CLASSIFYING SPECIAL OPERATORS BY MEANS OF SUBSETS ASSOCIATED WITH THE NUMERICAL RANGE

MARY R. EMBRY

Let A be a continuous linear operator on a complex Hilbert space X, with inner product \langle , \rangle and associated norm || ||. For each complex number z let $M_z(A) = \{x: \langle Ax, x \rangle = z || x ||^2\}$. The following classifications of special operators are obtained: (i) A is a scalar multiple of an isometry if and only if $AM_z(A) \subset M_z(A)$ for each complex z; (ii) A is a nonzero scalar multiple of a unitary operator if and only if $AM_z(A) = M_z(A)$ for each complex z; and (iii) A is normal if and only if for each complex z $\{x | Ax \in M_z(A)\} = \{x | A^*x \in M_z(A)\}$.

1. Introduction. The sets, $M_z(A)$, are closely associated with the numerical range of A: $W(A) = \{\langle Ax, x \rangle : ||x|| = 1\}$. These sets were introduced in [1] and used to characterize the elements of W(A) as follows:

THEOREM A. If $z \in W(A)$, then

- (i) z is an extreme point of W(A) if and only if $M_z(A)$ is linear,
- (ii) if z is a nonextreme boundary point of W(A), then

$$\gamma M_z(A) = \bigcup \{ M_w(A) \colon w \in L \}$$

where L is the line of support for W(A) passing through z,

(iii) if W(A) is a convex body, then z is an interior point of W(A) if and only if $\gamma M_z(A) = X$.

It was also shown in [1, Theorem 2] that $\cap \{\text{maximal linear subspaces of } M_z(A)\}$ plays a special role in determining the normal eigenvalues of A.

With the aforementioned evidence concerning the sets $M_z(A)$ in mind, it seemed natural to ask whether these sets behave in a particular fashion if A has special characteristics or whether the action of A on these sets determines special properties of A. Obviously A is Hermitian if and only if $M_z(A) = M_{z^*}(A)$ for all complex z. The first question which came to mind was: when is it the case that each of the sets $M_z(A)$ is invariant under A. The techniques developed to answer this question in Theorem 1 led to the other theorems in this paper.

The following elementary facts can be noted about the sets, $M_z(A)$. 1. Each set $M_z(A)$ is homogeneous and 2. either $M_z(A) \cap M_w(A) = \{0\}$ or $M_z(A) = M_w(A)$.

2. Notation and terminology. The notation and terminology used in this paper are the same as that found in [1] with the following additions. f is a *bilinear functional* on a complex vector space X if and only if $f: X \times X \rightarrow \{\text{complex numbers}\}, f$ is linear in the first variable and conjugate linear in the second variable.

Throughout the paper A is a continuous linear operator on a complex Hilbert space X; A is an isometry if $A^*A = I$; A is unitary if $A^*A = AA^* = I$; A is normal if $AA^* = A^*A$; and A is hyponormal if $AA^* \leq A^*A$. ker A denotes the null space of A: $\{x: Ax = 0\}$.

3. Classification theorems. The following lemma plays a fundamental part in the proofs of Theorems 1-4.

LEMMA 1. If f, g, h and k are bilinear functionals on a complex vector space X, satisfying

(1)
$$f(x, x)g(x, x) = h(x, x)k(x, x)$$
 for all x in X, then

(2)
$$f(x, y)g(x, y) = h(x, y)k(x, y)$$
 for all x and y in X.

Indication of proof. Let $x, y \in X$ and let z be an arbitrary complex number. By substituting y + zx for x in equation (1) and equating coefficients, one arrives at equation (2) by means of the coefficients of z^2 .

THEOREM 1. A is a scalar multiple of an isometry if and only if $AM_z(A) \subset M_z(A)$ for each complex z.

