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GENERALIZED HAUSDORFF-YOUNG INEQUALITIES
AND MIXED NORM SPACES

LYNN R. WILLIAMS

We generalize the Hausdorff-Young Theorem for a locally
compact connected group G by showing that if fe L?(G), 1<
p < 2, then the Fourier transform of f is in a mixed norm
space properly contained in L?’ (I'), where I' is the dual
group and 1/p + 1/p’=1. In the last section we apply the
above theorem to obtain new results concerning sets of uni-
queness for functions in L?(G), and we give new sufficient
conditions which insure that the product of a continuous
function and a pseudomeasure is the zero distribution,

1. Introduction. The classical Hausdorff-Young Theorem states
that if f belongs to the Lebesgue space L? (of the unit circle), 1 <
» <2 and {f,} is its sequence of Fourier coefficients, then
1

L. {E 170 s 17l whore L4 L =1

The companion dual result asserts that a sufficient condition for the
sequence {f,} to be the Fourier coefficients of a function in L* is

12 { S 1fal <.

In a recent paper [7] Kellogg applied a multiplier theorem of
Hedlund to obtain a significant improvement of these inequalities.
Precisely, he replaced (1.1) by

1.3) (. (S 1) b < 40171,
and (1.2) by

where A, is a constant depending only on p and the sets I, are the
lacunary blocks defined by I, = {feZ: 2" <5 < 2¥ if k> 0, I, = {0}
and I, = —I_, if k£ < 0. These inequalities rest ultimately upon an
extension of the Riesz-Thorin interpolation theorem and the following
result of Paley and Hardy and Littlewood [3]: A complex number
sequence {\,} has the property >..2, M\,a,2" € H* whenever >.,2, a,2" €
H!' if and only if
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(1.5) sup >, INPE< oo
k=0 mely

This suggests that the proper generalization of inequalities (1.3) and
(1.4) is to the setting in which the unit circle 7 is replaced by a
locally compact abelian (LCA) group G with ordered dual I'-for the
notion of lacunary decomposition extends naturally to ordered groups.

In this paper we carry out this extension and give some applica-
tions of these generalized inequalities. Specifically, in §3 we streng-
then a theorem of Katznelson [6] and of Figa-Talamanca and Gaudry
[2] on sets of uniqueness in L*(G). We also give stronger sufficient
conditions than those found in Edwards [1] for the distribution fS
to be zero where S is a pseudomeasure and f is an element of C(T)
with absolutely convergent Fourier expansion.

I wish to acknowledge the work of J. H. Wells in extending
Kellogg’s result to the real line and to express my appreciation for
his assistance in the preparation of this paper.

2. Main results. Let G be a compact connected abelian group
with dual I" ordered by a set P of positive elements. For 1<
p < o define H?(G) to be the set of all fe L*(G) such that f(v) =0
for v ¢ P. (Here and subsequently f denotes the Fourier transform

of f.)

DEFINITION. A lacunary decomposition of P is a countable col-
lection &7 = {D;}, of subsets of P satisfying:
(1) D;nD;=¢if i j, and
(2) for each ¢ there exists an «; e P such that

D;={o: a;, <a <20} .

Corresponding to such a decomposition &7 we define the mixed norm
space L7*(P) to be the set of all fe=(P) with support contained in
U, D; and || fll,,... < o where

S (5, 1 F@y 157 < 155 < o |
sup (> [f(@)[)", 1 =r < oo, 8= co.

1gi<e  @eD;

Also we define L"=(P) to be the set of all fe-<(P) such that

1 fllre = SUPeer (Diper, [F(B)[)" < oo where 1 =7 < coand I, = {Be

P: o < 8 < 2a}. It is easy to verify that these spaces are Banach

spaces and the Banach conjugate of L"*(P) is L7 ¥ (P) if »,s8 < oo
where 1/» + 1/¥' = 1/s + 1/s’ = 1.

If »,s, 4 and v are real numbers in [1, o] then (L"*(P), L%*(P)),

the multipliers from L7:*(P) into L“*(P), is the set of all e s=(P)

H.f Hr,s;:ﬂ =
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with the property that \fe L%"(P) whenever fe L”*(P). Each such
A determines a bounded linear operator from L7;*(P) into L%*(P)
whose norm will be called the multiplier norm of .

