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SOME RESTRICTED PARTITION FUNCTIONS:
CONGRUENCES MODULO 11

D. B. LAHIRI

Ramanujan's congruences for the unrestricted partition
function p{n) with 5, 7 and 11 as moduli can be shown to
be equivalent to precisely similar congruences for some
restricted partition functions of the type

(1) fan),
where to determine the value of (1) we count all the un-
restricted partitions of n excepting those which contain any
number of the forms tn or tn ± r as a part. The purpose of
the present paper is to deal with congruences modulo 11.

In [5] the author has established a number of congruences
modulo 3 for (1) with certain selected values of t and r. Functions
of the type (1) are not new in number theory literature; for example,
in the combinatorial interpretation of the famous Rogers-Ramanujan
identities one finds

\v{n) , \v{n) .

2» The final results* The restricted partition function (1)
with t = 383 and r = 121 has a somewhat simpler interpretation.
It is easily seen that this function counts the unrestricted partitions
of n excepting those which contain 121 or any multiple thereof as a
part. We use the simpler notation

(2) 121p(n) = 121
Qp(n) =

in the theorems to emphasize this interpretation.
The phrase 'for almost all values of n' appearing in Theorem 1

means that the number of integers n ^ N for which any specified
congruence does not hold is o(N). We assume p(m) to be 1 when
m = 0, and 0 when m < 0.

THEOREM 1. For almost all values of n the following congruences
with respect to the modulus 11 hold,
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(1)

(2) ?ξβί>WΞ -Sf5P(n-22),

(3)

(4) 3 gp(«) = ~Zf2P{n - 33) ,

(5)

(6)

THEOREM 2. .For αW values of n ^ 0

^ V l l w + 6) = 0 (mod 11) ,

αwcί more generally with 0 S λ ^ 16

+ 6) = 0 (mod 11) .

THEOREM 3. The following congruences modulo 11 are true for
all values of n 5: 0.

(1) -3!j3j>(ll7i + 10) - 355P(11% - 12) Ξ 5 1 2 1 ί ) ( l l π + 5) ,

(2) i 5 4 ^ ( l l w + 7) + ^ ί 1 1 ^ - 4) ΞE 5 1212>(llw + 3) ,

(3) i5fiί>(ll» + 4) + 322^(11« - 29) = 5

4) 3^2)(11» - 2) - Zf±p{lln - 13) = 5 1 2 1 p ( l l % + 8) ,

(5) -Z^p{lln ) + 3 ^ ί > ( l l u - 33) = 5 121p(lln + 2) ,

(6) - 3 ί j 3 p ( l l » + 9) - 355ί>(H» - 13) = 5 1Άp(lln + 4) ,

(7) 353ί>(Π™ + 4) + 3 | | p ( l l » - 7) = 5

(8) 343?>(11% + 10) + 3 | j ί>( l l» - 23) = 5 1212>(11« + 7) ,

(9) ZfΊp(lln ) - ^ ( l l w - 11) = 5 1 2 1 p ( l l « + 10) ,

(10) -lllp(lln + 7) + 3J 3p(ll% - 26) = 5 1 2 1 p(ll% + 9) .
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THEOREM 4. The following congruences with respect to the
modulus 11 hold for all values of n ^ 0.

f^ 121) - lf6p(lln + 11)

= -3jgp(121« + 99) + 355^(H» - H) ,

Hlp(121n + 120) - f j^ίKllw + 10)
(2)

3 | | + 109)

119) - lllp(lln + 9)

SH 86) + S^p(lln - 24) ,

^ 106) - 3 ^ ( l k - 4)
(4)

3 95) - Sf4p(lln - 15) ,

l^ + 114) - ^ ( 1 1 % + 4)
(5)

3 g 81) - 3J3p(llw - 29) .

