NORMS OF DERIVATIONS ON $\mathscr{L}(\mathfrak{X})$

B. E. Johnson

If \mathfrak{X} is a real or complex Banach space and $\mathscr{L}(\mathfrak{X})$ is the algebra of bounded linear endomorphisms of \mathfrak{X} then each element T of $\mathscr{L}(\mathfrak{X})$ defines an operator D_{T} on $\mathscr{L}(\mathfrak{X})$ by $D_{T}(A)=A T-T A . \quad$ Clearly $\left\|D_{T}\right\| \leqq 2 \inf _{\lambda}\|T+\lambda I\|$ and Stampfli has shown that when \mathfrak{X} is a complex Hilbert space equality holds. In this paper it is shown, by methods which apply to a large class of uniformly convex spaces, that this formula for $\left\|D_{T}\right\|$ is false in l^{p} and $L^{p}(0,1) 1<p<\infty, p \neq 2$. For L^{1} spaces the formula is true in the real case but not in the complex case when the space has dimension 3 or more.

Stampfli's results appear in [1] stated for complex Hilbert space but the same proofs yield the corresponding result for real spaces.

Throughout this paper \boldsymbol{K} will denote either \boldsymbol{R} or \boldsymbol{C}. We begin by describing the construction of an operator T of rank 1 with $\left\|D_{T}\right\|<d_{T}=2 \inf _{\text {גeк }}\|T+\lambda I\|$. The reason that this fails in Hilbert space is precisely because for an ellipse, conjugacy is a symmetric relation on the set of diameters; more precisely if x, y are two points on the unit ball then y is parallel to the tangent plane at x if and only if x is parallel to the tangent plane at y.

Definition 1. Let $x \in \mathfrak{X},\|x\|=1$. The unit ball \mathfrak{X}_{1} is uniformly convex at x if whenever $\left\{y_{n}\right\}$ is a sequence with $\left\|y_{n}\right\| \leqq 1,\left\|x+y_{n}\right\| \rightarrow 2$ then $y_{n} \rightarrow x$.

Proposition 2. Let \mathfrak{X} be a normed space over \boldsymbol{K} and let $x, y \in \mathfrak{X}$ with the following properties
(i) $\|x\|=1$ and there is $f \in \mathfrak{X}^{*}$ with $\|f\|=1$ and such that if $\left\{x_{n}\right\}$ is a sequence with $\left\|x_{n}\right\| \leqq 1, f\left(x_{n}\right) \rightarrow 1$ then $x_{n} \rightarrow x$.
(ii) $\|y\|=1$ and the unit ball \mathfrak{X}_{1} is uniformly convex at y.
(iii) For some $\lambda \in \boldsymbol{K},\|x+\lambda y\|<1$.
(iv) For all λ in $K,\|y+\lambda x\| \geqq 1$.

