ON ITERATED w^{*}-SEQUENTIAL CLOSURE OF CONES

R. D. McWilliams

Abstract

In this paper it is proved that for each countable ordinal number $\alpha \geqq 2$ there exists a separable Banach space X containing a cone P such that, if J_{X} is the canonical map of X into its bidual $X^{* *}$, then the α th iterated w^{*}-sequential closure $K_{\alpha}\left(J_{X} P\right)$ of $J_{X} P$ fails to be norm-closed in $X^{* *}$. From such spaces there is constructed a separable space W containing a cone P^{P} such that if $2 \leqq \beta \leqq \alpha$, then $K_{\beta}\left(J_{W} P^{\prime}\right)$ fails to be normclosed in $W^{* *}$. Further, there is constructed a (non-separable) space Z containing a cone P such that if $2 \leqq \beta<\Omega$, then $K_{\beta}\left(J_{Z} P\right)$ fails to be norm-closed in $Z^{* *}$.

1. If X is a real Banach space and Y a subset of $X^{* *}$, let $K(Y)$ be the set of elements of $X^{* *}$ which are w^{*}-limits of sequences in Y. Let $K_{0}(Y)=Y$ and inductively let $K_{\alpha}(Y)=K\left(\cup_{\beta<\alpha} K_{\beta}(Y)\right)$ for $0<\alpha$ $\leqq \Omega$, where Ω is the first uncountable ordinal. A cone in X is a subset of X which is closed under addition and under multiplication by nonnegative scalars. Our main theorem extends the result of [6] that if P is a cone in X, then $K_{1}\left(J_{X} P\right)$ must be norm-closed but $K_{2}\left(J_{X} P\right)$ can fail to be norm-closed in $X^{* *}$. By contrast it is noted that if S is a compact Hausdroff space and $X=C(S)$ and $\alpha<\Omega$, then $K_{\alpha}\left(J_{X} X\right)$ is norm-closed, even though for example if S is compact, metric, and uncountable, then $K_{\alpha}\left(J_{X} X\right)$ is not w^{*}-sequentially closed. It is obvious that for each Banach space X and each subset Y of $X^{* *}, K_{\Omega}(Y)$ is w^{*}-sequentially closed and hence norm-closed.

In [7] a Banach space X was exhibited such that $K_{2}\left(J_{X} X\right)$ is not norm-closed. Whether $K_{\alpha}\left(J_{X} X\right)$ can fail to be norm-closed for $2<\alpha$ $<\Omega$ is not known to the author. However, in the present paper it will be convenient to use constructions involving spaces studied in [7].

Section 2 is devoted to a useful relationship between w^{*}-sequential convergence and pointwise convergence of bounded sequences of functions, $\S 3$ to further study of a space constructed in [7], and $\S \S 4$ and 5 to preparation for and proof of the main theorems.
2. Let S be a compact Hausdorff space, $B(S)$ the Banach space of bounded real functions on S with the supremum norm, and $C(S)$ the closed subspace of $B(S)$ consisting of the continuous real functions on S. If A is a subset of $B(S)$, let $L(A)$ be the set of all pointwise limits of bounded sequences in A, and let $L_{\alpha}(A)$ be defined inductively by $L_{0}(A)=A$ and $L_{\alpha}(A)=L\left(\cup_{\beta<\alpha} L_{\beta}(A)\right)$ for each ordinal α such that $0<\alpha \leqq \Omega$.

If X is a norm-closed subspace of $C(S)$ and $z \in L_{\Omega}(X)$, then z is
bounded and Borel measurable and hence is integrable with respect to each finite regular Borel signed measure μ on S. For each $f \in X^{*}$ there exists a finite regular Borel signed measure μ_{f} on S such that $f(x)=\int_{S} x d \mu_{f}$ for each $x \in X[3, \mathrm{p} .265]$, and by the Hahn-Banach theorem μ_{f} can be chosen so that $\left\|\mu_{f}\right\|=\|f\|$. If ν_{f} is another finite regular Borel signed measure on S such that $f(x)=\int_{S} x d \nu_{f}$ for each $x \in X$ then also $\int_{S} z d \mu_{f}=\int_{S} z d \nu_{f}$ for each $z \in L_{\Omega}(X)$, by virtue of the bounded convergence theorem and transfinite induction. Hence a mapping T is unambiguously defined from $L_{\Omega}(X)$ into the space of real functions on X^{*} by

$$
(T z)(f)=\int_{S} z d \mu_{f} \quad\left(z \in L_{\Omega}(X), f \in X^{*}\right)
$$

Teorem 2.1. If S is a compact Hausdorff space and X a normclosed subspace of $C(S)$, then T is an isometric isomorphism from $L_{\Omega}(X)$ onto $K_{Q}\left(J_{X} X\right)$, and T maps $L_{\alpha}(A)$ onto $K_{\alpha}\left(J_{X} A\right)$ for each subset A of X and each $\alpha \leqq \Omega$.

Proof. For each $z \in L_{\Omega}(X)$ it is trivial that $T z$ is linear on X^{*} and that $|(T z)(f)| \leqq\|z\|\|f\|$ for every $f \in X^{*}$, so that $T z \in X^{* *}$ and $\|T z\| \leqq\|z\|$. For each $t \in S$ let $f_{t}(x)=x(t)$ for all $x \in X$; then clearly $f_{t} \in X^{*}$ with $\left\|f_{t}\right\| \leqq 1$, and it is easily seen that $(T z)\left(f_{t}\right)=\int_{S} z d \mu_{f_{t}}=$ $z(t)$, so that $|z(t)| \leqq\|T z\|\left\|f_{t}\right\| \leqq\|T z\|$ and hence $\|z\| \leqq\|T z\|$. Since T is obviously linear, it follows that T is an isometric isomorphism from $L_{\Omega}(X)$ into $X^{* *}$.

