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RATIONAL EXTENSIONS OF MODULES

H A N S H. STORRER

It is shown, that a module B is a rational extension of a
submodule A if and only if B/A is a torsion module with
respect to the largest torsion theory for which B is torsion-
free. The rational completion of a module can thus be
viewed as a module of quotients. The behavior of rationally
complete modules under the formation of direct sums and
products is studied. It is also shown, that a module is
rationally complete provided it contains a copy of every
nonprojective simple module.

In the second part of the paper, rational extensions of
modules over a left perfect ring are studied. Necessary and
sufficient conditions are given for a semi-simple module to be
rationally complete. This characterization depends only on
the idempotents of the ring. If R is left and right perfect
and if every simple right module is rationally complete, then
every module is rationally complete.

1* Filters and rational extensions* We first recall a number

of definitions and results concerning filters of ideals and torsion
theories. Our main reference is Lambek [15], whose terminology we
follow. The reader may wish to consult some related papers, e.g.,
[6, 11, 12, 16, 17].

All rings have a unit element, all modules are unital and, unless
otherwise stated, "module" means "right Λ-module",

A set g of right ideals of R is called a filter, if the following
conditions are satisfied:

(1) Every right ideal containing a member of % belongs to %.
(2) S is closed under finite intersections.
(3) If Ie % and r e R, then r~ιI = {x e R \ rx e 1} e g. The filter

g is called idempotent, if.
(4) If l e g and / is a right ideal, such that α ^ J e g for all

a el, then Je%.
The set of filters is partially ordered by inclusion. The filter %Q

consisting of R alone is the smallest, the filter %GO consisting of all
right ideals is the largest filter. Both are idempotent.

Let g be an idempotent filter and M a module. We define the
2$-torsion submodule %(M) to be the set of all me M, whose annihi-
lator is in %. M is said to be %-torsion if %{M) — M and %-torsion-
free if %(M) — 0. The module M\%(M) is always g-torsion-free.

A module is called ^-divisible if every homomorphism from / to
My where Ie% can be extended to a homomorphism from R to M
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or, equivalently, if E(M)/M is g-torsion-free. Here and throughout
the paper, E(M) denotes the injective hull of M.

If M is g-torsion-free, then there is a unique (up to isomorphism)
module Qΰ(M) (hereafter denoted by Q) containing M such that (i)
M g Q is essential, (ii) Q/M is g-torsion and (iii) Q is ^-divisible, Q
is g-torsion-free and it is given by the formula Q/M = %{E{M)/M)
or, explicitly, Q — {x e E{M) \ x~ιMe %}> where x~ιM = {r \ xr e M}.
For an arbitrary M, we define Q%{M) to be Qd(Mffi(M)). It can be
shown, that Q%{M) = liπu HomΛ(/, M/%(M))(Ie 8). Q is called the
module of quotients of Jlf with respect to g

Given any Jfef, the set g^ = {/1 Ή.omR{R/I, E(M)) = 0} is an idem-
potent filter and it is the largest among all idempotent filters © such
that M is ©-torsion-free.

PROPOSITION 1.1.

( a ) Ie%u if and only if xlΦ 0 for every xe E{M), x Φ 0.
(b) l£%M if and only if for all me M, m Φ 0, cmd αZϊ r e R

there is an se R such that ms Φ 0, rse I.

Proof, ( a ) There is a nonzero map R/I-+ E(M) if and only
if there is an xe E(M), x Φ 0, such that xl — 0. (b) is proved in
[15, Prop. 0.2].

A module P is g^-torsion if and only if Hom^P, E{M)) = 0. As
an example, consider %R = g ^ ) . This is the filter of dense right
ideals [14, p. 96].

LEMMA 1.2.

( a ) L g M implies %L 2 8JΓ
(b) If L ^ M is an essential extension, then gL = gM

(c) If {Ma} is an arbitrary family of modules and if S = Σα-Mαi
P - /7αMα, ίλβn %s = g P = n ^ .

The proof is straightforward by (1.1, b).
In [9], Findlay and Lambek define a relation between three

modules. The write A ^ B{M) if 4 g β and if for every homo-
morphism φ:C —> M, where 4 g C g β, ̂ (A) = 0 implies ^ = 0.
Equivalently, A ^ 5(Λί) if and only if Ή.omR{B/A, E{M)) = 0, i.e., if
B/A is g^-torsion.