We record the following theorem from [7].

THEOREM 1. Let l/p=1/u—1/r of r>u,p=cif r=u and
let 1/g=1/v—1/s if s>v and g= ~if s=wv. Then (L7°(P),
L»*(P)) = Lz (P) and iof ne Ly(P), its multiplier norm is ||\||p.qo-

If A and B are subsets of L'(G), the multiplier space (4, B) is
the space of all measurable complex-valued functions A on I' such
that for every fe A there exists ge B with Af = §. Hedlund [5, p-
54] shows that L*»*-»=(P) c (H*(®), H¥®)) for 1 < p < 2. This follows
by showing that Lz*—*=(P) c (H*(G), H¥G)) for any lacunary decom-
position <7 and that for fe H?(@) and e L#2?=(P), |[\f], = K,

NN IN]|epjz—p, ;2.  Here K, is a constant independent of the decom-
position =

THEOREM 2. If <& zf o lacunary decomposition of P and
feH (G),1 <p <2 then fe LZ’Z(PA) and there exists a constant A,
independent of =z and f so that ||f|ly.ne = Ap [ S |ls

Proof. By Hedlund’s result we have L-»=(P) c (H*(®), HX®))
and
(2.1) M1l = 1IN llozz < Ko 1 1 [ M lepsampyenis
for fe H?(G) and e L%"*7=(P), where K, is a constant independent
of . Then by Theorem 1

HYG) < (LxP»=(P), HYG)) = (Lz"*»=(P), L¥P)) = LLP) ,

and || ||y ..o is the smallest number which satisfies (2.1) for all re
L#i=r=(P). The theorem now follows with 4, = K,.

The Riesz Projection Theorem allows us to extend this result to
L*(G).

THEOREM 3. For 1 < p < 2 there is a constant A, such that if
= is a lacunary decomposition of P and fe L*(G), then

{Z (3 ey pe = ari,,

=—oc0

where D, = —D_, for k<0, D, = ¢.

We now state the main result.
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THEOREM 4. Let n be a positive integer and G a compact con-
nected abelian group with ordered dual I'. If feL(R"@ G),
1< p=2, then

L2, o Solfepaefepe < 40151,

k=—co

where A, is a constant, J, = [2¥,2%] for k> 0,J,=[—1,1], and
Jk = _J_k fO’I" k < 0.

Now by [8, p.40] any LCA connected group is of the form R*P G
where G is compact and connected and n = 0. Hence the combina-
tion of Theorems 3 and 4 yields the desired extension of Kellogg’s
result.

Proof of Theorem 4. We begin with a special version of Theorem
3. Consider the compact connected group 7" G which has dual
Z*@I'. We introduce an order by defining the following set P of
positive elements:

((ky, +++, k), v) € P if either

(1) %k; >0 where 1 <75 <n and k; = 0 for 7 < j; or

(2) k; =0 for each j and v e P, the set of positive elements in 7.
Let &7 be the lacunary decomposition determined by {a;}z, where
o, = (27,0, ---,0),00eZ*P I". By Theorem 3 there is a constant
B, such that if fe L*(T* G) then

j=—oco

{ Syt < Bl

For me Z, let I, be the lacunary block described in the introduction.
Itm>11,p2PHl <D, U D, and if m < — 1,

Im$Zn_l@FCDm U Dm—H .

By the standard Hausdorff-Young Theorem

{Qﬁ§@ﬂﬂﬂ“}ménfm,m=-LmL

Then by the triangular inequality

2.2 {= Iy < €1

m=~m<1me}z%'1@P
for all fe L?(T" &P G), where C, = 2B, + 3.

Now let f be a continuous function on R" @ G which has compact
support and choose a positive number L such that f(¢t,2) =0 for
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¢, 2)eR*P G and ||t]]l. > L. Choose positive integers m and ~ so
that m <~ and 2"“L <z Let &(s, x) = f(s27™, +++, 8,25 ™ 1)
@“™m@2m), (s, x) € T* @ G, where we identify T with R/2r. Then
he L*(T"P G) and for (ky, -+, k,,7VeZ*PTI
h(kyy <+, Fouy )

m—/L 2m—21 .
S | [eiwn oo vemttuny, —a) (25", 0)(@7")" dods

—zm-/L —2m—/L )&
L

fl

S g —zklzm—/tl. . .e—iknzm~/tn (v, — 2)f(t, x) dedt

A

f(lcz’"“ coe, k2™ %, ) .

