NORMS OF DERIVATIONS ON $\mathscr{L}(\mathfrak{X})$

B. E. JOHNSON

If \mathfrak{X} is a real or complex Banach space and $\mathscr{L}(\mathfrak{X})$ is the algebra of bounded linear endomorphisms of \mathfrak{X} then each element T of $\mathscr{L}(\mathfrak{X})$ defines an operator D_T on $\mathscr{L}(\mathfrak{X})$ by $D_T(A) = AT - TA$. Clearly $||D_T|| \leq 2 \inf_{\mathfrak{X}} ||T + \lambda I||$ and Stampfli has shown that when \mathfrak{X} is a complex Hilbert space equality holds. In this paper it is shown, by methods which apply to a large class of uniformly convex spaces, that this formula for $||D_T||$ is false in l^p and $L^p(0, 1)$ $1 , <math>p \neq 2$. For L^1 spaces the formula is true in the real case but not in the complex case when the space has dimension 3 or more.

Stampfli's results appear in [1] stated for complex Hilbert space but the same proofs yield the corresponding result for real spaces.

Throughout this paper K will denote either R or C. We begin by describing the construction of an operator T of rank 1 with $||D_T|| < d_T = 2inf_{\lambda \in K} ||T + \lambda I||$. The reason that this fails in Hilbert space is precisely because for an ellipse, conjugacy is a symmetric relation on the set of diameters; more precisely if x, y are two points on the unit ball then y is parallel to the tangent plane at x if and only if x is parallel to the tangent plane at y.

DEFINITION 1. Let $x \in \mathfrak{X}$, ||x|| = 1. The unit ball \mathfrak{X}_1 is uniformly convex at x if whenever $\{y_n\}$ is a sequence with $||y_n|| \leq 1$, $||x + y_n|| \to 2$ then $y_n \to x$.

PROPOSITION 2. Let \mathfrak{X} be a normed space over K and let $x, y \in \mathfrak{X}$ with the following properties

(i) ||x|| = 1 and there is $f \in \mathfrak{X}^*$ with ||f|| = 1 and such that if $\{x_n\}$ is a sequence with $||x_n|| \leq 1, f(x_n) \to 1$ then $x_n \to x$.

(ii) ||y|| = 1 and the unit ball \mathfrak{X}_1 is uniformly convex at y.

- (iii) For some $\lambda \in K$, $||x + \lambda y|| < 1$.
- (iv) For all λ in K, $||y + \lambda x|| \ge 1$.

Define $T \in \mathscr{L}(\mathfrak{X})$ by Tz = f(z)y. Then $2||T|| = d_T > ||D_T||$.

 $\begin{array}{l} Proof. \quad ||T + \lambda I|| \geq ||(T + \lambda I)x|| = ||y + \lambda x|| \geq ||y|| = 1 \quad \text{by} \quad (\text{iv}) \\ \text{and} \quad ||T|| = 1 \quad \text{so} \quad d_T = 2. \quad \text{Suppose} \quad ||D_T|| = 2 \text{ and choose sequences} \quad \{A_n\} \\ \text{from} \quad \mathscr{L}(\mathfrak{X}) \text{ and} \quad \{x_n\} \text{ from } \mathfrak{X} \text{ with} \quad ||A_n|| = 1 = ||x_n|| \text{ and} \quad ||D_T(A_n)x_n|| \to 2. \\ \text{As} \quad ||TA_nx_n|| \leq 1, \quad ||A_nTx_n|| \leq 1 \quad \text{we} \quad \text{have} \quad ||TA_nx_n|| \to 1, \quad ||A_nTx_n|| \to 1. \end{array}$

and hence $||A_nx_n|| \to 1$, $||Tx_n|| \to 1$. This shows $|f(x_n)| \to 1$ and so, replacing x_n by w_nx_n if necessary where $\{w_n\}$ is a sequence of elements of K with $|w_n| = 1$, we may assume $f(x_n) \to 1$. Condition (i) now implies $x_n \to x$ and hence $Tx_n \to y$. In the same way $||TA_nx_n|| \to 1$ implies $|f(A_nx_n)| \to 1$ and replacing A_n by w'_nA_n if necessary we can assume $f(A_nx_n) \to 1$ from which we see $A_nx_n \to x$, $TA_nx_n \to y$. As $||A_n|| \leq 1$ we have $A_nTx_n - A_ny \to 0$ and so $||A_nTx_n - TA_nx_n|| \to 2$ implies $||A_ny - y|| \to 2$. Condition (ii) now shows $A_ny \to -y$ so that $A_n(x + \lambda y) \to x - \lambda y$. However if λ satisfies condition (iii) then $||x - \lambda y|| > 1$, as otherwise $2 = 2 ||x|| \leq ||x + \lambda y|| + ||x - \lambda y|| < 2$, and so $\lim ||A_n(x + \lambda y)|| = ||x - \lambda y|| > 1$ which is impossible because $||A_n(x + \lambda y)|| \leq ||A_n|| ||x + \lambda y|| < 1$.