A s B is called a rational extension if A ^ .B(-B). In view of
the remarks above and [9, Prop. 2.2], we have.

LEMMA 1.3. The following statements are equivalent:
( a ) 4 £ δ is α rational extension.
(b) A^ B is an essential extension and B/A is %A-torsion.
(c) 4 g β and B/A is %B-torsion.
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A module is called rationally complete if it has no proper rational
extensions. In particular, an injective module is rationally complete.
Findlay and Lambek [9] have shown, that every module has a max-
imal rational extension M which is rationally complete. M is unique
up to isomorphism and it is called the rational completion of M.

PROPOSITION 1.4.

( a ) M is the module of quotients Q%M(M),
(b) M={xeE(M)\ar1Me%M}.

Proof. By (1.3) M satisfies properties (i) and (ii) of the module
of quotients. Also by (1.3) M S E(M). Let now T/M be the %M-
torsion-submodule of E(M)/M, then T is a rational extension of M
by (1.3), since %M = %τ. But M has no proper rational extensions,
hence T — M and E(M)jM is g^-torsion-free, thus satisfying condition
(iii). (b) is just the explicit description.

COROLLARY 1.5. A module M is rationally complete if and only
if M is %M-dίvisible.

PROPOSITION 1.6. (Brown [4]). The direct product of rationally
complete modules is rationally complete.

Proof. Let P = ΠaMa and suppose each Ma is rationally com-
plete. By (1.2, c) %P £ %Ma for each a. Since each Ma is gp-clivisible,
P is also §p"divisible.

Following Goldman, [12], a filter g is called Noetherian, if it
has the following property: If Ix £ I2 £ is a (countable) ascending
chain of right ideals whose union is in g, then some In is in %.
This condition is satisfied, if every right ideal in % contains a finitely
generated right ideal also in g.

PROPOSITION 1.7. The direct sum of any family of rationally
complete modules is rationally complete if and only if every idempotent
filter is Noetherian.

Proof. Let {Ma} be a family of rationally complete modules and
S be their sum. Then %s — n J$Ma by (1.2) and each Ma is ^-torsion-
free and ^-divisible. Since %s is Noetherian by assumption, S is
gs-divisible by [12, Thm. 4.4], hence rationally complete by (1.5).

Conversely, suppose there is a filter % which is not Noetherian.
Then there is a right ideal / e g such that / is the union of a chain
ii £ J2 £ , where no /̂  is in %.

Let M be an injective module such that g = %M. Such a module
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exists by [12, Thm. 5.3]. M is rationally complete, but we claim,
that the sum S of countably many copies of M is not rationally
complete. By assumption. I{ £ %M for all i, hence by (1.1, a), there
exist nonzero elements a?€ e M such that xji = 0. If d e 1, then delk

for some k, hence Xid — 0 for i ;> & and (̂cί) = ( , â d, •) defines
a homomorphism / —• S. Suppose that S is rationally complete, then
φ extends to a map Φ':R —> S and φ'{l) = (yl9 y2j , yn, 0, 0, •)• Thus
xj — 0 for all i > n, contrary to the assumption.

The proof shows a little bit more: If every injective (or rationally
complete) module M is countably J-rationally complete (i.e., a coun-
table sum of copies of M is rationally complete), then the sum of
any family of rationally complete modules is rationally complete.
This is an analogue of the situation for injective modules [8, p. 205].

It is not true in general that a direct summand of a rationally
complete module is rationally complete (see (1.9) below). However,
we have

PROPOSITION 1.8. Let {Ma} be a family of modules such that
%Ma = S for all a. If S = Σ«Mα or P = ΠaMa is rationally complete,
then Ma is rationally complete for every a.

Proof. Let φ:I—>Ma be a homomorphism; where Ie%Ma. Be-
cause %Ma = %P by (1.2) φ extends to φ':R—*P (after some identifica-
tions) and πaφ

r: R—*Ma is the desired extension of φ, where πa is the
projection P—»Ma. The proof for S is similar.