From (2.2) we obtain

2.3) S (3, B Py < clinl -

j=—w \I;©z"l@r

Since |||, = @%™)*»'(27)"* || f||, we may rewrite (2.3) in the form

(3, P2 e, k2l Py < Gy L F 1

I;@znler

so that, in particular,

@8 5 (3 1flaar e 2 @y ) S 471
i==Z \1;@z71gr
where 4, = C,(2rm)~*".
Now for » =0, «-+, m — 1 it is evident that certain partial sums
of

pY |Fe2n~7, - oo, B2m, ) @)
I /_,.@Z""lel"
af—r_y

= D, S S |FFe,2m, « + o, 277, %) [P @™%)"

kgse-esky€Z 7T

am—7r “
will converge toS S S lf@ |Pdt as <« tends to infinity.

gm=—r—1 ) pn—1

Similarly, for » =0, —1, «++, —m + 1, the limit superior of the sum

by |F2m=, oo e, 2™, ) [P @)
I—y +r @ ler
—am+r—1 ~
is not less than S - S 317, %) de. Also since 2/p’ <1,
—om+r -1 °7

5 <1 > k2™, e, B 2mE ) (2"‘“/)")2“”

F==(~m) \1;& " 1or

of—m_; .
{3, 5 k2 e k2 )l @

ky=—22—m41 Zn—lpr
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and the limit superior of the second sum dominates the integral

(Sl_i SRH Sife dt>2,,,, ]

Thus, by letting ~ tend to infinity in (2.4), we obtain

(2 Sife e a)pe<a,irl,,
k=—m \JJ,@R"~1°T

and since m is arbitrary, our proof is complete for continuous func-
tions with compact support. The general result now follows since
such functions are dense in L*(R" P G).

There is also a dual to this generalized Hausdorff-Young Theorem
in case G is a compact group. Suppose {["}i-_.. is a collection of
subsets of I' for which a generalized Hausdorff-Young Theorem
holds (e.g., Theorem 3). For p and ¢ in [1, ) let L»%I") be the
space of all measurable complexvalued functions M on I" satisfying

7l = {55 (1, Mpar)eefe < o

TFEOREM 5. If1<p=<2and re L**I") then there exists f € L*(G)
with f =X and || fl, < B, |[Mlp,ey where B, is a constant depending
only on p.

Proof. Since LYG) * L*(G) = L*(G) (xdenotes convolution) we
have NG c (L*(®), L*(@)). By assumption a generalized Hausdorff-
Young Theorem holds in L*(G). Thus L@ < L**I") and the
previous inclusion implies that LXG) < (L*(@), L**(I")). But (L*(@),
L7 I")) = (L*X(I"), L*(G)) by duality; hence IXG) c (L**(I"), L"(®))
or, equivalently, L*XI") ¢ (LX®), L*(®)). However (L@, L*(®) is
known to be L*(®) [1, p.255] so that L»*(I") ¢ L*(G). An application
of the closed graph theorem establishes existence of the constant B,.

3. Applications. Let A denote the space of all functions j
continuous on T which have absolutely convergent trigonometric ex-
pansions and norm given by

1fll= 3 1fm)] .

With multiplication defined as the pointwise product of functions,
A becomes a Banach algebra. Each element of the dual of A may
be identified with a pseudomeasure S, that is, a distribution on C=(T)
whose sequence of Fourier coefficients S(n) = S(e="’) (ne Z) belong
to «=. Given a pseudomeasure S and an f in A the distribution fS
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is defined by fS(u) = S(fw) for ueC=(T). In [1] Edwards shows
that fS is the zero distribution when f and S satisfy the following
conditions:

(@) Ses,1=q= ;

(b) f vanishes on supp (S) = E; and

(¢) there exists a sequence of positive numbers ¢; tending to
zero such that f(z) = 0 (€79 for all x# such that dist (x, E) < ¢;.

THEOREM 6. Suppose S is a pseudomeasure and f€ A. If con-
ditions (b) and (c) above hold and either

(@) Ses?ifl<qg<2

or
(@) Sesrr=if 2<q< =

then fS = 0.

