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THE CONGRUENCE EXTENSION PROPERTY FOR
COMPACT TOPOLOGICAL LATTICES

ALBERT R. STRALKA

Let L be a compact, distributive topological lattice of
finite breadth and let A be a closed sublattice of L. It is
shown that every closed congruence on A can be extended to
a closed congruence on L. An example is provided to show
that the requirement of finite breadth cannot be deleted.

The congruence extension property serves to characterize distribu-
tive lattices (cf. [4]). The definition of this property may be refor-
mulated for topological lattices as follows: A topological lattice L
has the congruence extension property if given any closed sublattice
A of L and any closed congruence [φ] on A there is a closed con-
grucence [Φ] on L such that [Φ] Π (A x A) = [g>]. When this situation
prevails we say that [<p] has been extended to a closed congruence
[Φ] on L. In this paper we prove that compact, distributive lattices
of finite breadth have the congruence extension property. This fact
is established by first showing that the lattice of closed congruences
for such lattices is distributive. We also prove that the compact
topological lattice X — X £Li{0, 1} with coordinatewise operations does
not have the congruence extension property.

I* Preliminaries* A finite subset B of a lattice is meet-irre-
dundant if no proper subset of B has the same meet as B. The
breadth of a lattice L, Br(L), is the supremum of the cardinalities
of its meet-irredundant sets. A chain is a lattice whose breadth is
one. An element p of a lattice is prime if x A y ^ p implies that
x ίg p or y ^ p. We shall use the notation that if [φ] is a congru-
ence then φ is the canonical map associated with \φ\.

A topological lattice is a Hausdorff topological space with a pair
of continuous maps Λ , V : L x L ~> L such that (L, Λ , V ) is a
lattice. A point p of a subset A of a topological lattice L is a local
maximum of A if there is an open subset U of L such that (UΠ
A) Π (p V L) — {p}. By A* we shall mean the topological closure of A.

Suppose that L is a compact topological lattice. ^(L) is the
lattice of closed congruences on L (considered as subsets of L x L)
with operations Λ and V defined by [φ] A [θ\ = [φ] Π [θ] and [φ] V [θ]
is the smallest closed congruence on L which contains both [φ] and
[θ]. £f(L) = {[φ]e^(L); Br(φ(L)) = 1}. For [φ]e£f(L) we define
M(φ) = {x e L; x = V <P~ι(φ(%))} and m{φ) = {x e L; x = Λ φ~ι{φ{x))}.
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Since φ{L) is a chain both M{φ) and m(φ) are chains. Also since
φ(L) has the order topology when M(φ) and m(φ) are endowed with
the order topology they are homeomorphic and isomorphic with φ(L).
Associated with φ there are two natural (algebraic) homomorphisms
φ1 and φ° where φι(x) = φ~\φ{x)) n M{φ) and φ°(x) = φ-\φ{x)) n m{φ).

We say that a collection & of disjoint closed intervals of a
compact topological lattice L is a partition of L if (a) \} ̂  — L and
(b) P1? P2 e ^ implies that Px Λ P2 S -Pi or Pί/\P2^ P2. To every
partition of L there corresponds a member of £^{L). For [9?] e «S (̂L)
we shall let ^%] denote the partition of L corresponding to [φ]. It
is easily proved that if [φ] and [#] are in J*f(L) then ^ [ 9 ] V [ ^ =

where <£? is the smallest partition on φ{L) which contains

Recall that a coordinate chain in a lattice L is a chain C such
that (1) C consists only of prime elements of L and (2) C is closed
with respect to arbitrary meets [2]. Note that if L is a compact
topological lattice (2) is equivalent to (2') C is closed with respect to
decreasing nets.

LEMMA 1.1. Let L be a compact topological lattice and let [φ] e
Then M{φ) is a coordinate chain.

Proof. Let a e M(φ) and suppose that for some pair x, y e L, x Λ
y <̂  α. Since φ{L) is a chain and φ is a homomorphism

9>(α) ^ ?>(α Ay) = φ(x) A ψ{y) = min{<p(α;), φ(y)}.
Let 9>(a?) = min{< (̂#), φ(y)}. Because aeM(φ) we have a^x. Thus
α is a prime element of L.

Let A be a decreasing net of elements of M(φ). Since L is
compact A converges to some element aoe L. Suppose that for some
pair x, y e L, α0 ^ x A y* Then α ^ α; Λ ^ for each ae A. Since α is
prime either a ^ x or a^ y. Thus we may assume that there is a
cofinal subnet A! of A such that for each a e A', α ̂  ίc. Hence a A
x = x for all α e A' and by the continuity of Λ, a0 A % = #. There-
fore α0 is a prime element of L. Since A' is a decreasing net and it
converges to α0 it follows that α0 6 M(φ).