PROPOSITION 1.9. Let {Sa} be a set of nonisomorphic simple
modules, representing all nonprojective simple modules. Then every
module containing the module T = ̂ aSa is rationally complete.

Proof. First note that a simple module S = R/A (A a maximal
right ideal) is projective if and only of it is isomorphic to a direct
summand of R or if and only if A is a direct summand of R.

Suppose now T£ M. Suppose xeMQ E{M), then I = x^Me%M.
Since E{M) is an essential extention of M, I is a large [14, p. 70]
right ideal of R. Suppose Iφ R, then I is contained in a maximal
right ideal A, which is also large. Furthermore, A e %M. The simple
module S = R/A is not projective by what has been said above, hence
there is a nonzero homomorphism R/A—+T-+M-+E(M), which con-
tradicts the fact that Ae%M. Hence I = R and xeM, i.e., M = M.

A similar result was proved in [4] with T = ̂ R/L, L running
through all large right ideals.

An immediate consequence is that the class of rationally complete
modules is closed under submodules (or factor modules) if and only
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if every module is rationally complete. A characterization of the
rings with the latter property is given in [5]. As Brown [4] has
remarked, (1.9) also implies that every rationally complete module is
injective if and only if R is completely reducible (i.e., semisimple
Artinian). We also have

COROLLARY 1.10. Every rationally complete module is projective
if and only if R is completely reducible.

Proof. Choose one simple module from each isomorphism class
and let U be their sum. Then U is rationally complete by (1.9),
hence every simple module is projective. Therefore R has no proper
large ideal and R is completely reducible by [14, p. 61]. The converse
is obvious.

COROLLARY 1.11. Every cogenerator is rationally complete.

Proof. A cogenerator contains a copy of every simple module.

PROPOSITION 1.12. Suppose every simple module is isomorphic
to a minimal right ideal. Then every faithful module is rationally
complete.

Proof. If M is faithful, then R £ ΠM for some index set. Since
T £ R by assumption, ΠM is rationally complete and hence so is M
by (1.8).

One might ask whether any module S with the property that
S 0 M is rationally complete for all M, has to contain the module T
defined above. This is not so in general but the following discussion
shows that this situation arises for the ring Z of integers.

EXAMPLE 1.13. Let us first describe the idempotent filters of
Z. Given any subset & of the set of all primes, the ideals generated
by products of powers of primes from & form an idempotent filter.
Conversely, any idempotent filter (except §«,) is of this form. This
follows from unique factorization and the fact that in a commutative
Noetherian ring a filter % is idempotent if and only if /, Je% im-
plies I J e g [17, 1.22].

If M is any nonzero Abelian group, we let 0> be the set of
primes, such that pm — 0 (pe^,meM) implies m = 0. (Thus M is
^-torsion-free in the sense of [13]). %M is then the filter "generated"
by &*. By (1.5) M is rationally complete if and only if M is divisible
by all primes in '& (.^-divisible [13]). In particular, any torsion
group is rationally complete and a torsion-free group is rationally
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complete if and only if it is divisible.
The group T is the sum of all Z/(p). We claim that Ί is the

smallest group such that T0ikf is rationally complete for all M.
Indeed, suppose U does not contain Z/(q). Then U is g-torsion-free
and so is £7®Z. But Ϊ 7 0 Z is not q-divisible, hence not rationally
complete.

2» Rational extensions of modules over left perfect rings*
From now on R shall denote a left perfect ring [3] with Jacobson
radical N. We shall use the following properties of R: Every right
lϋ-module M has nonzero socle Soc M and R satisfies the minimum
condition on principal right ideals. Furthermore, the following facts,
which are well-known for Artinian rings [2] are also true for perfect
rings: The unit element of R can be written as a sum of orthogonal
primitive idempotents. If e is any primitive idempotent, then eR has
a unique maximal submodule eN, hence eR/eN is simple. Every
simple module S is of this form: S ~ eR/eN if and only if Se Φ 0.
Two primitive idempotents e and / are called isomorphic if eR = fR>
or equivalently if eR/eN ~ fR/fN. Furthermore e and / are isomor-
phic if and only if there exist u, v e R such that e — ufv and / = veu
[14, p. 63], this shows that the concept is left-right symmetric.