Define $T \in \mathscr{L}(\mathfrak{X})$ by $T z=f(z) y$. Then $2\|T\|=d_{T}>\left\|D_{T}\right\|$.
Proof. $\quad\|T+\lambda I\| \geqq\|(T+\lambda I) x\|=\|y+\lambda x\| \geqq\|y\|=1$ by (iv) and $\|T\|=1$ so $d_{T}=2$. Suppose $\left\|D_{T}\right\|=2$ and choose sequences $\left\{A_{n}\right\}$ from $\mathscr{L}(\mathfrak{X})$ and $\left\{x_{n}\right\}$ from \mathfrak{X} with $\left\|A_{n}\right\|=1=\left\|x_{n}\right\|$ and $\left\|D_{T}\left(A_{n}\right) x_{n}\right\| \rightarrow 2$. As $\left\|T A_{n} x_{n}\right\| \leqq 1,\left\|A_{n} T x_{n}\right\| \leqq 1$ we have $\left\|T A_{n} x_{n}\right\| \rightarrow 1,\left\|A_{n} T x_{n}\right\| \rightarrow 1$
and hence $\left\|A_{n} x_{n}\right\| \rightarrow 1$, $\left\|T x_{n}\right\| \rightarrow 1$. This shows $\left|f\left(x_{n}\right)\right| \rightarrow 1$ and so, replacing x_{n} by $w_{n} x_{n}$ if necessary where $\left\{w_{n}\right\}$ is a sequence of elements of \boldsymbol{K} with $\left|w_{n}\right|=1$, we may assume $f\left(x_{n}\right) \rightarrow 1$. Condition (i) now implies $x_{n} \rightarrow x$ and hence $T x_{n} \rightarrow y$. In the same way $\left\|T A_{n} x_{n}\right\| \rightarrow 1$ implies $\left|f\left(A_{n} x_{n}\right)\right| \rightarrow 1$ and replacing A_{n} by $w_{n}^{\prime} A_{n}$ if necessary we can assume $f\left(A_{n} x_{n}\right) \rightarrow 1$ from which we see $A_{n} x_{n} \rightarrow x, T A_{n} x_{n} \rightarrow y$. As $\left\|A_{n}\right\| \leqq 1$ we have $A_{n} T x_{n}-A_{n} y \rightarrow 0$ and so $\left\|A_{n} T x_{n}-T A_{n} x_{n}\right\| \rightarrow 2$ implies $\left\|A_{n} y-y\right\| \rightarrow 2$. Condition (ii) now shows $A_{n} y \rightarrow-y$ so that $A_{n}(x+\lambda y) \rightarrow x-\lambda y$. However if λ satisfies condition (iii) then $\|x-\lambda y\|>1$, as otherwise $2=2\|x\| \leqq\|x+\lambda y\|+\|x-\lambda y\|<2$, and so $\lim \left\|A_{n}(x+\lambda y)\right\|=\|x-\lambda y\|>1$ which is impossible because $\left\|A_{n}(x+\lambda y)\right\| \leqq\left\|A_{n}\right\|\|x+\lambda y\|<1$.

Proposition 3. Let \mathfrak{X} be a uniformly convex Banach space, $x, y \in \mathfrak{X}, \quad f, g \in \mathfrak{X}^{*} \quad$ with $\quad\|x\|=\|y\|=\|f\|=\|g\|=f(x)=g(y)=1$, $g(x)=0, f(y) \neq 0$ and suppose f is the only element h of \mathfrak{X}^{*} with $\|h\|=h(x)=1$. Then x, y, f satisfy the conditions of Proposition 2.

Proof. (i) If $\left\|x_{n}\right\| \leqq 1, f\left(x_{n}\right) \rightarrow 1$ then $f\left(x+x_{n}\right) \rightarrow 2$ and as $\left\|x+x_{n}\right\| \leqq 2,\|f\|=1$ we have $\left\|x+x_{n}\right\| \rightarrow 2$ so $x_{n} \rightarrow x$ by uniform convexity.
(ii) is clearly part of the present hypotheses.
(iii) x and y are linearly independent as $g(x)=0, g(y)=1, x \neq 0$. If $\|x+\lambda y\| \geqq 1$ for all $\lambda \in K$ then $\alpha x+\beta y \mapsto \alpha$ is a norm one linear functional on the space spanned by x and y and so has an extension h in \mathfrak{X}^{*} with $\|h\|=1, h(x)=1$ but $h \neq f$ because $h(y)=0 \neq f(y)$.
(iv) As $g(y+\lambda x)=g(y)=1$, for all λ in K and $\|g\|=1$ we have $\|y+\lambda x\| \geqq 1$ for all λ in K.

Corollary 4. If $1<p<2$ or $2<p<\infty$ and $\mathfrak{X}=l^{p}(0, \infty)$ or $\mathfrak{X}=L^{p}(-1,+1)$ is the corresponding \boldsymbol{K} Banach space of \boldsymbol{K} valued functions then there is $T \in \mathscr{L}(\mathfrak{X})$ with $\left\|D_{T}\right\| \neq d_{T}$.