2» The congruence extension property on compact lattices*

LEMMA 2.1. Let L be a compact topological lattice and let [a],
LβJ, LβJi t L8J e ^f(L). T/̂ β̂  [α] V (A?=1[ft]) - Λ?=1([α] V [A])

Proo/. To simplify notation we shall let [φ] = [α] V (A?=i[/3,D
Note that since [φ] ^ [α] we must have [φ] e J*?(L). It is always
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the case that [φ] ^ Λ*U(M V [ft]) so we need only prove that [φ] ^
Λi=i(W V [ft]). This will be done by showing that if (x,y)$[φ]
then there is i e {1, 2, , n] such that (x, y) £ [α] V [ft] and conse-
quently (x, y) $ Λ?=i(W V [β1]). (x, 1/) £ [<P] implies that ^(α?) =£ ̂ (y).
We may assume that φι{x) < φι(y).

(1) If a, be M(φ) with a < b then there is ie {1, 2, , w} swcλ
ίfeαί ft(α) < ft(<P°(δ)).
If this were not the case then for each i e {1, 2, •• , n) we would
have β\{φ\b)) ^ $(α) ^ $(&)• This implies that

<P°(δ) ^ KUβ\{ψ\b)) rg KUβ\(a) S KUβ\{b).
Then because α ^ Aΐ=iβl(a) ^ $(&) for i = 1, 2, , n we have (α,
Λ?-i#(α))eΛ?=i[ft]. For the same reason (^°(6), A?=ift( °̂(&))), (6,
Atift(δ)) e Λ , U # ] . Then since (^°(6), 6) 6 H and ?>0(δ) ̂  KUβ\(a) ^
Aϊ=iβAt(1>) w e h a v e & Ai=M{a)) e [9>]. Hence (α, 6) e H This is a
contradiction so there must be an i e {1, 2, , n) with the property that
ft(α) < ft(<P°(δ)).

Suppose that φ([φι(x), φι(y)\) is not connected then because φ(L)
is a chain there are a, be M{φ) such that φι(x) <^ a < b ^ φι(y), L =
(α Λ L ) U (̂ °(&) V L) and <?(L) = φ(a A L) U ̂ (^°(δ) V £). From (1)
above there is ie {1, 2, , n} such that ft(α) < ft(^°(δ)). This implies
that ft(L) = βi{a/\L) U ft(90(v) V L) and ft(α Λ L) Π ft(^°(δ) V L) =
0 . It then follows that (α, δ) ί [̂ ] V [ft]. Then because [a] ^ [^],
x ^ ^(a?) ^ a and φ°(b) ̂  °̂(t/) ^ y, we must have (α, y) £ [a] V [ft].

Thus we have disposed of the case in which φ([φι(x), φ\y)]) is
not connected so we may assume throughout the rest of the proof
that φ{[φι{x), ψ\y)]) is connected.

(2) If ae M(φ) Π I^ 1^), φι(y)]\{φ\y)} then there is i e {1, 2, . . . , n)
such that if ce M{φ) and a < c then ft(α) < βi(<P°(c)).

Since φ([φι{x), Ψι{y)]) is connected a cannot be a local maximum of
M(φ). Hence there is a net B of elements of M{φ) which converges
to a such that if beB then a < δ ^ φι(y) Using (1) above and the
fact that n is finite we may find an element ie{l, 2, •••,%} and a
cofinal subnet B' of B such that if δ e ^ ' then ft(α) < ft(^°(δ)). Then
if c e M{φ) and c > a there must be δ e JS' with the property that a <
δ ^ c. Thus ft(α) < ft(^°(δ)) ^ ft(9°(c)).

(3) There is ie {1, 2, , n] and a, be M(φ) Π [^L(^), -P1^)] wiίΛ
α < δ suc/̂  that if c, de M(φ) and a ^ c < d ^ b then βt(c) <

For s e M(φ) Π [φ\x)y (Pι(y)]\{(Pι(v)} we let ξ(s) be any element of {1,
2, , n) with the the property that if t e M{φ) and s < t then
ft(s)(s) <ft(S)(

<P°(£)) From (2) above £ is a function defined for each
element of M(φ) Π [^O), 9?1(?/)]\{̂ 1(l/)} Let A, be the closure of ζ~ι (i)
in M(φ) when Λf(?>) is endowed with the order topology. With this
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topology M{φ) Π [(PL(x)9 Φ\y)] becomes a compact connected chain.
Hence some Ai must contain a nondegenerate interval of M(φ) Π
[φ\x), φι{y)]. Let that interval be [e,f]nM(φ). Then, still using
the order topology on M(φ), ξ~ι(i) is dense in [e, / ] . Hence there
are a, bef"1^) with e ^ a < b ^ / . f"1^) is dense in [α, b] Π M(φ) so
by an argument similar to that used in (2) [α, 6] c M(φ) has the
desired properties. Thus (3) is proved.

