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NORMS OF DERIVATIONS ON £ (%)

B. E. JOHNSON

If X is a real or complex Banach space and & (X) is the
algebra of bounded linear endomorphisms of X then each
element T of & (X) defines an operator D, on &< (X) by
Dr(A)= AT — TA., Clearly ||D;|| <2 inf; ||T + 2I|| and
Stampfli has shown that when X is a complex Hilbert space
equality holds, In this paper it is shown, by methods which
apply to a large class of uniformly convex spaces, that this for-
mula for || D, || is false in {? and L?(0,1) 1 < p < oo, p 2, For
L! spaces the formula is true in the real case but not in the
complex case when the space has dimension 3 or more,

Stampfli’s results appear in [1] stated for complex Hilbert space
but the same proofs yield the corresponding result for real spaces.

Throughout this paper K will denote either R or C. We begin
by describing the construction of an operator 7 of rank 1 with
| Ds|| < dp = 2infex || T + M||. The reason that this fails in Hilbert
space is precisely because for an ellipse, conjugacy is a symmetric
relation on the set of diameters; more precisely if «, y are two points
on the unit ball then ¥ is parallel to the tangent plane at z if and
only if x is parallel to the tangent plane at y.

DEFINITION 1. Let 2eX, ||z|| = 1. The unit ball %, is uniformly
convex at x if whenever {y,} is a sequence with ||%,|| <1, || + ¥.|| — 2
then y, — 2.

PROPOSITION 2. Let X be a normed space over K and let x,yeX
with the following properties

(i) |lz]l =1 and there is feX* with ||f|| =1 and such that if
{x.} 2s a sequence with ||x,|| < 1, f(x,) — 1 then =, — x.

(ii) llyll =1 and the unit ball %, is uniformly convex at y.

(iii) For some rve K, ||z + My || < 1.

(iv) For all » in K, ||y + M| = 1.

Define Te < (X) by Tz = f()y. Then 2||T|| = d; > || Dz||.

Proof. ||T + M|z [(T + M)z|| = |ly + 2] = |yl =1 by (iv)
and ||T||=1 so d, = 2. Suppose ||D,|| = 2 and choose sequences {A4,}
from .~ (¥) and {x,} from % with ||A4,|| = 1 = ||=,|| and || D.(4,)z, || — 2.
As ||TAw, || =1, ||ATx, || =1 we have ||[T4Aw,|—1, ||4.Te,||—1
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and hence [[A4,x.||—1, [Tz |[—1. This shows [f(x,)|—1 and so,
replacing x, by w,x, if necessary where {w,} is a sequence of elements
of K with |w,| =1, we may assume f(z,) — 1. Condition (i) now
implies %, — 2 and hence T2, —y. In the same way |[|TA,z,||—1
implies | f(A,x,)| — 1 and replacing A, by w,A, if necessary we can
assume f(A4,x,) —1 from which we see A4,x,—x, TA,x,—Yy. As
[|[4,]] £1 we have A,Tx, — A, y—0 and so ||4,Tz, — TA,z,||—2
implies ||A,y — y||— 2. Condition (ii) now shows A4,y — — ¥ so that
A, (x + 2y) —2z — ry. However if X\ satisfies condition (iii) then
Il — Ay|| > 1, as otherwise 2 = 2 ||z|| < ||@ + M| + ||z — 2y|| <2, and
so lim [[A.(x 4+ M) | = [z — My||>1 which is impossible because
A+ M) (| = [[A ] e + Myfl < 1.

PROPOSITION 3. Let X be a wuniformly convex Banach space,
v, yeX, f,geX* with x| =yll=I[flIl=llgll=s@)=9@F =1,
g(x) =0, f(y) = 0 and suppose f is the only element h of X* with
|k]] = W(x) = 1. Then x,y, f satisfy the conditions of Proposition 2.