3. Notations and conventions. Ramanujan [8] defined

(3) Φrt,(x) = Σ Σ arβsx"? = Σ %Vs_,.(%)x't ,
α = l jb = l u = l

where <TA(W) is, as usual, the sum of the A th powers of the divisors
of n. The author has found it convenient to simplify the notation
to Φr>8, [3], and even to just (r, s), [4], so that

(4) (r, s) = itnraa_r(ri)xn .
% = 1

The meanings of /(#), wr, v and Σ« I+^ίv)] a s given below are
the same as in the previous paper [5], but those of Ui and P^v) are
different:

Σ(5) f{x) = Π (1 - «n) -
1 - c o % = 0

(6) \mrι = Γπ a - χn)T = Σ p(n)χ*.
L i J w=o

(7) wr = Σ ^rα«a?n Σ p(n)xn .
w = 0 w—0

Σ v denotes summation over the pentagonal numbers v, where
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(8) v = — m(3m + 1) , m = 0, ± 1 , ±2,
Δ

implies that the sign to be prefixed is negative or positive according
as v is of the form (2m + l)(3m + 2) or m(6m + 1). (The first form
(2m + l)(3m + 2) is equivalent to (2m + l)(3m + 1) as given in the
previous paper [5]; m ranges over all integers positive, zero or
negative.) It is obvious that

(9) ur = Σ ( + ^ ) / / ( * )
V

We define the U/s by

UQ = 2u5 — 5%4 + 2uz + 5u2 — 5ux + uQ ,

U1 = 2 ^ 5 — 3^4 — uz + 4 ^ 2 ~ u x ,

U2 = 2̂ 65 — u 4 + 5w2 + 5t6x ,

U4 = 2^65 + 3t64 + 3%3 — 5 ^ 2 — Suί ,

U5 = u5 — Su4 — Su3 + 4 u 2 + Uj. ,

?77 = 2t65 — 2i64 — %3 — 2̂ 62 + 3 ^

(10)

We also need polynomials P^v) in v which like U{ are defined
only for ΐ = 0, 1, 2, 4, 5 and 7 and which are obtained by replacing
Ui by Pi(v) and u r by vr in the above relations (10).

4. Some lemmas* For the pentagonal numbers v which fall only
in the residue classes i = 0, 1, 2, 4, 5 and 7 modulo 11 the following
lemma can be verified.

LEMMA 1. If v is a pentagonal number, then

Pi(v) = 1 (mod 11), if v = i (mod 11)

Ξ 0 (mod 11), if V3Ξ% (mod 11) .

Applying relation (9) to (10) we obtain

(li) tf« = ΣlτiVΦ>Ί//(s);
V

and then the use of Lemma 1 leads to Lemma 2.

LEMMA 2. Ui = Σ {+%v)lf{%) (mod 11) ,

the summation being extended over all pentagonal numbers v = i
(mod 11).
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The following lemma can be verified without difRculty by writing
l l m + j with j — 0, — 4; — 1, —3; 1, — 5; 3, 4; — 2; and 2, 5 respec-
tively in place of m in the expression \m{Zm + 1) for the pentagonal
numbers, and in (— l) m its associated sign. It is also to be remembered
(when j is negative, say, —j') that J( l lm — ̂ ')(33m — Zjr + 1) and

+ i')(33m + 3/ — 1) represent the same set of numbers.

LEMMA 3. With respect to the modulus 11 the pentagonal num-
bers v fall in the six residue classes i = 0, 1, 2, 4, 5 and 7; and the
solutions of

v ΞΞ i (mod 11)

and the corresponding associated signs are as follows.

i solutions (1st set): sign solutions (2nd set): sign

0 J(363m2 + l lm) , ( - l ) w i(363m2 + 253m) + 22, ( - l ) m

1 i(363m 2+ 55m) + 1, (~l)m+1 i(363m2 + 187m) + 12, ( - l ) w + 1

2 i(363m2 + 77m) + 2, (~l) m + 1 J(363m2 + 319m) + 35, ( - l ) m + 1

4 i(363m2 + 209m) + 15, (~l) m + 1 J(363m2 + 275m) + 26, ( - l ) m

5 i(363m2 + 121m) + 5, (~ l ) w

7 J(363m2 + 143m) + 7, ( - l ) m i(363m2 + 341m) + 40, ( - l ) m + 1

The identities given in the next lemma are simple applications of
a special case of a famous identity of Jacobi [2, p. 283] viz.,

oo -)-oo

In establishing this lemma k and I are given values in conformity
with the expressions quardratic in m given in Lemma 3.