Now let i be that member of {1,2, •••,%} secured in (3). Let
eg? be the smallest partition of βi{L) which contains βi(<PιΨ)). From
(3) £? and βi(&*ιφ\) must coincide on /2ί(α, b]). Thus /3;(α) < /2;(δ). Then

Hence β^x) and βt(y) must be in different elements of the partition
4?. Thus we have (as, y) $ [φ] V [/8j. A fortiori ($, 2/) ί [α] V [βi] and
our lemma is proved.

It is known (cf. [3]) the lattice of congruences for any lattice is
distributive. For compact topological lattices we have

THEOREM 2.1. Suppose that L is a compact distributive topolog-
ical lattice of finite breadth. Then ^(L) is a distributive lattice.

Proof. It is an immediate consequence of Lemma 2.1 that for
each [a] e J*?(L), [a] V ^(L) is a distributive lattice. We now claim
that if [a] e £>f{L) then the map [φ] —> [a] V [φ] is a homomorphism
of ^(L) onto [a] V L. Since this map obviously preserves joins we
need only show that it also preserves meets. Suppose that [φ] and
[θ] are members of C^{L). Homomorphisms cannot raise breadth so
Br{φ{L)) = m ^ Br(L) ^ n = Br{θ{L)). From Theorem 3.1 of [2] we
know that there is a set of m elements of Jίf{φ{L)) which separates
points in φ(L) and a set of n elements of ^f{θ(L)) which separates
points in Θ{L). This implies that there are [φj, [φ2], •••, [<pm], [0J,
[0J, , [0J e ^ ( L ) such that AΓ=i[^] - [Φ] and A t i l ^ ] - [θ\. These
facts and Lemma 2.1 enable us to obtain

[a] V ([Φ] A [θ]) = [a] V ([9>J Λ [9>J Λ Λ [9>jΛ[*J Λ [ ί j Λ [θn])
= ( M V ( [ ^ ] ) Λ ([α] Λ [%]) Λ Λ ([a] V[0n])

M v to])) Λ (A(M v

v (Ato])) Λ ([a] v

- ( M V [Φ]) A ([a] V [θ]).

Hence the map [Φ] —> [α] V [^] is a homomorphism.
Next we shall show that the collection of homomorphisms [Φ] —>

[α] V [̂ ] where [α] e^f(L) separates points in i f (L). Let [φ], [θ] e
Suppose that [Φ] = AΠ=ito] a n ( i ί̂ ] = A?=i[̂ <l a r e representa-
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tions of [φ] and [Θ] by elements of J^fiL) obtained as in the previous
paragraph and suppose that no element in either representation is
redundant. If [φ] Φ [θ] then we may assume that [<p] A [θ] Φ [θ\.
We claim that for some ie {1, 2, , m}, [<pt] V [ψ] Φ [ψi] V [θ]. Sup-
pose that this is not the case. Then for every ίe {1, 2, , m}, [ψι] =
[Ψi] = [<Pt] V [9] - [Ψι] V [0J. Hence [<?,] Λ [θ] = [θ] for every ie
{1, 2, , m}. This allows us to conclude that [φ] A [0] = (Λ?=i[^J) Λ
[#] — [#] contrary to our assumption. Thus there are enough maps
of the form [φ] —> [a] V [φ] where [a] e <2?{L) to separate points in

has enough homomorphisms onto distributive lattices to
separate points. Thus r^{L) can be embedded in a distributive lattice.
Hence ^{L) is distributive.

Note that our purpose in proving Theorem 2.1 is to aid in the
proof of Theorem 2.2. No claims are made about the generality of
Theorem 2.1.

THEOREM 2.2. Let L be a compact, distributive topologίcal lattice
of finite breadth. Then L has the congruence extension property.

Proof. Let A be a closed sublattice of L and let [φ] e (

If Br{L) = 1 then [Φ] = {(x, y): there exists a, be A with <p(a) = ?>(&) and
a?, y 6 [α, 6]} U Δ is a congruence which is an extension of [<p]. Suppose
that Br(L) = n>l. As a result of Theorem 3.1 of [2] L can be
embedded in a lattice LA = Cι x C2 x x Cw where each C; is a
compact chain. Since this is the case we shall consider both A and
L to be closed sublattices of LA and proceed to show that [φ] can
be extended to a closed congruence on LA. Then a fortiori we will
have proved that [φ] can be extended to a closed congruence on L.