Proof. (i) If |z, |l=1, flx,) —1 then f(z + 2,)—2 and as
lle + 2,/ <2,]|f]] =1 we have |jz + 2,||—2 so x,— a by uniform
convexity.

(ii) is clearly part of the present hypotheses.

(iii) « and y are linearly independent as g(x) = 0, g(y) = 1, x # 0.
If ||z + My|| =1 for all xe K then ax + By — « is a norm one linear
functional on the space spanned by x and y and so has an extension
h in X* with ||h]| = 1, k() = 1 but & #= f because h(y) = 0 = f(y).

(iv) As gy +nx) = g(y) =1, for all » in K and |lg|| =1 we
have ||y + M| =1 for all » in K.

COROLLARY 4. If 1 <p <2 or 2<p < and X = 10?0, ) or
X = L?(—1, +1) is the corresponding K Banach space of K wvalued
fumnctions then there ts Te (%) with ||D;|| # d;.

Proof. The spaces are uniformly convex and at each point z of
% with |[z]] = 1 the element & of X* with h(z) =1 = [|k]| is unique.
Thus the construction in Proposition 2 applies once we find two suitable
points x, ¥ and these exist in such abundance that we can take any-
thing but multiples of characteristic functions for x. First of all we
give the construction in the two dimensional space (1, 2).

If 2= (x, ), 2,>0,2,>0,27 + 2 =1 then f(g) = a2, + 2772,
so ¥y can be taken as a(x?™, — x7') where a™? = 2P 4 2P and
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9@) = ar (@2, — 2"’ 2). Then g(x) = ar Y(z,xF v — xP~" g,
which will be zero if and only if 2, =2,. Thus taking say
x = 37Y»(2Y? 1) and y, f, g as above the result is shown in I°(1, 2).

As 17(0, ) and L*(—1, +1) each contain subspaces isometric
with [7(1,2) we can construct =, y, f, g in this subspace and then
extend f and g to X using the Hahn-Banach theorem.

In order to prove the results for spaces of measures we establish
the equation d, = || D,|| for finite dimensional ' spaces.

PROPOSITION 5. Let m be a positive integer and X be the real
Banach space R with morm ||z|| =2 |x;|. Let Te < (X). Then
| Dyl = 2inf,er || T + M.

Proof. Suppose T is given by the matrix a;; in the standard
basis e, €, *+-,¢,. We have ||T|| = sup; >, |a:;;|. Suppose 3 |a;| =
[|T]|| for j =1, +--, m but not for j > m. The condition |[[T|| = 3d,
is equivalent to saying that 0 is in the convex hull of a,, <+, Qpn
since if 0 does not lie in this convex hull then either |a;; + M| < |ay;]
for j =1, ---, m and small positive A or for small negative A and so
there are small values of N with ||T + M| < ||T|| whereas if 0 lies
in this hull and N # 0 there is j with 1 <7 < m and |a;; + N| > |aj;]
so that || T 4+ M| > || T].

It is clearly sufficient to prove the result when ||T|| = 3d;.
First of all consider the case m = 2 and suppose a,, = 0 = a,. Let
Ac Z(X) be an operator of the form Ae, = e, Ae, = *e, Ae; = *e;
4=38,+++,n Clearly ||All =1 and

[|Dr(A)e,|| = ||ATe, — Te,||
= £ ay — | + |ay — 05| + gs[ =y — Ay
= ; las| + ;:.“llaiz]

21T

Il

for a suitable choice of signs of the Ae; since each sign to be chosen
corresponds to exactly one term |=+ a,, — a;].

If m =1 then a, =0 because 0 lies in the convex hull of
Gy ***y Qumy and we define A by Ae, =e¢, de;= —e; 1=2,+++, 10
which gives ||A]| =1 and ATe, = — Te, so that

I1D(A)e.|| = ||ATe, — TAe|| = 2| Te,|| = 2| T .