Proof. $M_z(A)$ is invariant under A for each complex z if and only if

$$(3) \qquad \langle A^2x, Ax \rangle ||x||^2 = \langle Ax, x \rangle ||Ax||^2 \text{ for all } x \text{ in } X.$$

Obviously if A is a scalar multiple of an isometry, then equation (3) holds for all x in X. Thus we assume that equation (3) holds for all x in X and by Lemma 1 have

(4)
$$\langle A^2x, Ay \rangle \langle x, y \rangle = \langle Ax, y \rangle \langle Ax, Ay \rangle$$
 for all x and y in X.

It now follows that $\{x\}^{\perp} \subset \{Ax\}^{\perp} \cup \{A^*Ax\}^{\perp}$. Moreover with x and y interchanged in (4) we see that $\{x\}^{\perp} \subset \{A^*x\}^{\perp} \cup \{A^*Ax\}^{\perp}$. Since $\{y\}^{\perp}$

is linear, we have either $\{x\}^{\perp} \subset \{A^*Ax\}^{\perp}$ or $\{x\}^{\perp} \subset \{Ax\}^{\perp} \cap \{A^*x\}^{\perp}$. Either case implies that there exists a scalar r_x such that $A^*Ax = (r_x)x$. This is sufficient to imply that A is a scalar multiple of an isometry.

If A is a nonunitary isometry, the only complex z in W(A) for which $AM_z(A) = M_z(A)$ are the extreme points of W(A). To prove this we make use of results from [2] and [3] which assert that in this case $\sigma(A) = \overline{W(A)} = \{z: |z| \leq 1\}$. Thus the elements of W(A) are either extreme points z with |z| = 1 or interior points. If z is an extreme point of W(A), then since A is hyponormal,

$$M_z(A) = \{x: Ax = zx \text{ and } A^*x = z^*x\}$$

by [4] and thus $M_z(A) = AM_z(A) = A^*M_z(A)$. Conversely if $M_z(A) = AM_z(A)$, then $\gamma M_z(A) = A(\gamma M_z(A))$. By Theorem A, (iii) if z is an interior point of W(A), then X = AX, implying that A is invertible and hence unitary. Therefore if $M_z(A) = AM_z(A)$ and $z \in W(A)$, then z is an extreme point of W(A).

THEOREM 2. A^* is a scalar multiple of an isometry if and only if $A^*M_z(A) \subset M_z(A)$ for each complex z.

Proof. Apply Theorem 1 to A^* and note that $M_z(A^*) = M_{z^*}(A)$ for each complex z.

THEOREM 3. A is a nonzero scalar multiple of a unitary operator if and only if $AM_z(A) = M_z(A)$ for each complex z.

Proof. By Theorems 1 and 2 A is a scalar multiple of a unitary operator if and only if $AM_z(A) \subset M_z(A)$ and $A^*M_z(A) \subset M_z(A)$ for each complex z. Thus if A is nonzero, this is equivalent to $AM_z(A) \subset M_z(A)$ and $M_z(A) \subset AM_z(A)$.

The proof of Theorem 4 which classifies normal operators in terms of the sets $M_z(A)$ appears to depend upon the following lemma.

LEMMA 2. If A and E are operators on X such that ker $A \subset \ker E$ and for each x in X either

(i) ||Ax|| = ||Ex||

or

(ii) there exists a real number r_x such that

$$A^*Ax = (r_x)E^*Ex ,$$

then A^*A is a scalar multiple of E^*E .

Proof. Assume that $A^*Ax = aE^*Ex$ and $A^*Ay = bE^*Ey$ where E^*Ex and E^*Ey are linearly independent. Let t be real, 0 < t < 1. Either ||A(tx + (1 - t)y)|| = ||E(tx + (1 - t)y)|| or there exists a real number c such that $A^*A(tx + (1 - t)y) = cE^*E(tx + (1 - t)y)$. In this last case since 0 < t < 1 and E^*Ex and E^*Ey are linearly independent, we have a = c = b. Thus if $a \neq b$, then

$$||A(tx + (1 - t)y)|| = ||E(tx + (1 - t)y)||$$

for all t, 0 < t < 1. Letting t approach 1 and 0, we have ||Ax|| = ||Ex||and ||Ay|| = ||Ey||. Therefore |a| = |b| = 1 and since $E^*Ex \neq 0$ and $E^*Ey \neq 0$, necessarily a = b = 1. Thus we must have a = b if E^*Ex and E^*Ey are linearly independent.