For each i e {1, 2, •••,%} define TΓ̂  to be the natural projection of
LA onto C< and P< to be the restriction of TΓ̂  to A. Because ^ ( A )
is a distributive lattice and

Each d is a chain and Pi{A) is a closed sublattice of d so the con-
gruence on Pi(A) associated with the natural map of Pi(A) onto A/
[Pi] V [φ] can be extended to a closed congruence [ft] on C{. Conse-
quently [/0f TΓi] is a member of Sf(LA) and it is also an extension of
[φ] V [Pi]. We define [Φ] = A?=i[|°*?7ri]- T h e n

[Φ] Π (A x A) = (Mpi^S) Π (Ax A)
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tfπd Π (A x A))
4 = 1

Thus [Φ] is an extension of [φ].

3* Properties of X* Let / be the usual topological lattice on
the closed real interval [0,1]. Let K be the standard representation
of the Cantor set in / and let N = {1-1/w; neZ+}{J {1}. Then both
K and N are closed sublattices of I. Let X be the usual topological
lattice on XΓ=i{0,1}. Define W(X) to be the set of points of X
having only finitely many nonzero coordinates.

Recall that the set of local minima of X is dense in X [6]. A
sequence {xn; neω} is nondecreasing if xn A xn+i = %n for all neω.

LEMMA 3.1. Let xe X and let w e W(X). Then the following
statements hold:

(1) w A X is finite.
(2) There is a nondecreasing sequence in (x A X) Π W{X) which

converges to x.
(3) W(X) is the set of local minima of X. Hence W(X) is dense

in X.

Proof. (1) is obvious and (3) is a direct consequence of (1) and
(2). Thus it only remains to prove (2). For x e X we define a
sequence {wn; neω} by having wn agree with x for the first n coord-
inates and thereafter having all coordinates zero. Then each wne
W(X) and {wn; neω} obviously converges to x.

Following [5] we say that a continuous homomorphism φ from a
compact semilattice S onto a semilattice T has full cross-section if
there is a closed sub-semilattice A of S such that φ restricted to A
is an isomorphism of A onto T.

LEMMA 3.2. Let φ be a continuous meet-homomorphism of X
onto the compact zero-dimensional chain C. Then C is the continuous
meet'homomorphic image of N. Moreover, φ has full cross-section.

Proof. Let B be the set of local minima of C and let A = {x e
X; x is the least element of φ~ι{b) for some beB}. A is a chain and
from Lemma 3.1, A £ W(X). Then since £* = C we have <p(A*) =
C. In view of Lemma 3.1, A* must be the continuous meet-homomor-
phic image of N and A* must define a full cross-section for φ.
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THEOREM 3.1. If there is a continuous meet-homomorphism of X
onto Y, then Y is zero-dimensional.

Proof. Suppose that φ is a continuous meet-homomorphism from
X onto a semilattice S where dim S Ξ> 1. Since dim S 2> 1, S must
possess a nondegenerate component So. So is a compact semilattice so
it has a least element s0. Choose seS\{s0}. The Rees-quotient sS/s0S
is a nondegenerate connected semilattice and it is the continuous
meet-homomorphic image of X. As a consequence of Theorems 2.1,
3.1 and 4.3 of ]7], sSfs0S, and hence also X, must have a continuous
meet-homomorphism onto /. Let rj be one such homomorphism. w Λ
X is finite for all we W(X). Hence η{W{X)) = 0. This implies that
7){W{X)*) = 0. However, X= W(X)*. Thus we have arrived at a
contradiction. Therefore our theorem is proved.

We now show that X does not have the congruence extension
property. In fact, we can say more.

COROLLARY 3.1. There is a linearly ordered sublattice K of X
and a closed congruence ζ on K such thxt ζ cannot be extended to a
closed meet-congruence on X.

Proof. From Theorem 2 of [8] K can be embedded in X. Thus
we may consider K to be a sublattice of X. On K the relation
defined by identifying the end points of complementary intervals is
a member of C^{K). Moreover ζ(K) is a compact, connected lattice.
From Theorem 3.1 it follows that [ζ] cannot be extended to a closed
meet-congruence on X.

We now provide several examples which are variants of the
example used in Corollary 3.1.

Example 1. Let C denote the image of K in X under an em-
bedding p where ρ{0) = 0 and ρ(l) = 1. X can be considered to be a
sublattice of Iω. Extend C to a maximal chain J in Iω. The closed
congruence [ζ] used in Corollary 3.1 can be extended to a closed
congruence [ζ'] on J. Then since [ζ] cannot be extended to a closed
meet-congruence on X it follows that [ζ'] cannot be extended to a
closed meet-congruence on Iω.

Example 2. In the previous example let 5 = [j {x A J; xe X}.
Then S is a compact, one-dimensional semilattice and J is the unique
thread from the zero of S to the identity of S. Applying the re-
asoning used in Example 1 the congruence [ζ'] on J cannot be extended
to S. S has the additional property that J cannot be the continuous
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(semi-lattice) homomorphic retract of S. Note that this will remain
true if I is replaced by any standard thread.
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