PRrROPOSITION 6. Let 2 be a compact topological space and % a
closed linear subspace of the (real) Bamach space of real wvalued
measures on 2 with the property that if preX then every measure
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absolutely continuwous with respect to pt is in X. Let Te < (X). Then
|1 Dy|| = 2 infy || T + M|

Proof. We may assume d, = 2||T||. Let € > 0. Foreach vy >0
in ¥ let E,(¢) be the part of #eX which is absolutely continuous
with respect to v. The E, form a system of commuting idempotents
of norm 1 and E,E, = E, if v/ > v, so that ||E,SE,||, where the
elements v are directed by the usual ordering of measures, is a
monotonic direct net. It is easy to see that ||E,SE,||— {|S|. Thus
applying Dini’s theorem to the functions N — ||E(T + M) E,|| we can
find veX,v>0 with [|[E(T +MNDE,||>||T+ M| —ec=||T||—c¢
for [N = 2T

For each dissection 4 = (2, -+, 2,) of Q into disjoint measurable
sets of positive v measure we define

PJ(#) = (Ev/‘t(gl)y tty E}#(‘Qn))
Q8 = e &v(@) ™)y

where pe¥,ic R, P; X — R", Q,: R*— X and ¢; is the characteristic
function of Q,. Directing the dissections in the usual way it is easy
to see that for each Se¢ < (X) ||P,E.SE,Q,||, where R" has the [!
norm, is a monotonic directed set with limit ||E,SE,|. Applying
Dini’s theorem again we see that there is a dissection 4 with

(") PE(T + M)EQ, || > |IT] — e

for all |v]| < 2||T||. For convenience we now denote E,, P, @, by
E, P,Q. As these operators have norm 1 we see that inequality (¥)
holds for all values of ». As PE = P, EQ = Q, PEQ = PQ = identity
on R*, (x) shows that d,;, = 2(|| T|| — ¢). By proposition 5 there is
Aec (R with [|Dpro(A)|] = dpre, ||A]l =1. As @ is an isometry
and P maps the unit ball of X onto that of R” we have

drrg = ||QDpro(A)Pl|
= |QAPTQP — QPTQAP||
= [|QPD(QAP)QP]|
= [[DA(QAP) || .

As ||QAP| =1 we have ||D;||=dprq=2(||T| —¢) for each ¢> 0
and the result follows.

In the complex space I'(1, 2) Proposition 5 is true and the proof
is similar to that for the real case. However the result is false in
higher dimensions for complex spaces, e.g., in I}(1, 2, 3) let T be the
linear transformation given by the matrix
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1 —w —o
1 ®w —
1 w w?
where @* = 1, ® = 1. The situation is similar to that at the beginning

of the proof of Proposition 5 with m = n = 3 and the argument given
there shows that because 0 is a convex combination of diagonal

entries we have inf, . ||T + N||=||T||=3. If |jz|]|=1,||A]|=1
and ||D,(A)z|| = 6 then ||Tx|| = 3 and since |z, + Wz, + W’z,| <1 we
see that |z, — wx, — O] = |2, + 02, — V%] = |2, + O, + G| =

|2,| + || + |2,| which occurs only if two of x, x,, #; are 0. Multi-
plying by a complex number of absolute value 1, if necessary, we
can assume x = e, Or ¢, Or ¢,. In the same way Ax = e, or e, or e,.
If x = e = Ax then

[|Dr(A)e. || = lle, + Ae, + Ae; — e, — e, — 4]
= |[Ae, + Ae; — e, — e
<4

and if © = ¢, Ax = ¢, then

D (Ae, || = |le. + Ae, + Ae; + we, — we, — We;||
= |[|(1 — w)e, + Ae, + Ae, — we, — we,||
<V'3 +4.

The other four possibilities give similar results and so we cannot in
fact have ||D,|| = 6.

A similar construction in the complex spaces I'(1, n), I'(0, =),
LX0, 1), M(0, 1) shows that Proposition 6 is false in these spaces too.
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