From now on, we consider a fixed representation of the unit
element as a sum of orthogonal primitive idempotents.

(*) 1 = en + + eιkl + + enί + + enk% ,

where eiS is isomorphic to ers if and only if i — r. We also set et = e{ί.
Once (*) is fixed there is, for any simple module S, a unique

primitive idempotent e* such that Ste* Φ 0. We shall say, that e*
corresponds to S. If M is any module, we let e be the sum of the
βi corresponding to the simple submodules of M. Again we say, that
e corresponds to M.

LEMMA 2.1. Let e correspond to M and let meM. Then
mRe = 0 implies m — 0.

Proof. If m Φ 0, then there is an r e R such that 0 Φ mr e Soc
M. Thus xrR is a sum of simple submodules of M and xrRe Φ 0.

LEMMA 2.2. Let S be a simple module with corresponding
idempotent β4 and let J be a two-sided ideal. Then SJ=Sif and
only if e4 e J.

Proof. The " i f part is clear. To prove the "only i f part sup-
pose SJ Φ 0. Now J = fR + P where / 2 = / and P S N. (See e.g.,
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[2, Thm. 2.6 B] for a proof in the Artinian case). / can be written
as a sum of primitive idempotents fά e J and since SP — 0, it follows
that Sfk Φ 0 for some Jc. Therefore fh is isomorphic to e< and since
J is two-sided et e J.

PROPOSITION 2.3. Let M be any module over the left perfect ring
R and let e correspond to M. Then %M consists of all right ideals
containing ReR.

Proof. Suppose ReR £ I. Since e corresponds also to E{M),
(2.1) implies that xlφ 0 for any nonzero xeE(M). Thus Ie%M by

(1.1).
Conversely, let Ie%M. We claim, that the two-sided ideal

J = {r I Rr £ /} is also in %M. To prove this, it will be sufficient to
show, that K — {r \ xJ — 0 ==> xr = 0 for all x e E(M)} equals R.
Suppose K Φ R, then we can choose an a £ K, such that aR is minimal
in the set {cR | c g K) of principal right ideals. Then a ( J, hence
there exists a 6 such that ba $ I. If as £ K for some se S, then asR =
αί? by minimality. Thus bas e I implies ase K (for if not, ba e I by
the preceding remark) and we conclude that (ba)~ιI £ a~ιK = L and
Le%M. Since αL £ iΓ, xJ = 0 implies #αL = 0 and hence m = 0 by
(1.1, a), contradicting the assumption that a£K.

Since Je$M,SJΦ 0 for every simple submodule S of M. Lemma
(2.2) implies then e e J and it follows that ReR £ J £ J.

COROLLARY 2.4. Every idempotent filter of the left perfect ring
R is of the form {I | ReR £ J} /or some idempotent e.

Proof. By [12, Thm. 5.3], every idempotent filter is of the form

This implies that the product of g-torsion modules is g-torsion
for any %. See [1], [7].

We also point out, that ReR, where e = eh + + eijc depends
only on the isomorphism classes of the e{j. Furthermore ReR con-
tains every idempotent isomorphic to one of the β< . Thus, the left
perfect ring R possesses 2n idempotent filters of left ideals, where n
is the number of isomorphism classes of simple modules.

We shall use (2.3) to describe the rational completion M of a
module M over a left perfect ring R. Note that if g = {/1 ReR £ /},
then the g-torsion-submodule %{M) of M is given by

%{M) = {m I mRe = 0} .

PROPOSITION 2.5. Let R be left perfect and let M be a module
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with corresponding ίdempotent e.
(a) M={xeE(M)\xReQM}
(b) If M is semi-simple, then M = {x e jδ7(ikf) | xReN = 0}.

Proof, (a) follows from (1.4, b) and (2.3). To prove (b), note that
xRe s ilί if and only if xReN = 0.

LEMMA 2.6. Lβί M be any module with corresponding idempotent
e. Let I, J be right ideals of R. Then

( a ) {xeE(M)\xI=0} = {x e E(M) \ xle = 0}

(b) Suppose that ί g J and that

{x e E(M) I a?I - 0} - {x e E(M) \xJ=0} .

