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MEROMORPHIC ANNULAR FUNCTIONS

JOSEPH WARREN

The purpose of this paper is to present a definition of
meromorphic annular functions which includes the definition of
holomorphic annular functions., Several equivalent conditions
for meromorphic annular functions are given,

2. Preliminary definitions and remarks. Let D be the disk
|z] <1 and C the circle |z| = 1. We shall, henceforth, assume that
the function f(z) is meromorphic in D.

A boundary path in D is the image of the unit interval 0 < ¢ < 1
under a continuous function z = z(t) from 0 < ¢ < 1 into D such that
lim,_, |2(¢)] = 1. A spiral in D is a boundary path with the additional
condition that lim,, argz() = +o or —oo for any branch of the
argument of z(t).

The set L) = {z]|f ()| =, 0 <X < oo} is called a level set for
the function f and a component of L(\) is called a level curve. It
is known [6, Prop. 1] that if C(\) is a level curve which does not
contain any zeros of f'(z), then C()\) is either a Jordan curve contained
in D or the union of two disjoint boundary paths. If X =0 or A = oo,
then L(\) corresponds to the set of zeros or poles, respectively, of
f@.

The function f(2) has the asymptotic value a (allowing a = «)
if there exists a boundary path z = 2(f), 0 < t < 1, such that lim,_,
F@) = a.

The following definition will be taken for the definition of mero-
morphic annular functions.

DEFINITION 1. Let f(2) be a nonconstant meromorphic function
in D and let {J,} be a sequence of Jordan curves with J, contained
in the interior of J, for n = 2, 3, 4, --- such that either

limmax |f(z) —a] =0,

n—oz€d,,

for a finite value a, or, if a = oo,

lim min | f(z)] = .

n—e0z€Jy

If, in addition, f has an asymptotic value, then f will be called an
annular function with respect to a.

The class of annular functions with respect to ¢ will be denoted
by &7 (a).
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REMARK 1. It is proved in Theorem 1 of [7] that if fe . (a),
then given any r, 0 < r < 1, there exists an integer N such that if
n = N, then the disk |z]| < » is contained in the interior of J,. In
such a case the sequence {J,} is said to converge uniformly to the
boundary C.

REMARK 2. A subsequence {J,} can be selected such that if
k+#j then J, N J,, = ¢.

From these two remarks it may be assumed that the members
of the sequence {J,} of Definition 1 are pairwise disjoint and that the
sequence tends uniformly to C.

REMARK 3. It is evident that if fe . (¢) then the asymptotic
value assumed to exist in Definition 1 is a.

REMARK 4. If a # b, then % (@) N (b)) = 6. The function f
is an % (a) if and only if 1/fe &7 (1/a).

REMARK 5. If f is holomorphic and annular in the old sense
[1, 340] then there exists a sequence of Jordan curves {J,} which tend
to the circle C and on which f tends uniformly to . Since every
holomorphic function has an asymptotic value, which in this case
must be <, it is seen that fe .9 (). Thus there exists a function
in .7 (0); the reciprocal of any function annular in the old sense.
The following definitions are needed.

DEFINITION 2. If the nonconstant meromorphic function f in D
has the asymptotic value a on a spiral asymptotic path, then f is a
spiral function with respect to a.

The class of spiral function with respect to a will be denoted by
S (a).

DEFINITION 3. If the nonconstant and meromorphic function f in
D is bounded away from a on a spiral boundary path, then f is said to
be in the Valiron class with respect to a, provided f has the asymp-
totic value a.

The class of such functions will be denoted by 7°(a).

REMARK 6. 7 (a) < S (a).
DEFINITION 4. The function f(2) is in the class <(a) if f

is nonconstant and meromorphic in D and has the asymptotic value
a as well as the following property: In the case of a finite value a,
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every level curve of f(2) — a which is disjoint from the zeros of f'(z)
is a compact set in D, or, in the case of a = <o, every level curve
of f(z) which is disjoint from the zeros of f’(z) is a compact set in D.