PROPOSITION 3. Let \mathfrak{X} be a uniformly convex Banach space, $x, y \in \mathfrak{X}$, $f, g \in \mathfrak{X}^*$ with ||x|| = ||y|| = ||f|| = ||g|| = f(x) = g(y) = 1, $g(x) = 0, f(y) \neq 0$ and suppose f is the only element h of \mathfrak{X}^* with ||h|| = h(x) = 1. Then x, y, f satisfy the conditions of Proposition 2.

Proof. (i) If $||x_n|| \leq 1, f(x_n) \to 1$ then $f(x + x_n) \to 2$ and as $||x + x_n|| \leq 2, ||f|| = 1$ we have $||x + x_n|| \to 2$ so $x_n \to x$ by uniform convexity.

(ii) is clearly part of the present hypotheses.

(iii) x and y are linearly independent as g(x) = 0, g(y) = 1, $x \neq 0$. If $||x + \lambda y|| \ge 1$ for all $\lambda \in K$ then $\alpha x + \beta y \mapsto \alpha$ is a norm one linear functional on the space spanned by x and y and so has an extension h in \mathfrak{X}^* with ||h|| = 1, h(x) = 1 but $h \neq f$ because $h(y) = 0 \neq f(y)$.

(iv) As $g(y + \lambda x) = g(y) = 1$, for all λ in K and ||g|| = 1 we have $||y + \lambda x|| \ge 1$ for all λ in K.

COROLLARY 4. If $1 or <math>2 and <math>\mathfrak{X} = l^p(0, \infty)$ or $\mathfrak{X} = L^p(-1, +1)$ is the corresponding K Banach space of K valued functions then there is $T \in \mathscr{L}(\mathfrak{X})$ with $||D_T|| \neq d_T$.

Proof. The spaces are uniformly convex and at each point z of \mathfrak{X} with ||z|| = 1 the element h of \mathfrak{X}^* with h(z) = 1 = ||h|| is unique. Thus the construction in Proposition 2 applies once we find two suitable points x, y and these exist in such abundance that we can take anything but multiples of characteristic functions for x. First of all we give the construction in the two dimensional space $l^p(1, 2)$.

If $x = (x_1, x_2), x_1 > 0, x_2 > 0, x_1^p + x_2^p = 1$ then $f(z) = x_1^{p-1}z_1 + x_2^{p-1}z_2$ so y can be taken as $\alpha(x_2^{p-1}, -x_1^{p-1})$ where $\alpha^{-p} = x_1^{p(p-1)} + x_2^{p(p-1)}$ and $g(z) = \alpha^{p-1}(x_2^{(p-1)^2} z_1 - x_1^{(p-1)^2} z_2)$. Then $g(x) = \alpha^{p-1}(x_1 x_2^{(p-1)^2} - x_1^{(p-1)^2} x_2)$ which will be zero if and only if $x_1 = x_2$. Thus taking say $x = 3^{-1/p}(2^{1/p}, 1)$ and y, f, g as above the result is shown in $l^p(1, 2)$.

As $l^{p}(0, \infty)$ and $L^{p}(-1, +1)$ each contain subspaces isometric with $l^{p}(1, 2)$ we can construct x, y, f, g in this subspace and then extend f and g to \mathfrak{X} using the Hahn-Banach theorem.

In order to prove the results for spaces of measures we establish the equation $d_T = ||D_T||$ for finite dimensional l^1 spaces.

PROPOSITION 5. Let n be a positive integer and \mathfrak{X} be the real Banach space \mathbb{R}^n with norm $||x|| = \Sigma |x_i|$. Let $T \in \mathscr{L}(\mathfrak{X})$. Then $||D_T|| = 2 \inf_{\lambda \in \mathbb{R}} ||T + \lambda I||$.

Proof. Suppose T is given by the matrix a_{ij} in the standard basis e_1, e_2, \dots, e_n . We have $||T|| = \sup_j \sum_i |a_{ij}|$. Suppose $\sum_i |a_{ij}| = ||T||$ for $j = 1, \dots, m$ but not for j > m. The condition $||T|| = \frac{1}{2} d_T$ is equivalent to saying that 0 is in the convex hull of a_{11}, \dots, a_{mm} since if 0 does not lie in this convex hull then either $|a_{jj} + \lambda| < |a_{jj}|$ for $j = 1, \dots, m$ and small positive λ or for small negative λ and so there are small values of λ with $||T + \lambda I|| < ||T||$ whereas if 0 lies in this hull and $\lambda \neq 0$ there is j with $1 \leq j \leq m$ and $|a_{jj} + \lambda| > |a_{jj}|$ so that $||T + \lambda I|| > ||T||$.

