

z*~\a) = (aτ(a) τp-2(α))~1τ(α) ,

and it follows that

2*(e) G [α, r(α), . . . , τ-2(α)] - H

for all n > 0. And applying τ~ι to (1) gives τ~ι(a) e H and hence
T~n(e) eH,n>0. Thus G = orbit of e = H is finitely generated.

Now assume p < 0. Then by (2) we have

T%(β) 6 [α, r-^α), , τ*(α)] - K, n > 0 ,

while applying τ"1 to (2) shows τp~ι(a) e K and hence T~n(e) e Ky n > 0.
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Again G is finitely generated.

THEOREM 2.4. If G has an ergodίc affine transformation, then G
is compactly generated. If G has a nontrivial, compact, open, normal
subgroup, then G is compact.

Proof. If G is discrete, then it is finitely generated by Lemma
2.3, so we assume G is nondίscrete. Assume first that G has a
compact open subgroup H. Let Kn be the group generated by

{a, τ(α), . , r—^α)} U HU U τn(H), n = 1, 2, . . . .

The proof that G is compactly generated now proceeds like that of
Theorem 1.2 (here T(K) is an open left coset), except that we now
choose n so large that {z~\a)} U τ~\H) a Kn.

Now let G be any locally compact group with identity component
Go, and let π: G —> G/Go be the natural map. By Lemma 2.2 and the
argument above there is a compact generating set C for G/Go If U
is a compact neighborhood of the identity in G such that π(U)z)C,
then U Π Go generates GQ, and it is easy to see that U generates G.

Suppose the H chosen above is normal and nontrivial. Let

Hn = τ~n(H). H τ»(H) , n = 1, 2, . . . ,

and set H* = U~=i Hn, so that τ(£Γ*) = H*. Then by Lemma 2.2
GjH* is discrete and has an ergodic affine transformation. If G/H* is
infinite then Tm{H*) n T%(ίί*) = 0 if m ^ n. But this clearly implies
H = iϊ* = {0}, as in the proof of Theorem 1.2, a contradiction.

Thus G/H* is finite, and we have Tm(a) e H* for some m. Let
A = {e, a, •••, ̂ ^(α)}. Replacing ί ί by ίίn for sufficiently large n,
we may assume that Tm{a) e H and AH is a subgroup of G (see proof
of Lemma 1.6). The argument above then shows

G = Kn = AHτ(H) . τn{H)

for some %, so G is compact.

COROLLARY 2.5. // G is maximally almost periodic and has an
ergodic affine transformation, then G is discrete or compact.

Proof. See Corollary 1.5.

LEMMA 2.6. Rn has no ergodic affine transformations.

Proof, (cf. [5, p. 28]) Induction on n. It is easy to see no
affine transformation on R is ergodic. Assume Rn~ι has no ergodic
affine transformations, and let T(x) = τ(x) + a be affine on Rn. Let
7r: Rn —* Rn+ί be given by π(xlf •••,&„) = (&» , &n, 1)> and let S be
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the linear transformation of Rn+1 given by the matrix

τ a

0 1

so that Soπ = πo T. By Lemma 2.1 we have det S = det τ = ± 1.
Suppose first that τ is unipotent. Then τ has an eigenvector in Rn,
so we may apply Lemma 2.2 and the induction assumption to conclude
that T is not ergodic.

If τ is not unipotent we shall construct a nonconstant continuous
function on the hyperplane Rn x {1} which is invariant under S? proving
that T is not ergodic. Consider S*, which is given by the matrix

r* 0

a 1

on the dual space (R^1)*. Since τ, whence τ*, is not unipotent,
neither is S*. Thus the complexification Sf of S* has an eigenvalue
λ ^ 1. The annihilator of Cn in (CΛ+1)* consists of eigenvectors of
S? with eigenvalue 1. It follows, then, that any eigenvector for λ
assumes arbitrarily large values on Rn x {1} c Cn+1. Indeed, if z(x) is
such an eigenvector, then z does not annihilate Cn, so being complex
linear, it cannot annihilate Rn. Thus z assumes arbitrarily large
values on Rn, whence on Rnx{l}. Let zu •• ,zk denote eigenvectors
corresponding to the distinct eigenvalues of Sf whose respective
multiplicities are nlf •••, nk, and set

f{x) - I ^(α)-1 «*(α?)»* I .

Then f o S = f and / is not constant.

LEMMA 2.7. Let T be an ergodic affine transformation of Zn.
Then n = 1 and T(x) = x ± 1.

Proof. It is easy to see that if w = 1 then T(x) — x ±1. The
rest of the proof is by an induction similar to that of Lemma 2.6:
T is given by a matrix with integer coefficients and determinant ± 1 .
If r is not unipotent the argument above shows that T is not ergodic.
(Note that / assumes arbitrarily large values on Znx{ϊ\.) On the
other hand, if r is unipotent then it has an eigenvector over Q,
whence also over Z. Let x0 e Zn be an eigenvector and H = Qx0 Π Zn.
By Lemma 2.2 the induced affine transformation of Zn/H ~ Zn~ι

is ergodic. The lemma now follows by induction once we settle
the case n ~ 2. But in this case Z2/H ~ Z and the induced affine
map is a translation. Whence the orbit of 0 under T is a proper
subset of Z2, so T is not ergodic.
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THEOREM 2.8. Let G be abelίan and have an ergodic affine trans-
formation. Then G = Z or G is compact.

Proof. If G is discrete and infinite, then by Lemma 2.3 and
Theorem 2.4 G is finitely generated and torsion free, so Lemma 2.7
implies G = Z.

Suppose G is nondiscrete, and let GQ denote its identity component.
Then G/GQ must be finite or nondiscrete. For G/Go discrete and
infinite implies G/GQ = Z, and this leads to a contradiction as in the
proof of Theorem 2.4. If G/GQ is nondiscrete, then by Theorem 2.4
G/Go is compact. Thus in general, G — RnxH with H compact.
Since H is invariant under any automorphism of G, it follows from
Lemmas 2.2 and 2.6 that n = 0 and G = H is compact.

COROLLARY 2.9. // G is nilpotent and has an ergodic affine
transformation, then G = Z or G is compact.

Proof. The proof is analogous to that of Corollary 1.4.
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