Secondly if E^*Ex and E^*Ey are linearly dependent and $A^*Ax = aE^*Ex$ and $A^*Ay = bE^*Ey$, then it follows from the hypothesis ker $A \subset \ker E$ that a and b can be chosen to be the same real number.

The arguments in the two preceding paragraphs show that there exists a real number r such that if $x \in X$, then either $A^*Ax = rE^*Ex$ or ||Ax|| = ||Ex||. Thus either $||Ax|| \le ||Ex||$ for all x in X or $||Ax|| \ge ||Ex||$ for all x in X. In either case $\{x: ||Ax|| = ||Ex||Ex||\}$ is linear by Theorem A, (i). proving that X is the union of the two linear subspaces:

$$\{x: A^*Ax = rE^*Ex\}$$
 and $\{x: ||Ax|| = ||Ex||\}$.

Therefore either $A^*A = rE^*E$ or $A^*A = E^*E$.

THEOREM 4. A is normal if and only if for each complex z $\{x \mid Ax \in M_z(A)\} = \{x \mid A^*x \in M_z(A)\}$.

Proof. If A is normal it follows that $Ax \in M_z(A)$ if and only if $A^*x \in M_z(A)$. Assume now that this condition holds. Then

(5)
$$\langle A^2x, Ax \rangle ||A^*x||^2 = \langle AA^*x, A^*x \rangle ||Ax||^2$$
 for all x in X

and

$$(6) ker A = ker A^*.$$

This last assertion can be proven as follows: $x \in \ker A \leftrightarrow Ax \in M_z(A)$ for all complex $z \leftrightarrow A^*x \in M_z(A)$ for all complex $z \leftrightarrow x \in \ker A^*$.

Using the same techniques as in the proof of Theorem 1, we show that if $x \in X$, either their exists a number b such that $AA^*x = bA^*Ax$ or there exist numbers c and d such that $AA^{*2}x = cAA^*x$ and $A^*A^2x =$ dA^*Ax . These last two equations combined with (5) and (6) imply that either $Ax = A^*x = 0$ or $c = d^*$. They also imply that $A^{*2}x =$ cA^*x and $A^2x = dAx$. Again using (6), we have $AA^*x = cAx$ and $A^*Ax = dA^*x$. Thus if $Ax \neq 0$, $||A^*x||^2 = c \langle Ax, x \rangle = d^*\langle x, A^*x \rangle = ||Ax||^2$. Therefore A and A^* satisfy the hypotheses of Lemma 2 and there exists a real number r such that $AA^* = rA^*A$. This is sufficient to imply that A is normal.

COROLLARY 5. Let A be an invertible operator on X. The following statements are equivalent:

- (i) A is normal,
- (ii) $A^{-1}M_z(A) = A^{*-1}M_z(A)$ for each complex z,
- (iii) $A^{-1}M_z(A^*A^{-1}) = A^{*-1}M_z(A^*A^{-1})$ for each complex z.

Proof. The equivalence of (i) and (ii) is a restatement of Theorem 4 for the case in which A is invertible. The equivalence of (i) and (iii) is obtained by applying Theorem 3 to the operator A^*A^{-1} .

I should like to express my appreciation to the referee of this paper for his helpful suggestions.

References

1. M. R. Embry, The numerical range of an operator, Pacific J. Math., **32** (1970) 647-650.

2. C. R. Putnam, On semi-normal operators, Pacific J. Math., 7 (1957), 1649-1652.

3. ____, On the spectra of semi-normal operators, Trans. Amer. Math. Soc., 119 (1965), 509-523.

4. J. G. Stampfli, Extreme points of the numerical range of a hyponormal operator, Mich. Math. J., 13 (1966), 87-89.

Received June 16, 1970 and in revised form October 5, 1970.

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE