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CLASSIFYING SPECIAL OPERATORS BY MEANS
OF SUBSETS ASSOCIATED WITH THE

NUMERICAL RANGE

MARY R. EMBRY

Let A be a continuous linear operator on a complex
Hubert space X, with inner product <, > and associated norm
|| ||. For each complex number z let MZ(A) = {x: {Ax, x} =
z\\x\\2}. The following classifications of special operators
are obtained: (i) A is a scalar multiple of an isometry if
and only if AMZ(A) cz MZ(A) for each complex z; (ii) A is a
nonzero scalar multiple of a unitary operator if and only if
AMZ(A) — MZ(A) for each complex z; and (iii) A is normal if and
only if for each complex z {x \ Ax e MZ(A)} — {x \ A*x e MZ(A)}.

!• Introduction* The sets, MZ{A), are closely associated with
the numerical range of A: W(A) = {(Axy £>: \\x\\ = 1}. These sets
were introduced in [1] and used to characterize the elements of W(A)
as follows:

THEOREM A. If ze W(A), then
( i ) z is an extreme point of W(A) if and only if MZ{A) is linear,
(ii) if z is a nonextreme boundary point of W(A), then

ΎMZ(A) = U{Mw(A):weL}

where L is the line of support for W(A) passing through z,
(iii) if W(A) is a convex body, then z is an interior point of

W(A) if and only if jMz(A) = X.

It was also shown in [1, Theorem 2] that Π {maximal linear sub-
spaces of MZ(A)} plays a special role in determining the normal
eigenvalues of A.

With the aforementioned evidence concerning the sets MZ(A) in
mind, it seemed natural to ask whether these sets behave in a par-
ticular fashion if A has special characteristics or whether the action
of A on these sets determines special properties of A. Obviously A
is Hermitian if and only if MZ{A) = MZ*(A) for all complex z. The
first question which came to mind was: when is it the case that each
of the sets MZ(A) is invariant under A. The techniques developed to
answer this question in Theorem 1 led to the other theorems in this
paper.
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The following elementary facts can be noted about the sets, MZ(A).
1. Each set MZ(A) is homogeneous and 2. either MZ{A) Π MW{A) = {0}
or MZ{A) = MW{A) •

2* Notation and terminology* The notation and terminology
used in this paper are the same as that found in [1] with the following
additions. / is a bilinear functional on a complex vector space X if
and only if /: X x X—-• {complex numbers}, / is linear in the first
variable and conjugate linear in the second variable.

Throughout the paper A is a continuous linear operator on a
complex Hubert space X; A is an isometry if A*A — I; A is unitary
if A*A = AA* — I; A is normal if AA* = A*A; and A is hyponormal
if AA* ^ A*A. ker A denotes the null space of A: {x: Ax — 0}.

3* Classification theorems* The following lemma plays a fund-
amental part in the proofs of Theorems 1-4.

LEMMA 1. If f, g,h and k are bilinear functionals on a complex
vector space X, satisfying

(1) f(x, x)g(x, x) — h(x, x)k{x, x) for all x in X, then

(2) f(x, y)g(x, y) = h(x, y)h(x, y) for all x and y in X.

Indication of proof. Let x, y e X and let z be an arbitrary com-
plex number. By substituting y + zx for x in equation (1) and
equating coefficients, one arrives at equation (2) by means of the
coefficients of z2.

THEOREM 1. A is a scalar multiple of an isometry if and only
if AMZ(A) c MZ(A) for each complex z.

Proof. MZ(A) is invariant under A for each complex z if and
only if

(3) <A% Ax>\\x\\2 - (Ax, x>\\Ax\\2 f o r a l l a i n l .

Obviously if A is a scalar multiple of an isometry, then equation (3)
holds for all x in X. Thus we assume that equation (3) holds for
all a; in I and by Lemma 1 have

(4) (A2x, Ay} O, τ/> = (Ax, y) (Ax, Ay} for all x and y in X .

It now follows that {x^czlAx}1 U {A*Ax}1. Moreover with x and y
interchanged in (4) we see that {x}L c {A*x}L U {A*Ax}1. Since {y}L
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is linear, we have either {x}1 a{A*Ax}L or {x}L c {Ax}1 Π {A*x}λ.
Either case implies that there exists a scalar rx such that A*Ax —
(rx)x. This is sufficient to imply that A is a scalar multiple of an
isometry.

If A is a nonunitary isometry, the only complex z in W(A) for
which AMZ(A) = MZ(A) are the extreme points of W(A). To prove
this we make use of results from [2] and [3] which assert that in
this case σ(A) = W(A) = {z: \z\ ̂  1}. Thus the elements of W(A) are
either extreme points z with \z\ = 1 or interior points. If z is an
extreme point of W(A), then since A is hyponormal,

MZ(A) = {x: Ax = zx and A*x = z*x}

by [4] and thus MZ(A) = AMZ(A) = A*MZ(A). Conversely if MZ(A) -
AMZ(A), then ΎMZ(A) = A(yMz(A)). By Theorem A, (iii) if z is an
interior point of W(A), then X = AX, implying that A is invertible
and hence unitary. Therefore if MZ(A) = AΛfz(A) and ze W(A), then
£ is an extreme point of W(A).

THEOREM 2. A* is a scalar multiple of an isometry if and only
if A*MZ(A) c MZ(A) for each complex z.

Proof. Apply Theorem 1 to A* and note that Mg(A*) = MZ*(A)
for each complex z.

THEOREM 3. A is a nonzero scalar multiple of a unitary operator
if and only if AMZ(A) — MZ(A) for each complex z.

Proof. By Theorems 1 and 2 A is a scalar multiple of a unitary
operator if and only if AMZ(A) c MZ(A) and A*MZ(A) c MZ{A) for each
complex z. Thus if A is nonzero, this is equivalent to AMZ(A) c MZ(A)
and Mz{A)(zAMz{A).

The proof of Theorem 4 which classifies normal operators in terms
of the sets MZ{A) appears to depend upon the following lemma.

LEMMA 2. If A and E are operators on X such that ker A c her E
and for each x in X either

( i ) \\Ax\\ = \\Ex\\
or

(ii) there exists a real number rx such that

A*Ax - (rx)E*Ex ,

then A*A is a scalar multiple of E*E.
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Proof. Assume that A* Ax = aE*Ex and A*Ay = bE*Ey where
E*Ex and ί/*^ are linearly independent. Let t be real, 0 < ί < 1.
Either \\A(tx + (1 - t)y\\ = ||#(ία? + (1 - % | | or there exists a real
number c such that A*A(tx + (1 - %) = cE*E(tx + (1 - % . In this
last case since 0 < t < 1 and E*Ex and J ? * ^ are linearly independent,
we have a — c = b. Thus if a Φ δ, then

||A(ίs + (1 - t)y)\\ = \\E(tx + (1 - t)y)\\

for all ί, 0 < t < 1. Letting t approach 1 and 0, we have || Ax\\ = ||Ex\\
and ||Ai/ll = \\Ey\\. Therefore |α | = |6| = 1 and since E*Ex Φ 0 and
E*Ey Φ 0, necessarily a = b = 1. Thus we must have α = 6 if E*Ex
and *̂J&3/ are linearly independent.

Secondly if E*Ex and E*Ey are linearly dependent and A*Ax —
aE*Ex and A*A?/ = bE*Ey, then it follows from the hypothesis ker A
c ker E that α and b can be chosen to be the same real number.

The arguments in the two preceding paragraphs show that there
exists a real number r such that if xe X, then either A*Ax = rE*Ex
or ||Aα|| = ||JSfc||. Thus either ||Aa?|| ^ \\Ex\\ for all α i n X o r ||AOJ|| ^
\\Ex\\ for all x in X In either case {x: \\Ax\\ = \\Ex\\Ex\\} is linear
by Theorem A, (i). proving that X is the union of the two linear
subspaces:

{x: A*Ax = rE*Ex) and {x: \\Ax\\ = \\Ex\\} .

Therefore either A*A = rE*E or A*A = E*E.

THEOREM 4. A is normal if and only if for each complex z

{x\Axe MZ(A)} = {xI A*x G MZ(A)} .

Proof. If A is normal it follows that Ax e MZ{A) if and only if
A*xeMt(A). Assume now that this condition holds. Then

(5) <A2α, Aa;>||A*ίc||* = <AA*x, A*^>||A^||2 for all x in X

and

(6) ker A = ker A* .

This last assertion can be proven as follows: x e ker A ̂ Ax e M£A)
for all complex z ~ A*x e MZ{A) for all complex z +-*xe ker A*.

Using the same techniques as in the proof of Theorem 1, we show
that if x G X, either their exists a number b such that AA*x = 6A*Aa? or
there exist numbers c and d such that AA*2 x = cAA*# and A*A2x —
dA*Ax. These last two equations combined with (5) and (6) imply
that either Ax = A*x = 0 or c = eZ*. They also imply that A*2# =
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cA*x and A2x — dAx. Again using (6), we have AA*x — cAx and
A*Ax = dA*x. Thus if Ax Φ 0, || A*x\\* = c <Ax, x) = d\x, A*x> =
\\Ax||2. Therefore A and A* satisfy the hypotheses of Lemma 2 and
there exists a real number r such that AA* — rA*A. This is sufficient
to imply that A is normal.

COROLLARY 5. Let A be an invertίble operator on X. The follow-
ing statements are equivalent:

( i ) A is normal,
(ii) A~ιMz{A) = A*~~ιMβ(A) for each complex z,
(iii) A~ιMz{A*A~ι) = A*~1MZ(A*A~1) for each complex z.

Proof. The equivalence of (i) and (ii) is a restatement of Theorem
4 for the case in which A is invertible. The equivalence of (i) and
(iii) is obtained by applying Theorem 3 to the operator A*A~\

I should like to express my appreciation to the referee of this
paper for his helpful suggestions.
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