LEMMA 4. If v is a pentagonal number then, writing v = i
simply for v = i (mod 11), we have

1 ) — 11 Iv 1 ~ ^
0

oo

+ ^ Π [d -
0

= -xf[[(l-xmn+m)(l-.
0

- a> 1 2 Π[(l ~ xmn+ss)(l -
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= - x 2 Π [(1 - x 3 6 3 κ + 1 4 3 ) ( l - X™«+™)(1 _ χ"»*+»»)]
0

a;35 Π [ ( 1 - x ^ n + 2 2 ) ( l - £ 3 6 3 π + 3 4 1 ) ( l - a; 3 6 3 % + 3 6 3 )] ,
0

x ί δ Π [ ( 1 - x m n + π ) ( l - χ 3 6 3 w + 2 8 6 ) ( l - £ 3 6 3 w + 3 6 3 ) ]
0

£ 2 0 Π [ ( 1 - * 3 6 3 w + 4 ) ( l - * 3 6 3 > ! + 3 1 9 ) ( l - a; 3 6 3 " H - 3 6 3 )] ,
0

ft
0

- x40 Π [ ( 1 - χ " 6 5 n + n ) ( l - r 6 3 π + 3 5 2 ) ( l - α; 3 6 3 ί i + 3 6 3 )] .
0

The next lemma is derived from Lemma 2 after the substitu-
tion in it of the product expressions for Σ*=* (+#*) ^s given in
Lemma 4. The following fact is to be used in addition.

Π [ ( 1 — Xmn + r)(l ~ Xmn+™-r)(l - aj363Λ+3β3)]

(13) f(x)

Π [(1 - a ^ + ' X l ~ ^3 6 3^3 6 3-0(l - x™-+^)] „

[(1 - x)(l - of){l - xz) . •] =̂o r

LEMMA 5. With respect to the modulus 11

0 ltίfl:

Ut = -Σ
% — 0

U7 = V °a>

Σ
We require a set of congruences which are directly derivable

from the identities for ur — ury0 given in [3], for r = 1, 2, 3, 4 and 5.
These identities express ur's as linear functions of Φα,6's. By suitable
multiplications of both sides of these identities the fractional coefficients
appearing in [3] may be made integral. Since we are concerned



SOME RESTRICTED PARTITION FUNCTIONS: CONGRUENCES MODULO 11 109

with congruences modulo 11 we have in the following lemma reduced
these coefficients with respect to the modulus 11. For the sake of
simplicity we have written (a, b) instead of Φa,b.

LEMMA 6. With respect to the modulus 11 for the congruences
we have

u0 = 1

« i = -(0,1)

%2 = (0, 1) + 4(1, 2) + 5(0, 3)

u3 = 2(0, 1) + 5(1, 2) + 5(2, 3) - 2(0, 3) - 3(1, 4) + 3(0, 5)

Ui = -5(0, 1) - 5(1, 2) + (2, 3) + 4(3, 4) + 2(0, 3) - 5(1, 4)

- 2(2, 5) + 5(0, 5) - 4(1, 6) - 3(0, 7)

u, = - (0 , 10) - 5(1, 2) - 4(2, 3) + (3, 4) - (4, 5) + 2(0, 3)

- 2(1, 4) + 5(2, 5) + 3(3, 6) + 2(0, 5) - (1, 6) + 3(2, 7)

+ 2(0, 7) - 5(1, 8) .

The next lemma is obtained by the substitution of the above
values of ur's in the expressions for U, given in (10).