Proof. The spaces are uniformly convex and at each point z of \mathfrak{X} with $\|z\|=1$ the element h of \mathfrak{X}^{*} with $h(z)=1=\|h\|$ is unique. Thus the construction in Proposition 2 applies once we find two suitable points x, y and these exist in such abundance that we can take anything but multiples of characteristic functions for x. First of all we give the construction in the two dimensional space $l^{p}(1,2)$.

$$
\text { If } x=\left(x_{1}, x_{2}\right), x_{1}>0, x_{2}>0, x_{1}^{p}+x_{2}^{p}=1 \text { then } f(z)=x_{1}^{p-1} z_{1}+x_{2}^{p-1} z_{2}
$$ so y can be taken as $\alpha\left(x_{2}^{p-1},-x_{1}^{p-1}\right)$ where $\alpha^{-p}=x_{1}^{p(p-1)}+x_{2}^{p(p-1)}$ and

$g(z)=\alpha^{p-1}\left(x_{2}^{(p-1)^{2}} z_{1}-x_{1}^{(p-1) 2} z_{2}\right)$. Then $g(x)=\alpha^{p-1}\left(x_{1} x_{2}^{(p-1)^{2}}-x_{1}^{(p-1)^{2}} x_{2}\right)$ which will be zero if and only if $x_{1}=x_{2}$. Thus taking say $x=3^{-1 / p}\left(2^{1 / p}, 1\right)$ and y, f, g as above the result is shown in $l^{p}(1,2)$.

As $l^{p}(0, \infty)$ and $L^{p}(-1,+1)$ each contain subspaces isometric with $l^{p}(1,2)$ we can construct x, y, f, g in this subspace and then extend f and g to \mathfrak{X} using the Hahn-Banach theorem.

In order to prove the results for spaces of measures we establish the equation $d_{T}=\left\|D_{T}\right\|$ for finite dimensional l^{1} spaces.

Proposition 5. Let n be a positive integer and \mathfrak{X} be the real Banach space \boldsymbol{R}^{n} with norm $\|x\|=\Sigma\left|x_{i}\right|$. Let $T \in \mathscr{L}(\mathfrak{X})$. Then $\left\|D_{T}\right\|=2 \inf _{\lambda \in R}\|T+\lambda I\|$.

Proof. Suppose T is given by the matrix $a_{i j}$ in the standard basis $e_{1}, e_{2}, \cdots, e_{n}$. We have $\|T\|=\sup _{j} \sum_{i}\left|a_{i j}\right| . \quad$ Suppose $\sum_{i}\left|a_{i j}\right|=$ $\|T\|$ for $j=1, \cdots, m$ but not for $j>m$. The condition $\|T\|=\frac{1}{2} d_{T}$ is equivalent to saying that 0 is in the convex hull of $a_{11}, \cdots, a_{m m}$ since if 0 does not lie in this convex hull then either $\left|a_{j j}+\lambda\right|<\left|a_{j j}\right|$ for $j=1, \cdots, m$ and small positive λ or for small negative λ and so there are small values of λ with $\|T+\lambda I\|<\|T\|$ whereas if 0 lies in this hull and $\lambda \neq 0$ there is j with $1 \leqq j \leqq m$ and $\left|a_{j j}+\lambda\right|>\left|a_{j j}\right|$ so that $\|T+\lambda I\|>\|T\|$.

It is clearly sufficient to prove the result when $\|T\|=\frac{1}{2} d_{T}$. First of all consider the case $m \geqq 2$ and suppose $a_{11} \geqq 0 \geqq a_{22}$. Let $A \in \mathscr{L}(\mathfrak{X})$ be an operator of the form $A e_{1}=e_{2}, A e_{2}= \pm e_{1}, A \mathrm{e}_{i}= \pm e_{i}$ $i=3, \cdots, n$. Clearly $\|A\|=1$ and

$$
\begin{aligned}
\left\|D_{T}(A) e_{1}\right\| & =\left\|A T e_{1}-T e_{2}\right\| \\
& =\left| \pm a_{21}-a_{12}\right|+\left|a_{11}-a_{22}\right|+\sum_{i=3}^{n}\left| \pm a_{i 1}-a_{i 2}\right| \\
& =\sum_{i=1}^{n}\left|a_{i 1}\right|+\sum_{i=1}^{n}\left|a_{i 2}\right| \\
& =2\|T\|
\end{aligned}
$$

for a suitable choice of signs of the $A e_{i}$ since each sign to be chosen corresponds to exactly one term $\left| \pm a_{i 1}-a_{i 2}\right|$.