Then Ie = Je.

Proof, (a) This is the first part of Lemma 1.1, (a) in [10]. The
proof given there still works in the present, slightly more general
case.

(b) Suppose Ie Φ Je. Then (J/I)e Φ 0, hence there is a yeJ/I
such that yβi Φ 0 for some primitive idempotent ^ corresponding to
a simple submodule of M. The module yeji is a nonzero homomorphic
image of ejl and therefore maps onto eiRjeiN. It follows, that there
are right ideals A, B with / g 5 § A £ J such that

A/B ^ e.R/e.N ̂  E(M) .

Thus, there is a nonzero homomorphism A-+ A/B—* E(M), which
extends to a nonzero φ:R —> E(M) given by ^(1) = x Φ 0. Now £ £
Ker φ, hence #1 = 0, but φ(A) Φ 0, hence xJ Φ 0. This contradicts
the assumption.

PROPOSITION 2.7. Let R be left perfect and let M be a semi-
simple module with corresponding idempotent e. Then

(a) M = E(M) if and only if eNe = 0,
(b) M=M (i.e., M is rationally complete) if and only if

ReNe = Ne,
(c) M = E(M) (i.e., M is injective) if and only if Ne = 0,
(d) M is protective if and only if eN = 0.

Proof. (a ) If M> JEpf) we have by (2.5)

E(M) = {xe E(M) \ x O = 0} - M = {α? e JS?(ilf) , α ^eiV - 0}̂ .

Applying (2.6, b) to I = 0, J = ReN, we get that ReNe = 0, which is
equivalent to eNe = 0. Conversely, if ReNe = 0, then (2.6, a) applied
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to I = ReN, yields M = E(M).
(b) Suppose M= M. Since M is the socle of E(M),

M= {xeE(M)\xN = 0} .

Applying (2.6, b) again, this time to ί = ReN, J = N, we obtain
ReNe = iVe. The converse is proved as above.

(c) This follows from (a) and (b).
(d) A simple module βiR/βiN is protective if and only if βiN = 0.

COROLLARY 2.8. If the rational completion of every semisimple
module is injective, then R is completely reducible.

Proof. Let M be a semi-simple module with corresponding
idempotent e = e1 + + en. Then ReR = R and eiVe = 0 implies
N= 0.

The ring of 2 x 2 triangular matrices over a field is not completely
reducible, yet the rational completion of every simple module is
injective.

Another immediate consequence of (2.7) is the following.

COROLLARY 2.9. A protective semi-simple module is rationally
complete if and only if it is injective.

A ring is called primary if it is a simple Artinian ring modulo
its radical.

PROPOSITION 2.10. Let R be left and right perfect. Then the
following are equivalent:

(a) Every right R-module is rationally complete.
(b) Every simple right R-module is rationally complete.
(c) R is a finite product of primary left and right perfect rings.

Proof, (a) => (b) is trivial. (c)=>(a) is a part of [5, Main Theorem].
It remains to prove (b) ==> (c).

Using the decomposition (*), we set /< = βίx + + eik. and, as
before, et = eu for i = 1, •••, n. By assumption and (2.7), we have
that Re.Ne, = Ne{ for all i. This implies RfiNf, = Nf{ for all i,
because e{ — uei5v and e^ — vβiU for some u,veR, whence ReiN = RfiN.

Let now e and / be any two different idempotents from the set
{/J. Since eRf annihilates every simple lϋ-module, we have that
eRf £ N. From this and RfNf = Nf it follows that

ReRfR = (ReRfR)Nf.

However, since R is right perfect, a generalized version of Nakayama's
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Lemma holds: MN = M implies M = 0 for every right module M
(see [3, p.473]). Thus eRf = 0 and we conclude that all idempotents
fi are central. This implies (c).

REMARKS 2.11.

(a) Since (2.10, c) is left-right symmetric, Proposition (2.10) is
also true for left modules instead of right modules.

(b) There exist rings such that every simple module but not
every module is rationally complete; e.g., the ring Z of integers (see
(1.13)). As a matter of fact, Brown [4] has shown that every simple
module over a commutative ring is rationally complete.
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