LEMMA 7. With respect to the modulus 11

Uo — 1 = Lo

A = Lf , i = 1, 2, 4, 5, 7
where

Lt = A( l , 8) + Λ(0, 7)

+ J?,(2, 7) + 5,(1, 6) + 50(0, 5)

+ C,(3, 6) + C2(2, 5) + (Λ(l, 4) + Co(O, 3)

+ A(4, 5) + A(3, 4) + A(2, 3) + Λ(l, 2) + A(0, 1) ,

the set of coefficients

(A,, Ao; Bt, Blt £„; C,, Ct, Cu Co; A , A , A , A , A)

being respectively

( 1, - 3 ; - 5 , - 4 , - 4 ; - 5 , - 2 , 4, 4; - 2 , 4, - 3 , 1, 4)

( 1, 2; - 5 , - 1 , - 3 ; - 5 , 5, 3, - 2 ; - 2 , 1, - 5 , 5, 5)

( 1, - 4 ; - 5 , 2, - 1 ; - 5 , 1, 1, 5; - 2 , - 2 , 2, 4, 3)

( 1, - 5 ; - 5 , - 3 , - 5 ; - 5 , 4, 5, 1; - 2 , 3, - 1 , 3, -2)

(-5, 0; 3, 0, 0; 3, 0, 0, 0; - 1 , 0, 0, 0, 0)

( 1, - 1 ; - 5 , - 5 , 2; - 5 , 3, - 2 , 3; - 2 , 5, - 4 , - 2 , 1)

for i = 0, 1, 2, 4, 5 <md 7.
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5* The basic theorem* By comparing the coefficients of the
two expressions for [/,. (mod 11) given in Lemmas 6 and 7 we obtain
the following theorem from which our final conclusions are drawn.

THEOREM 0. The following congruences are true for n > 0, the
modulus being 11.

p ( n ) + 8 P ( ™ " 2 2 )

(1) = (n - Z)σΊ{n) - (5n2 + An + A)σδ(n) - (5nz + 2n2 -An- A)σz{n)

- (2n4 - An3 + 3n2 - n - A)σ{n)

1) - 8§gp(n - 12)

) - (5n2 + n + S)σ6(ri) - (5n* - 5n2 - Sn + 2)σ3(n)

- (2n4 - n3 + 5tι2 - 5n

(3) = (n - A)σΊ{n) - (5n2 - 2n + ΐ)σδ(n) - (5ns - n2 - n

- (2n4 + 2u3 - 2n2 -An- 2>)σ(n)

Ί - 15) + SHv(n- 26)

(4) = (w - 5)σΊ(n) - (5n2 + Sn

- 5)
(5)

Ξ -5nσ7(ri) +

11QP(Λ - 7) - 3 g p ( n - 40)

(6) Ξ (u - I)σ7(w) - (5tι2 + 5n - 2)σδ(n) - (5n3 - Sn2 + 2n - S)σ3(ri)

- (2n4 - 5n3 + 4^2 + 2n - l)σ(ri) .

6* Proofs of Theorems 1 and 2* In view of the well-known
congruence [9, 1 p. 167]

(14) σs(n) = 0 (mod k)

for 4almost alΓ n for arbitrarily fixed k and odd s it is a straight-
forward matter to infer Theorem 1 from Theorem 0.

The first relation of Theorem 2 is also obtained immediately by
writing llw + 11 for n in the relation (5) of Theorem 0. The general
result enunciated in Theorem 2 actually emanates from the first
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part, and the process of derivation has two stages. In the first
stage Ramanujan's congruence modulo 11 for the partition function
p(n) is derived from the first relation, and then this derived relation
is used in the second stage to establish the general proposition. It

easily follows from (13) and (12) that I I Λ P W
 c&n be expressed in

the (really finite) form,

(15)

where e(n') = 0 or ± 1 . For the special case corresponding to λ = 11
we have the fully specified expression,

(16) 1Άp(n) = Σ [ + ϊ>{n - lΆv)} .