DEeFINITION 5. Let < (a) be the class of functions f such that
fis in &'(a) and such that every level curve of f(z) — a (or f(?)
if @ = «) is a compact set in D.

It will be shown that < (¢) = < '(a).

DEFINITION 6. A tract {D(€), a} for the meromorphic funection
fin D associated with the value @ is a set of non-void domains D(e)
each of which is a component of {z]|f(z) — a| <e}, or {z]| |f(x)| > 1/e}
if @ = oo, such that D(s) € D(’) if e < & and N.«.D() = ¢.

3. Equivalences for . (a). The following theorem gives the
main equivalences for the class .&7(¢) and corresponds to Theorems 1
and 3 of [6].

THEOREM 1. % (a) = F(a) — 7 (a) = &'(a) = < (a).

Proof. To prove the theorem in the most economical way we
prove the chain of containments .97 (a¢) C & (a) — 7 (a) C &' (a) C
(@) C & (a) C & (a).

First, let fe % (a), let T be the asymptotic path on which f
tends to @ (see Remark 3), and let {J,} be the sequence of Jordan
curves of Definition 1 on which f tends uniformly to a. Using the
same construction as in Theorem 2 of [6] a spiral may be constructed
on which f has the asymptotic value a. Thus fe .&”(a). Evidently
every boundary path intersects members of {J,} for all sufficiently
large »n so that f cannot be bounded away from a on any spiral.
Since f has the asymptotic value a, f is not in 7°(a) and is in &7 (a)
— 7 (a).

Now let fe &(e¢) and let C(\) be a level curve of f(2) — a which
contains no zeros of f'(z). If C(\) is not a Jordan curve in D, then
it consists of two boundary paths (spirals) on which f is bounded
away from @, and we may conclude that fe 7 (a). Therefore, if
fe (@) — 7 (a), then each level curve C(\) of f(z) — a containing
no zeros of f’(z) must be a Jordan curve in D, and hence fe .&'(a)
and we obtain & (a) — 7 (a) € & '(a).

Let fe & '(a). Because f has the asymptotic value a, there is a
tract {D(e), a} associated with a. Choose a sequence {e,} of positive
numbers such that ¢, | 0 as n— <« and the level set {z||f(?) — a|=
&}, or {z]|f ()| = 1/e,} if @ = o, does not contain any zeros of f'(2)
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for n =1,2,--- .

For each m, D(e,) contains an asymptotic path with asymptotic
value a so that it cannot be contained within a Jordan curve in D.
Thus the set D(e,) is |z] <1 with a countable or finite number of
Jordan domains removed. Otherwise the boundary of D(s,) would
contain a level curve which is not a compact set in D, contrary to
the hypothesis that fe .&’(a).

If D@, = D for every n then |f(z) —a| <e¢, (or | f(2)]| > 1/e,)
in D for every » and f(z) is identically constant contrary to the
definition of .<“’(a). Thus there exists an integer m, and a point
z,€ D which is not in D(e,). Let J, be the Jordan curve in D which
contains 2z, in its interior and which is a component of the boundary
of D(e,). Let.J, be the Jordan curve which contains z, in its interior
and is a boundary component of D(e, .,). Because of the definition of
tract, D(e, +)  D(e,) which implies that J; contains J; in its interior.
Continuing in the same manner we obtain a sequence of Jordan curves
{J,} such that J, contains .J, in its interior for » = 2, 3, 4, -+ and
such that | f(z) — a| = ¢, (or |f(z)| = 1/e,) for all zeJ,, n=1,2, ..
Since f is not a constant, J, tends uniformly to C, or min,., |z|—1
as m— oo, because of [7, Theorem 1]. Thus f has an asymptotic
value and has the sequence {J,} with all the properties of Definition
1 so that f is in &7 (a).

If fe . o7 (a), then it is easy to see that any level curve of f(z) — a
is contained inside one of the Jordan curves J, of Definition 1 and is
thus compact in D. Thus fe < (a).

Finally, <~ (a) € &~'(a) by definition, and the proof of Theorem 1
is complete. There is one other characterization of the set .97 (a) which
was suggested to me by J. Choike.