If $m=1$ then $a_{11}=0$ because 0 lies in the convex hull of $\alpha_{11}, \cdots, \alpha_{m m}$, and we define A by $A e_{1}=e_{1}, A e_{j}=-e_{j} j=2, \cdots, n$ which gives $\|A\|=1$ and $A T e_{1}=-T e_{1}$ so that

$$
\left\|D_{T}(A) e_{1}\right\|=\left\|A T e_{1}-T A e_{1}\right\|=2\left\|T e_{1}\right\|=2\|T\|
$$

Proposition 6. Let Ω be a compact topological space and \mathfrak{X} a closed linear subspace of the (real) Banach space of real valued measures on Ω with the property that if $\mu \in \mathfrak{X}$ then every measure
absolutely continuous with respect to μ is in \mathfrak{X}. Let $T \in \mathscr{C}(\mathfrak{X})$. Then $\left\|D_{T}\right\|=2 \inf _{\lambda \in \boldsymbol{R}}\|T+\lambda I\|$.

Proof. We may assume $d_{T}=2\|T\|$. Let $\varepsilon>0$. For each $\nu>0$ in \mathfrak{X} let $E_{\nu}(\mu)$ be the part of $\mu \in \mathfrak{X}$ which is absolutely continuous with respect to ν. The E_{ν} form a system of commuting idempotents of norm 1 and $E_{\nu} E_{\nu^{\prime}}=E_{\nu}$ if $\nu^{\prime}>\nu$, so that $\left\|E_{\nu} S E_{\nu}\right\|$, where the elements ν are directed by the usual ordering of measures, is a monotonic direct net. It is easy to see that $\left\|E_{2} S E_{\nu}\right\| \rightarrow\|S\|$. Thus applying Dini's theorem to the functions $\lambda \mapsto\left\|E_{\nu}(T+\lambda I) E_{\nu}\right\|$ we can find $\quad \nu \in \mathfrak{X}, \nu>0 \quad$ with $\quad\left\|E_{\nu}(T+\lambda I) E_{\nu}\right\|>\|T+\lambda I\|-\varepsilon \geqq\|T\|-\varepsilon$ for $|\lambda| \leqq 2\|T\|$.

For each dissection $\Delta=\left(\Omega_{1}, \cdots, \Omega_{n}\right)$ of Ω into disjoint measurable sets of positive ν measure we define

$$
\begin{aligned}
P_{\Delta}(\mu) & =\left(E_{\nu} \mu\left(\Omega_{1}\right), \cdots, E_{2} \mu\left(\Omega_{n}\right)\right) \\
Q_{\Delta}(\xi) & =\left(\sum c_{i} \xi_{i} \nu\left(\Omega_{i}\right)^{-1}\right) \nu
\end{aligned}
$$

where $\mu \in \mathfrak{X}, \xi \in \mathbf{R}^{n}, P_{A} ; \mathfrak{X} \rightarrow \boldsymbol{R}^{n}, Q_{A}: \boldsymbol{R}^{n} \rightarrow \mathfrak{X}$ and c_{i} is the characteristic function of Ω_{i}. Directing the dissections in the usual way it is easy to see that for each $S \in \mathscr{L}(\mathfrak{X})\left\|P_{4} E_{,} S E_{\nu} Q_{\Delta}\right\|$, where R^{n} has the l^{1} norm, is a monotonic directed set with limit $\left\|E_{\nu} S E_{\nu}\right\|$. Applying Dini's theorem again we see that there is a dissection Δ with

$$
\begin{equation*}
\left\|P_{\Delta} E_{\nu}(T+\lambda I) E_{\nu} Q_{A}\right\|>\|T\|-\varepsilon \tag{*}
\end{equation*}
$$