Keeping in mind the first relation of Theorem 2, viz.,

(17) 121p(lln + 6) = 0 (mod 11) ,

Ramanujan's congruence is seen to be valid by putting successively
w = 6, 17, 28, 39, ••• in (16). Thus (17) implies Ramanujan's con-
gruence. Conversely Ramanujan's congruence implies (17) as can be
easily seen when n is replaced by lln + 6 in (16). Hence Ramanu-
jan's congruence for the unrestricted partition function is equivalent
to the congruence (17) for the restricted partition function. To derive
the general proposition we merely write lln + 6 for n in (15) and
make use of Ramanujan's congruence. It can be easily seen that this
latter congruence is also equivalent to any particular case of the
general preposition.

7* Corollaries of the basic Theorem 0. An interesting con-
sequence of the congruences for the restricted partition functions so
far established is that these enable us to deduce a certain congruence
property of the divisor function σk(ri), viz., Lemma 8, which in its turn
helps us to provide further congruences for the restricted partition
functions. This lemma however, is also a particular case of a very
general theorem established elsewhere [6].

LEMMA 8. // n is not a multiple of 11 then

σ7(n) = (^)n2σ3(n) (mod 11) ,

where (n/11) is the Legendre symbol.
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The congruence relation of the divisor functions given in Lemma 8
proves useful for the reduction of the basic congruences of the
Theorem 0 into neater forms when attention is separately paid to
the cases when n is a quadratic non-residue or a residue of 11.
When n is a multiple of 11 this theorem reduces obviously to an
elegant form,,

COROLLARY 1. If n is a quadratic non-residue of 11, then with
respect to the modulus 11,

_ (βn4 - in" + 2n2 - n -

l t l - I) -Sllp(n-12)
(2)

= (5n3 + Sn2 + Zn - 2)σz(n) - (2n4 - n* + 5n2 - 5n - 5)σ(n) ,

Hl - 2) -Zf2p(n - 35)
(3)

5n2 + n + 5)σ3(n) - (2n4 + 2n3 - 2n2 - An - S)σ(n) ,

(n - 15) + Sf4p(n-26)
(4)

Ξ (5π3 - 2n2 + 5n + I)σ

(5) 121p(n - 5) = -3^V 3

llθ JJ - 40)
(6)

- 2n + 3)σ3(w) - (2w4 - 5τi3 + 4^2 + 2n -

This corollary easily follows from Theorem 0 when use is made
of Lemma 8 which enables replacement of the terms involving σΊ(n)
by terms involving σ3(ri), and of the following relation (18) which
makes redundant the terms involving σδ(n):

(18) σδ(lln + i) = 0 (mod 11)

when i is a quadratic non-residue of 11. This congruence is a
particular case of a more general relation [7, 4] which holds for
any odd prime modulus.

When n is a quadratic residue of 11 there is no scope for using
the relation (18) but Lemma 8 can still be used with some advantage,
and the result is given in Corollary 2.
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COROLLARY 2. If n is a quadratic residue of 11 then with
respect to the modulus 11,

fa ) + 355^(« - 22)

( 1 ) = - (5n2 + An + 4)σ5(») - (An3 + 5»2 - 4% - 4)σ3(?&)

- 4»3 + 3»2 - n -

( 2 ) = -(5% 2 + n + 3)σs(ri) - (in* + 4»2 - 3«. + 2)σs(n)

- (2w4 - n3 + 5w2 - 5% -

(n - 2) - 3 g p ( w _ 35)

- 2n + ΐ)σs(n) - (Art? + 3w2 - n -

-ZfΊp(n - 15) + ZfAp{n - 26)

( 4 ) = -(5w2 + 3π + 5)σ,(w) - (4%3 + u2 - 5n

- (2»4 - Znz + n2 - Zn + 2)σ(n) ,

121p(n - 5)
( 5 )

ΞΞ 3n2σδ(n) — 2n3σz(n) — n4σ(n) ,

P ί * 7 )

( 6 ) = - (5n2 + 5n - 2)σδ(n) - (4^3 - 2n2 + 2n -

- (2n* - 5n* + 4w2 + 2n - ΐ)σ(n) .

Proof of Theorem 3. This theorem follows from the above
corollaries. We shall show that the first set of five congruences of
Theorem 3 is deducible from Corollary 1 whereas the last set is
obtainable from the other corollary.

Eliminating σz(n) between (5) and each of the remaining con-
gruences of Corollary 1 we find that if n is a quadratic non-residue
then

- 22)]

(19) + (5n3 + n2 + An + A)121p(n - 5)

Ξ -n\2n2 + n - l)σ(n) (mod 11) ,
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- 1) + ^(n - 12)]

(20) + (5ri + Sri + Sn - 2)121p(n - 5)

= ri(Ari — 5n + A)σ(n) (mod 11) ,

(21) + (<όri + 5ri + n + 5Γ p(π - 5)

Ξ ri(5ri — An — 2)σ(n) (mod 11) ,

— 3n\ rrrjP(n — 15) — ΛΛV\n — 26)

(22) + (5^3 — 2π2 + 5^ + 1) p(n — 5)

~ 7̂ 3(39̂ 2 — Sn + 5)σ(ri) (mod 11) ,

3%Ί ΛΛC\Vin — 7) — - | - |P(^ ~ 40)

(23) + (5nz + An2 ~ 2n + 3) p(n — 5)

• ( m o d 11) .

By putting lln + 10, lln + 8, llw + 6, lln + 13 and lln + 7
in place of n in the congruences (19), (20), (21), (22) and (23) respec-
tively we obtain the first five congruences, (1) — (5) of Theorem 3.

To prove the remaining congruences we turn to Corollary 2.
Multiplying both sides of the congruence (5) of this corollary by 5,
and adding the result to each of the other congruences one by one
we have respectively the following congruences modulo 11,

- 22) + 5121p(n - 5)

(24) = -(n2 + An + 4)<rβ(») - (3ns + 5n2 -An- A)σs(ri)

+ (An' + An3 - 3re2 + n + A)σ{n) ,

- 12) + 5121p(n - 5)

(25) = - ( « 2 + n + 3)<75(w) - (3«3 + 4w2 - 3» + 2)σ3(%)

+ (4»4 + nz — 5w2 + 5% + 5)o (ίi) ,

n - 2) - 3 g p 0 * - 35) + 5 1 2 1 ^ ( % - 5)

(26) = -(n2 - 2n + ΐ)σδ(n) - (Sri1 + Sri - n - 5)σ3(ri)

+ (Ari - 2ri + 2ri + An + Z)σ(n) ,
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- 15) + 3Hp(n - 26) + 5121p(n - 5)

<27) ΞΞ -(n2 + Sn + S)σδ(n) - (3n3 + n2 - 5n - ϊ)σ,(n)

+ 3^3 - n2 + 3?̂  - 2)<7(» ,

~ 7) - S g p ( n - 40) + 5 1 2 1 p(^ - 5)

(28) = -(n2 + 5n - 2)σ5(n) - (3n3 - 2n2 + 2n - 3)

By writing lln + 9, lln + 5, llw + 12, 11% + 15 and Un + 14
respectively in (24), (25), (26), (27) and (28) we obtain the last five
congruences (6) — (10) of Theorem 3.

10* Proof of Theorem 4. This theorem is based upon an
artifice which depends upon the following simple congruence which
can be established easily from first principles.

(29) σk(lln) = σk(n) (mod 11), k > 0 .

We shall illustrate the procedure adopted by proving the last con-
gruence of the theorem. Writing lln for n in the last congruence
(6) of the basic Theorem 0 we have on using the above relation the
following

Hl - 7) - 3gp(llrc - 40)
(30)

Ξ= -σγ(n) + 2σ-0(n) + Sσ3(n) + σ(ri) (mod 11) .

Subtracting (β) of Theorem 0 from (30), and then writing lln + 11
for n we arrive at the desired result. Other congruences of the
theorem are similarly established.
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