It is clearly sufficient to prove the result when $||T|| = \frac{1}{2} d_T$. First of all consider the case $m \ge 2$ and suppose $a_{11} \ge 0 \ge a_{22}$. Let $A \in \mathscr{L}(\mathfrak{X})$ be an operator of the form $Ae_1 = e_2$, $Ae_2 = \pm e_1$, $Ae_i = \pm e_i$ $i = 3, \dots, n$. Clearly ||A|| = 1 and

$$egin{aligned} ||D_T(A)e_1|| &= ||ATe_1 - Te_2|| \ &= |\pm a_{21} - a_{12}| + |a_{11} - a_{22}| + \sum_{i=3}^n |\pm a_{i1} - a_{i2}| \ &= \sum_{i=1}^n |a_{i1}| + \sum_{i=1}^n |a_{i2}| \ &= 2 \, ||T|| \end{aligned}$$

for a suitable choice of signs of the Ae_i since each sign to be chosen corresponds to exactly one term $|\pm a_{i1} - a_{i2}|$.

If m = 1 then $a_{11} = 0$ because 0 lies in the convex hull of a_{11}, \dots, a_{mm} , and we define A by $Ae_1 = e_1, Ae_j = -e_j$ $j = 2, \dots, n$ which gives ||A|| = 1 and $ATe_1 = -Te_1$ so that

$$||D_T(A)e_1|| = ||ATe_1 - TAe_1|| = 2 ||Te_1|| = 2 ||T||.$$

PROPOSITION 6. Let Ω be a compact topological space and \mathfrak{X} a closed linear subspace of the (real) Banach space of real valued measures on Ω with the property that if $\mu \in \mathfrak{X}$ then every measure

B. E. JOHNSON

absolutely continuous with respect to μ is in \mathfrak{X} . Let $T \in \mathscr{L}(\mathfrak{X})$. Then $||D_T|| = 2 \inf_{\lambda \in \mathbf{R}} ||T + \lambda I||$.

Proof. We may assume $d_{\tau} = 2 ||T||$. Let $\varepsilon > 0$. For each $\nu > 0$ in \mathfrak{X} let $E_{\nu}(\mu)$ be the part of $\mu \in \mathfrak{X}$ which is absolutely continuous with respect to ν . The E_{ν} form a system of commuting idempotents of norm 1 and $E_{\nu}E_{\nu'} = E_{\nu}$ if $\nu' > \nu$, so that $||E_{\nu}SE_{\nu}||$, where the elements ν are directed by the usual ordering of measures, is a monotonic direct net. It is easy to see that $||E_{\nu}SE_{\nu}|| \rightarrow ||S||$. Thus applying Dini's theorem to the functions $\lambda \mapsto ||E_{\nu}(T + \lambda I)E_{\nu}||$ we can find $\nu \in \mathfrak{X}, \nu > 0$ with $||E_{\nu}(T + \lambda I)E_{\nu}|| > ||T + \lambda I|| - \varepsilon \ge ||T|| - \varepsilon$ for $|\lambda| \le 2 ||T||$.

For each dissection $\Delta = (\Omega_1, \dots, \Omega_n)$ of Ω into disjoint measurable sets of positive ν measure we define

$$egin{array}{lll} P_{\scriptscriptstyle A}(\mu) &= (E_
u\mu(\Omega_1),\,\cdots,\,E_
u\mu(\Omega_n)) \ Q_{\scriptscriptstyle A}(\hat{z}) &= (\sum c_i\,\hat{z}_i
u(\Omega_i)^{-1})
u \end{array}$$

where $\mu \in \mathfrak{X}, \, \xi \in \mathbb{R}^n, \, P_d; \, \mathfrak{X} \to \mathbb{R}^n, \, Q_d; \, \mathbb{R}^n \to \mathfrak{X}$ and c_i is the characteristic function of Ω_i . Directing the dissections in the usual way it is easy to see that for each $S \in \mathscr{L}(\mathfrak{X}) \mid \mid P_d E_{\nu} S E_{\nu} Q_d \mid \mid$, where \mathbb{R}^n has the l^1 norm, is a monotonic directed set with limit $\mid \mid E_{\nu} S E_{\nu} \mid \mid$. Applying Dini's theorem again we see that there is a dissection \varDelta with

