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SOME TRIPLE INTEGRAL EQUATIONS

JoHN S. LOWNDES

In this paper we solve the triple integral equations

~f T + s/o) B o
(1) M {F(E+ﬁ+s/a>@(s),x} 0,0<w<a b<a<oo,
~f T'd+7—s/o) . .
(2) m{ I 0; o) = fiw), < w <,

where «, 5,&,9,0 > 0,0 > 0, are real parameters, f:(x) is a
known function, @(s) is to be determined and

(3) Mih(x); st = H(s), M~{H(s); »} = h(x) ,
denote the Mellin transform of %(x) and its inversion formula
respectively.

The above equations are an extension of the dual integral equations
solved in a recent paper by Erdélyi [2] by means of a systematic
application of the Erdélyi-Kober operators of fractional integration [4].

Using the properties of some slightly extended forms of the
Erdélyi-Kober operators we show, in a purely formal manner, that
the solution of the triple integral equations can be expressed in terms
of the solution of a Fredholm integral equation of the second kind.
Srivastav and Parihar [5] have solved a very special case of the
equations by a completely different method from that used in this
paper. The method of solution employed here will be seen to follow
closely that used by Cooke [1] to obtain the solution to some triple
integral equations involving Bessel functions; indeed Cooke’s equations
may be regarded as a special case of equations (1) and (2) and it is
shown that a solution of his equations can be readily obtained from
that presented in this paper.

2. The integral operators. We shall use the integral operators
defined by

(4) Ll m o) = P [T — e i, a0,
1—a(a+y+1) z
(5) _ 9101(1 +va) _dix_ Sa (2 — )o@t dt
—-1<a<0,
(6) K, o(,b: 0)f(w) = % S (t° — gyt =it , a> 0,
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(7) _ gor—H+t Sb (t7 — @) tou—a—D=1f(g)dt
T TA+ @ do s ’

where a < < b, 0 > 0.

When @ =0,b = -, these become the extended form of the
Erdélyi-Kober operators used in [2] and when ¢ = 2 they are the
same as the operators defined by Cooke [1].

From the theory of Abel integral equations it follows that the
inverse operators are given by

(8) Iﬂ_,loz (a: x. O.)f(x) = Inta,—a (a’y X O.)f(m) 9
(9) Kv_,la (xy b: O)f(x) = Km—a,—a (xy b: O')f(ﬂ'}) .

We shall also find it convenient to have expressions for integral
operators of the type

(10) L%a (07 &re O.)f(x) = Iﬂ—,la (a'y xe 0) I%oz (Oy a: O')f(x) ’ 0 < a < x,
(11) M, (2, b: 0)f(x) = Ky (2, a: 0) Ky . (a, b: 0)f(x) , x<a<b.
When 0 < @ < 1, we see on using the results (4), (5) and (8) that

L a O, . = ﬂ_ ____(i_ (° g tﬂ —ata—ldt
1.0, 2 0)f (@) i —a i Sa(x )

Sa (ta _ ua)a—luo(v+1)—-1f(u)du .
0

Inverting the order of integration and using the result
i Sz ta—ldt _ ma—l(ao - uo)a
dx a (wa — ta)a(ta — uo)l-—a (xa — uu)(xa — aa)a ’

w<a<e,<a<l,

we find
L, 0, z: 0)f(z) = 2sin@m) a7
(12) T (xo - aa)a
SE WG — u) s
0 x" — uﬂ

Similarly we can show that
M, .(x, b: 0)f(x) = osin(ar)  gotet?
(13) T (aa — go)e

b o(l—a—n)—1 o __ qo\a
|| = 9 pdu,
a U — x°

where 0 < a < 1.
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When —1 < a <0, the formulae for L,, and M, , are exactly
the same as those given by the above equations.
We also have the expressions

Iysa-a(0, @2 0) I, (0, x: 0)f(%)
= [I7. 0, 2: 0) — I;u(a, ©: 0)] L, . (0, @: 0)f(%)
= f@) — I;x(a, 2: 0)[1,,. (0, a: 0) + I« (a, o: 0)]f(x)
= —I;.(a, 2: 0)1,,. (0, a: 0)f(@) = — L. (0, @ 0)f(2) ,

(15) Kv+a,—a (ay b: 0) K’),a (xa b: O')f(w) = - M’?»tx (x$ b: O')f(w) .

(14)

Two well known results [2] which play an important part in our
solution are

1) WAL 0, 2 (0N ) = p D 7@ o

A7) WK, ., o 0)f(@); 8} = F(f; ﬁf - j["s)/a) M{ £(2); s} -

In what follows we are concerned with three ranges of the
variable x, namely

(18) L={&E0zec<a,L={ma<ae<b,L={xb<x<cw},

and we shall write any function f(x), x = 0, in the form

19) flo) = 3@ ,
where
_ [f@),wel, .
(20) Fia) = {0, otherwise , 1,23.

With these definitions it is easily seen that if we evaluate the
equations

(21) 9(@) = I, (0, 2: 0)f (@), h(®) = K;,o (2, o 0)f(@) ,
on the intervals I, I, and I, respectively, we get

6.(@) = I, (0, »: 0) /() ,

®2 @) = Ky, a2 @) + Ko 2@, b: 0fs(@) + Ky lb, 03 0) )
23) gz(x) = Ivta (O, a: O')fz(x) + I’?,d (a, x: O')fz(x) ’

Tn(@) = Ky, b2 0)fi(a) + Ky (B, oo: 0O)fifa)
(24) 93(06) = 1y a(O, a: a)f1(x) + Iv a(a, b: O')fz(x) + Iv a(by T o')fa(x) y

h3(x) = Kﬂ,a (xy ool 0)f3(x) M
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3. Solution of the integral equations. Using the notation of
equations (19) and (20) we can write the triple integral equations (1)
and (2) as

~f_I'(6 + s/9) cab = g
25) B e 0 of = go)
of I'dA+ 79— sjo) .
(26) W G e 060 o} = £

where g, = ¢, = 0, f, is given and g,, f, and f, are unknown functions.
If we write

(27) ?(s) = Wig(x); s},

and use the formulae (16) and (17) we find that equations (25) and
(26) assume the operational form

(28) L. (0, z: 0) g () = flx) ,
(29) K (@, 001 0) g() = g(x)

Using the formulae (8) and (9) and solving the above equations for
#(x) we obtain

(30) $(@) = Ipsa—a(0, 2 0)f()
31) = Keip—s(2, 21 0)g(x)

Now remembering that ¢, = ¢; = 0, and using the relations (22),
(23) and (24) to evaluate equation (28) on the interval I,, equation
(30) on I, equation (31) on I;, equation (29) on I, and equation (31)
on I, we arrive at the following results

32) fiw) = I, 0, 2: 0) g,() ,

(33) $2(2) = Ipie—a(0, a2 0)f1(2) + I} (a, 22 0)fo() ,
(34) $5(x) = Ko (@, 221 0)g5() = 0,

(35) (%) = K5 (@, b2 0) go(w) ,

(36) $1(x) = Koy (a, b: 0) ga(0)

After eliminating f,(x) between equations (32) and (33), and
eliminating g.(x) between equations (35) and (36), we find that the
functions ¢,(x) and ¢,(x) satisfy the pair of simultaneous integral
equations

(37) 92(2) = — Ly (0, z: 0) gu(2) + I (a, 22 0) fr(w) ,
(38) ‘Pl(x) = _Ms,ﬁ (9(2, ba) ¢2(06) y
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where we have used the formulae (14) and (15).
From these results it is easily seen that ¢.(x) can be determined
from the Fredholm integral equation of the second kind

B9  6:(®) = Ly, (0, 22 0) Me 5 (3, b: 0) $o(x) + I, (@, @2 0) fo(®) -

The solution to the triple integral equations can then be obtained
from equations (27), (34), (38) and (39).

As an example we consider the case when 0 < a <1, and
—1 < B<0, or 0 < B < 1; in this instance equation (39) when written
out in detail is

b
5.) — | 4(0)S@, wdu
(40) . x1~u(>7+1) d z to(a+v+1)—x
T Tl - dv S (@ — t°)°

ft)de

where
Q070 A—p—E)—1

_ 00 _: :
@ Sz, w) = = sin(ar) sin (87) @ — a°)* (W’ — a’)~?

a a(p+1) +a(g+8)—1(yo __ 4o\
S t° (@° — t9) dt .
0 (wa —_ ta)(uﬁ . tﬁ)(aa . ta)ﬁ

4, An application. Certain mixed boundary value problems
[4] may be reduced to the solution of triple integral equations of the

type

42) rv(u)efg,,(ux)duzo, 0=r<a, b<ae <o,
0

(43) S“’ w=ap (w) oy (ua)du = F(z) , a<z<bh,

where J,,(ux) is the Bessel function of the first kind of order 2p, F(x)
is a preseribed function and +(u) is to be determined. When p = ¢
these are the equations investigated by Cooke [1]. We now show, in
a fairly straightforward manner, that the above equations can be
transformed into equations of the type (1) and (2).

Denoting the Mellin transform of +(u) by

(44) Dy (w); s} = ¥(s) ,
and using the result [3]

I'g — n+ s/2)

(45) T o) = 2 o)

we have, on applying the Faltung theorem for Mellin transforms [3],
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that the integral equations (42) and (43) can be written in the form

~f  I'(p + 8/2) N oo
(46) zne{r(q_nJrs/z)@(s),x}_o, 0se<a, b<w< o,

—1 I'l+ p—s/2) . — Olt2n 2
@) m {F(1+n+q_s/2) (D(s),x}_z e F@), a<z<b,

where

_os L'(@ — 1n + 3/2) _
(48) O(s) = 2 TR ra-—s).

These are the same as equations (1) and (2) with

o=0=2¢=97=pa=q-p+nB=¢-—p—n,

W fw) = 2o

Using the results of the previous section we have therefore that
the solution of equations (46) and (47) can be found in terms of a
function 4(x) by

(50) D(s) = Mg (=); s} ,

where ¢,(x) = 0 and the functions ¢,(x) and ¢,(x) are obtained from
equations (38) and (89) with the parameters &, 7, ete. given by
equations (49).
Finally, in order to find the solution of the integral equations
(42) and (43) in terms of ¢(x), we proceed in the following way.
From equation (44) we have that the solution is

() = M (s); u)

(51) _ —1)9s—1 F(1/2 -+ P 4+ 8/2) . 3 .
- {2 ra/2+q—mn-—s/2 Mig@); 1 — sk u} ,

on using equations (48) and (50). Inverting the order of integration
in the last equation we get

I fgss _ T(@A/2 4+ p+8/2)
Jr(u) = So o(x)IM {2 T2t q—n—3s2 " uw}dw

_ S‘” (lz%)”"“’"” 3(2) s g (u)dst

(52)

after applying the result (45). When p = ¢ this solution is exactly
the same as that found by Cooke [1, pp. 61-62].
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