COROLLARY. The function f is in () if and only +f f has an
asymptotic value and every boundary path contains a sequence of
points a, such that lim, .f(z,) = a and lim,_.|z,| =1

Proof. 1If fe .7 (a) the conclusion follows immediately.

Let f¢ .7 (a). Then by Theorem 1 there exists a level curve
C(») of the function f(2) —a, or f(2) if @ = o, which is disjoint
from the zeros of f'(z) and is not a Jordan curve in D. Hence, C(0)
contains a boundary path T on which | f(z) —a| =N, or |f(z)| =\ if
a = oo, and so there does not exist a sequence z, € T such that lim,_..
f(z,) = a and f fails to satisfy the conditions of the corollary. This
completes the proof.



MEROMORPHIC ANNULAR FUNCTIONS 563

4. A short proof of a corollary of McMillan. The proof given
in this section is elementary in the sense that it uses only the clas-
sical results of Fatou and F. and M. Riesz. The theorem of McMillan
[4, p. 151] to which this corollary refers is very complicated and uses
many measure theoretic concepts.

The method of proof uses a result of MacLane [3, p. 13] which
was used to prove several results in [7].

_ DEerFINITION 7. The end of the tract {D(e), a} is M., D(e) where
D(e) represents the closure of D(g).

THEOREM 2 (McMillan). If f(2) is a holomorphic function in D
which has a finite number of tracts, the union K of the ends of the
tracts assoctated with oo 1s the circle C: |z| = 1.

Proof. Let T\(e0) = {D(e), o}, To(c0) = {Dy(e), o}, =+, Tn(co) =
{D,(e), 0}, Ti(a), Ty(a,), - -+, T,(a,), be the tracts for f where a;# o, ¢ =
1’ 2, oo, D

Assume the contrary of the conclusion: that is K = C. Because
K is closed there exists a disk N about a point of C such that K N
N = ¢. If for some ¢ and every ¢ > 0, D;(e) N N # ¢, where D,(e) is
the set of domains for T;(c), select a sequence {¢,} with ¢, | 0 and
a sequence {z,} such that z,e D;(,) N N. By Definition 6 {z,} has a
limit point ¢ € C which is also in N. Then { e N7, D;(¢;) C K, in viola-
tion of K N N = ¢. Thus for each n =1, 2, ---, m there exists an
¢, > 0 such that D,(,) N N = ¢. For ¢ = Min{e, ¢, -+, €,}, we have
D,(e) N N =g, for each m,n =1,2, +++, m.

If f(z) were bounded in N N D, then f(z) has radial limit almost
everywhere on N N C by the theorem of Fatou [2]. These limits
must be selected from {a,, a,, +-+, a,}. Let A; be the setof (e NN C
for which f has radial limit a;, By the F. and M. Riesz theorem [5]
the measure of A; is 0. Hence the measure of |J’-, 4; is also 0 and
f(2) has radial limit on at most a set of measure 0 on N N C. Thus
f( is unbounded in N N D and it is possible to choose z,e N N D
such that | f(z)) | > 1/e, f'(z) = 0, and f(z,) # a; for 1 =1,2, +-«, p.

By methods of MacLane [3, p. 13] there exists an arc 7 from
f(z) on the Riemann surface of f~* which ends at «. The arc T
can be chosen so that its projection in the w-plane is a ray on which
|w| = |f(z)]. The inverse image of T has a component v which
contains z,. Because |f(2)| = |f(z) | = 1/¢ for all ze~ and because
is an asymptotic path with < as asymptotic value, v < D,(¢) for
some 7 between 1 and m. This implies z,€ D,(¢) N N. But it has
been established that D,(¢) N N = ¢. This contradiction implies that
the assumption K # C is false and the theorem is proved.
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REMARK. The proof just given goes through for holomorphic
functions with finite tracts associated with « and a countable num-
ber of tracts associated with finite values. By another corollary of
MecMillan [4, p. 151] no such function exists. If f(z) has finite tracts
associated with oo and infinite tracts, then f has point asymptotic
values (values which are approached along a path that ends at a point
of C) on a set of positive measure.
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