for all $|\lambda| \leqq 2\|T\|$. For convenience we now denote $E_{\nu}, P_{\Delta}, Q_{\Delta}$ by E, P, Q. As these operators have norm 1 we see that inequality (*) holds for all values of λ. As $P E=P, E Q=Q, P E Q=P Q=$ identity on $R^{n},(*)$ shows that $d_{P T Q} \geqq 2(\|T\|-\varepsilon)$. By proposition 5 there is $A \in \mathscr{L}\left(\boldsymbol{R}^{n}\right)$ with $\left\|D_{P T Q}(A)\right\|=d_{P T Q},\|A\|=1$. As Q is an isometry and P maps the unit ball of \mathfrak{X} onto that of \boldsymbol{R}^{n} we have

$$
\begin{aligned}
d_{P T Q} & =\left\|Q D_{P T Q}(A) P\right\| \\
& =\|Q A P T Q P-Q P T Q A P\| \\
& =\left\|Q P D_{T}(Q A P) Q P\right\| \\
& \leqq\left\|D_{T}(Q A P)\right\|
\end{aligned}
$$

As $\|Q A P\|=1$ we have $\left\|D_{T}\right\| \geqq d_{P T Q} \geqq 2(\|T\|-\varepsilon)$ for each $\varepsilon>0$ and the result follows.

In the complex space $l^{1}(1,2)$ Proposition 5 is true and the proof is similar to that for the real case. However the result is false in higher dimensions for complex spaces, e.g., in $l^{1}(1,2,3)$ let T be the linear transformation given by the matrix

$$
\begin{array}{rrr}
1 & -\omega & -\omega^{2} \\
1 & \omega & -\omega^{2} \\
1 & \omega & \omega^{2}
\end{array}
$$

where $\omega^{3}=1, \omega \neq 1$. The situation is similar to that at the beginning of the proof of Proposition 5 with $m=n=3$ and the argument given there shows that because 0 is a convex combination of diagonal entries we have $\inf _{2 \in c}\|T+\lambda I\|=\|T\|=3$. If $\|x\|=1,\|A\|=1$ and $\left\|D_{T}(A) x\right\|=6$ then $\|T x\|=3$ and since $\left|x_{1} \pm \omega x_{2} \pm \omega^{2} x_{3}\right| \leqq 1$ we see that $\left|x_{1}-\omega x_{2}-\omega^{2} x_{3}\right|=\left|x_{1}+\omega x_{2}-\omega^{2} x_{3}\right|=\left|x_{1}+\omega x_{2}+\omega^{2} x_{3}\right|=$ $\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|$ which occurs only if two of x_{1}, x_{2}, x_{3} are 0 . Multiplying by a complex number of absolute value 1 , if necessary, we can assume $x=e_{1}$ or e_{2} or e_{3}. In the same way $A x=e_{1}$ or e_{2} or e_{3}. If $x=e_{1}=A x$ then

$$
\begin{aligned}
\left\|D_{T}(A) e_{1}\right\| & =\left\|e_{1}+A e_{2}+A e_{3}-e_{1}-e_{2}-e_{3}\right\| \\
& =\left\|A e_{2}+A e_{3}-e_{2}-e_{3}\right\| \\
& \leqq 4
\end{aligned}
$$

and if $x=e_{1}, A x=e_{2}$ then

$$
\begin{aligned}
\left\|D_{T}(A) e_{1}\right\| & =\left\|e_{2}+A e_{2}+A e_{3}+\omega e_{1}-\omega e_{2}-\omega e_{3}\right\| \\
& =\left\|(1-\omega) e_{2}+A e_{2}+A e_{3}-\omega e_{1}-\omega e_{3}\right\| \\
& \leqq \sqrt{3}+4
\end{aligned}
$$

The other four possibilities give similar results and so we cannot in fact have $\left\|D_{T}\right\|=6$.

A similar construction in the complex spaces $l^{1}(1, n), l^{1}(0, \infty)$, $L^{1}(0,1), M(0,1)$ shows that Proposition 6 is false in these spaces too.

Reference

1. J. G. Stampfli, On the norm of a derivation, Pacific J. Math., 33 (1970), 737-747.

Received November 2, 1970. The author gratefully acknowledges financial support from the National Science Foundation Grant GP-21193.

Yale University