for all $|\lambda| \leq 2 ||T||$. For convenience we now denote E_{ν} , P_{J} , Q_{J} by E, P, Q. As these operators have norm 1 we see that inequality (*) holds for all values of λ . As PE = P, EQ = Q, PEQ = PQ = identity on \mathbb{R}^{n} , (*) shows that $d_{PTQ} \geq 2(||T|| - \varepsilon)$. By proposition 5 there is $A \in \mathscr{L}(\mathbb{R}^{n})$ with $||D_{PTQ}(A)|| = d_{PTQ}$, ||A|| = 1. As Q is an isometry and P maps the unit ball of \mathfrak{X} onto that of \mathbb{R}^{n} we have

$$egin{aligned} d_{{\scriptscriptstyle PTQ}} &= ||QD_{{\scriptscriptstyle PTQ}}(A)P|| \ &= ||QAPTQP - QPTQAP|| \ &= ||QPD_{{\scriptscriptstyle T}}(QAP)QP|| \ &\leq ||D_{{\scriptscriptstyle T}}(QAP)|| \ . \end{aligned}$$

As ||QAP|| = 1 we have $||D_T|| \ge d_{_{PTQ}} \ge 2(||T|| - \varepsilon)$ for each $\varepsilon > 0$ and the result follows.

In the complex space $l^{1}(1, 2)$ Proposition 5 is true and the proof is similar to that for the real case. However the result is false in higher dimensions for complex spaces, e.g., in $l^{1}(1, 2, 3)$ let T be the linear transformation given by the matrix

$$\begin{array}{cccc} 1 & -\omega & -\omega^2 \\ 1 & \omega & -\omega^2 \\ 1 & \omega & \omega^2 \end{array}$$

where $\omega^3 = 1$, $\omega \neq 1$. The situation is similar to that at the beginning of the proof of Proposition 5 with m = n = 3 and the argument given there shows that because 0 is a convex combination of diagonal entries we have $\inf_{L \in C} ||T + \lambda I|| = ||T|| = 3$. If ||x|| = 1, ||A|| = 1and $||D_T(A)x|| = 6$ then ||Tx|| = 3 and since $|x_1 \pm \omega x_2 \pm \omega^2 x_3| \leq 1$ we see that $|x_1 - \omega x_2 - \omega^2 x_3| = |x_1 + \omega x_2 - \omega^2 x_3| = |x_1 + \omega x_2 + \omega^2 x_3| = |x_1| + |x_2| + |x_3|$ which occurs only if two of x_1, x_2, x_3 are 0. Multiplying by a complex number of absolute value 1, if necessary, we can assume $x = e_1$ or e_2 or e_3 . In the same way $Ax = e_1$ or e_2 or e_3 . If $x = e_1 = Ax$ then

$$egin{aligned} ||D_{\scriptscriptstyle T}(A)e_{\scriptscriptstyle 1}|| &= ||e_{\scriptscriptstyle 1} + Ae_{\scriptscriptstyle 2} + Ae_{\scriptscriptstyle 3} - e_{\scriptscriptstyle 1} - e_{\scriptscriptstyle 2} - e_{\scriptscriptstyle 3}|| \ &= ||Ae_{\scriptscriptstyle 2} + Ae_{\scriptscriptstyle 3} - e_{\scriptscriptstyle 2} - e_{\scriptscriptstyle 3}|| \ &\leq 4 \end{aligned}$$

and if $x = e_1$, $Ax = e_2$ then

$$egin{aligned} ||D_{\scriptscriptstyle T}(A)e_{\scriptscriptstyle 1}|| &= ||e_{\scriptscriptstyle 2} + Ae_{\scriptscriptstyle 2} + Ae_{\scriptscriptstyle 3} + \omega e_{\scriptscriptstyle 1} - \omega e_{\scriptscriptstyle 2} - \omega e_{\scriptscriptstyle 3}|| \ &= ||(1-\omega)e_{\scriptscriptstyle 2} + Ae_{\scriptscriptstyle 2} + Ae_{\scriptscriptstyle 3} - \omega e_{\scriptscriptstyle 1} - \omega e_{\scriptscriptstyle 3}|| \ &\leq \sqrt{3} + 4 \;. \end{aligned}$$

The other four possibilities give similar results and so we cannot in fact have $||D_T|| = 6$.

A similar construction in the complex spaces $l^{1}(1, n)$, $l^{1}(0, \infty)$, $L^{1}(0, 1)$, M(0, 1) shows that Proposition 6 is false in these spaces too.

Reference

1. J. G. Stampfli, On the norm of a derivation, Pacific J. Math., 33 (1970), 737-747.

Received November 2, 1970. The author gratefully acknowledges financial support from the National Science Foundation Grant GP-21193.

YALE UNIVERSITY