Proof. If 1 < q £ 2 it follows from Theorem 5 that S = g for
some ge L7(T). Therefore S(u) = |  u(®)g(t) dt/2r, ueC=(T), and

v

supp (S) = supp (9). But fiS(w) = S(fu) = S_rf Ou()9 (@) dt/2m, u e C=(T),
and supp (f) N supp (9) = 4; hence fS = 0.

Now ~? & ~%* when ¢ < 2, so we have a stronger result in this
case.

For the case ¢ > 2, we need only apply our generalized Haus-
dorff-Young theorem in 13.5.5 and the appropriate version of Holders
inequality in 18.5.9 of the argument in Edwards [1, pp.101-102] to
obtain fS = 0 when Se o= and f satisfies (b) and (c).

The condition Se %= when 2 < q < oo 1is a significant weakening
of condition (a) since it does not require that lim,, . l§(n)l = 0.

Our second application concerns sets of uniqueness for L?(G),
1<p<2. In a recent paper which generalized earlier work of
Katznelson [6, p.101-103], Figa-Talamanca and Gaudry proved the
existence of sets F C G of positive Haar measure such that if
Fe LG, supp (f) < E and feL?(G) for some p,1 < p <2, then
S =0. Here G is a nondiscrete LCA group with dual I".

For our generalization we shall only need to assume that there
is a decomposition {I"};-_.. of I" for which a generalized Hausdorff-
Young Theorem holds and that when f is measurable on I and
1 < p <2 then

kg'w(grk|f(7) ]”d'y)zlzz < o

always implies
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k=—oco

i (grk | f(B — “/)[”dﬁf)m < oo for each ge .

For example, these conditions hold relative to the decompositions in
the statement and proof of Theorem 4. Subject to this restriction
on the regularity of the lacunary decomposition {I"}7-_. we have the
following result.

THEOREM 7. There is a subset E of G of positive Haar measure
such that if fe LY(G), supp (f) < E and

~ e ~ 2/pY)1/2
171 ={ 3 (], 170 rar) "} < o
k=—oc Iy
for some p,1 < p <2, then f = 0.
Essentially the proof consists of establishing the following lemma.

LEMMA. If 1 <p<2,1>e>0, and M is a subset of G of
measure 1, then there exists a subset E., of M of measure greater
than or equal 1 — ¢ and a function @ € LYG) N L=(G) such that ® =1
on E,, and ||@]],.. < &

Proof of Theorem 7. Let ¢, =1/4*, p, =2 — ¢, and choose M a
subset of G of Haar measure 1. Let E= N7., E. ,, where E, ,
and @, are as in the lemma.

Suppose fe LNG), supp f< E, and [|fll,. < = for some p,
1<p<2 Since ||flle<  and p/2 <1 we have ||f|l, < . Let
vyelI'. It follows fromA our assumption on theA regularity of {7}
that || f;llp. < e and [|f; . < = where f,(8) = f(r — B). Choose N
so that n > N implies p, > p. By the interpolation theorem [4, p.
1069] there is a constant K, such that || fA,IIM,2 <K, for n> N. By
Parseval’s identity and Holder’s inequality we have

Fenl = || e = 9@ .|
= |],70 = 92.908| = 171121184 l1rs = K, -
Thus F(v) = 0 for vyeI" and hence f = 0.

Proof of the Lemma. Since our proof closely parallels that in
[2] we omit similar details and computations.

Define a sequence {r,}5., of partitions of M so that =, = {M}
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and 7, is obtained from =, , by dividing each set of =,_, into two
sets of equal measure. Define a sequence {r,};-, of Rademacher func-
tions on M with respect to these partitions. (i.e., 7o = Xu, 7. i8S

constant on each set of 7, with the value &= 1 and S r.(x)dx = 0 for
A

each Aer,_,, »>0.) Forming all possible finite products of the r»,
yields an orthogonal system W = {w;} of Walsh functions whose
linear span contains all functions supported on M and constant on
the sets of =, for some n = 0.

Sinece 1 < p < 2 we can choose ¢, 0 <t <1, sothat1/p =1 — t/2.
Now let N denote a positive integer such that

3.1) 824, P N2 < /2

where A, is the constant in the generalized Hausdorff-Young Theorem
for G. We will show the existence of disjoint compact sets K, .-+, K,
in I" and orthogonal linear combinations of Walsh functions ¢,, ««-, ¢,
with supp (¢;) € M,1 < j < N, satisfying the following conditions:

62 | lp@lds2emd | |p@Pdes2+1L1<<N,
G

where 1/2* < ¢/N < 1/2F*;

(8.3) the measure of {xecM: 4;(x) = 1} is greater than or equal
1—¢/N,1<j5<N; and

(3.4) {kgm(grknlfn

and

3 8:(8)

J=1

) 2/p") 1/2 R
v dg) "} = 4l dallys

(20, 16@ras)"} s e, 15nsN.

Denote the sums in (3.4) by |33 Gsllp e, and ||allp,0re,, respec-
tively.
Let ¢, = r, and choose a compact set K, so that

”églup',z;r\xl < ¢/2N .

Assume we have n functions and compact sets satisfying the above
with (3.4) replaced by

k2

(3.5)

= (2+2) 1l

2

j=1 P52, K,y
and

”ém“zz',z:r\x,n S¢2N,1l=m=mn.

By use of Bessel’s inequality and Dini’s Theorem we obtain the
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existence of a finite set ¥ < W such that
n 2
31wy < (e/2N5 1K) @@ + 1)

uniformly for v in the compact set K, U K, U --- U K,, where |K;|
denotes the measure of K;. We have assumed |K;| #0,1 <7 < n,
for otherwise ¢; is the desired function with E,, = {#: ¢;(x) = 1}.
Suppose further that F is chosen so as to contain all Walsh functions
appearing in the expansions of ¢, -+, ¢,. Let m be a positive integer
so that the elements of F' (and hence ¢, ---, ¢,) are constant on the
sets E,, «+-, Eym of w,. For each j, 1 <j < 2™, consider the parti-
tion of E; into 2* subsets EJ;, --+, El; determined by =,,,. Define
én41 to be zero off M and on M, to be as follows

2 _itecE
1 € Ly
bol) =12
1 if z ¢ EJ\EI,] .

Then for 1 <5 <27, S Anri(@)dx = 0 and therefore
L

[, sr@w@ds = 0

for each we F. Thus ¢,,, = >, ;er a;w; and 4,,, is easily seen to
satisfy (8.2) and (3.3). For ve U, K;

130 = 3 1a; |wio)y( = )da] £ 3 Jas) | (s, )]
1/2 n
< llgunlk (3 105 MF) " = 2N K5l
If1<m;<n and ng?mollp,,z < &/2 we are done; otherwise

/N 31 K| < 2| Bl o/ N 31K
and therefore

NG llpr ity = 1Koy | | G llemisyyy = 21 G [l o/ N

Hence
nt+1 ;. 2(% + 1) .
Jz‘=l % P2 Ky §<2 + T) H¢m0”p',2

by the triangular inequality. Also since [|@,..]] . <¢&/2N, there
2,20 U Kj
i=1

exists a compact set K,,, disjoint from U7, K; such that

H&nﬂ”p',z;r\xnﬂ < 8/2N .
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-~ ” ~
= [fnesllore + 2 M1 llor 2irvs;

. 1 X
< Gunllys+e2= (24 202D 150,

)
i=1 2K, 11

= ¢/2. The existence

where again we have assumed that ||¢,.. [y 0k, ,, =

of the functions now follows by induction.
Let 0 =(Q0/N) i .,¢; and E,.,={xeM: &) =1}. C(Clearly
|E.,] =1 —¢ and
19l l@l & +1@1  » <U®l 5 +e/2
P20 U Kj p’,2.jki1

p2ir\ U Kj K
i=1 T !

In order to complete the proof it suffices to show that

el » <e/2.
2,20 U
i=1K;

—11\721:‘. ?;(7) ‘ploh)m

A g

T NKp §=1

< 1 & N o, |2 1 N
= -]VE mz='1 gzzlll ¢j lp’,z;Km § ]\f2 mz='1 ”¢m”p R
N 1 .
= 185 S5 gl = 2888 S5 (gl all?
16 A2 - - €\
< 2945 H20-0 k t < t/2 t/2—1/2]2 Ly,
= g0 @ + 1)’ 5 24,60 N <(2)
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