Now let A be a subset of X. Since the restriction of T to X is J_{X}, it follows that $T\left[L_{0}(A)\right]=T A=J_{X} A=K_{0}\left(J_{X} A\right)$. If $0<\alpha \leqq \Omega$ and it is assumed that $T\left[L_{\beta}(A)\right]=K_{\beta}\left(J_{X} A\right)$ for each $\beta<\alpha$, then for each $z \in L_{\alpha}(A)$ there exists a bounded sequence $\left\{z_{n}\right\}$ in $\bigcup_{\beta<\alpha} L_{\beta}(A)$ which converges pointwise to z. By the bounded convergence theorem $(T z)(f)=\lim _{n}\left(T z_{n}\right)(f)$ for each $f \in X^{*}$. Since by assumption $\left\{T z_{n}\right\} \subset$ $\bigcup_{\beta<\alpha} K_{\beta}\left(J_{X} A\right)$, it follows that $T z \in K_{\alpha}\left(J_{X} A\right)$. Conversely, if $F \in K_{\alpha}\left(J_{X} A\right)$ there exists a sequence $\left\{F_{n}\right\} \subset \bigcup_{\beta<\alpha} K_{\beta}\left(J_{X} A\right)$ such that $F_{n} \xrightarrow{w^{*}} F$; the sequence $\left\{F_{n}\right\}$ must be bounded [3, p. 60], and by assumption there exists a sequence $\left\{z_{n}\right\} \subset \bigcup_{\beta<\alpha} L_{\beta}(A)$ such that $T z_{n}=F_{n}$ for each n. Now $\left\{z_{n}\right\}$ is bounded, and if $z(t)$ is defined to be $F\left(f_{t}\right)$ for each $t \in S$ it follows that $\left\{z_{n}\right\}$ converges pointwise to z so that $z \in L_{\alpha}(A)$. For every $f \in X^{*},(T z)(f)=\lim _{n}\left(T z_{n}\right)(f)$ by the bounded convergence theorem. Thus $F=T z \in T\left[L_{\alpha}(A)\right]$, completing the proof that $T\left[L_{\alpha}(A)\right]=K_{\alpha}\left(J_{X} A\right)$. By transfinite induction the theorem follows.

Remark. If S is a compact Hausdorff space and X is the Banach
space $C(S)$, then for each $\alpha \leqq \Omega, L_{\alpha}(X)$ is the space of bounded Baire functions on S of order $\leqq \alpha$ and, just as in the special case of a metric space $S[8, \mathrm{p} .132], L_{\alpha}(X)$ is norm-closed in $B(S)$ and hence also $K_{\alpha}\left(J_{X} X\right)$ is norm-closed in $X^{* *}$. If S is a compact metric space with uncountably many elements then S has a nonempty dense-in-itself kernel [1, Ch. 9, p. 34]. Hence for each countable α there is a subset T of S of Borel order exactly α [4, p. 207], but then it follows that $L_{\alpha}(X) \neq L_{\alpha+1}(X)[5, \mathrm{p} .299]$ and hence that $K_{\alpha}\left(J_{X} X\right) \neq K_{\alpha+1}\left(J_{X} X\right)$ for each countable α.
3. The reader is now referred to the proof of Theorem 1 of [7] for the construction, for each real $c \geqq 1$, of a Banach space $X \subset$ $C([0 ; 3])$ having the property that there exists an $x^{0} \in L_{2}(X)$ such that $\left\|x^{0}\right\|=1$ but if $\left\{y^{h}\right\}$ is a bounded sequence in $L_{1}(X)$ which converges pointwise to x^{0}, then $\lim \inf _{h}\left\|y^{h}\right\| \geqq c$. The remainder of the present paper depends heavily on properties of the space X, and the reader will occasionally need to refer to [7]. In particular, note that X is generated by a set $\left\{x_{p q}: p, q \in \omega\right\}$ of piecewise linear nonnegative functions of norm c on $[0 ; 3]$ and that x^{0} is the pointwise limit of the sequence $\left\{x^{p}\right\} \subset L_{1}(X)$, where x^{p} is the pointwise limit of $\left\{x_{p q}\right\}_{q \in \omega}$ and $\left\|x^{p}\right\|=c$ for each p. Each $x_{p q}$ has truncated peaks centered at certain of the points $s_{u i}, t_{v j}, 2+s_{u i}$ where $s_{u i}=2^{-u} i$ and $t_{v j}=2-2^{-v}\left(1+2^{-j}\right)$ for $u, i, v, j \in \omega$ and $i<2^{u}$. Specifically, $x_{p q}\left(s_{u i}\right)=x_{p q}\left(2+s_{u i}\right)=1$ if $p \geqq u$, and $x_{p q}\left(s_{u 1}\right)=1$ if and only if $p \geqq u$. Further, $x_{p q}\left(t_{v j}\right)=c$ if $v \leqq p \leqq j<p+q$ and 0 otherwise. If $\chi(S)$ denotes the characteristic function of the subset S of [0;3], it turns out that

$$
x^{p}=\chi\left(\left\{s_{p i}: i<2^{p}\right\} \cup\left\{2+s_{p i}: i<2^{p}\right\}\right)+c \chi\left(\left\{t_{v j}: v \leqq p \leqq j\right\}\right)
$$

and that

$$
x^{0}=\chi\left(\left\{s_{p i}: p \in \omega, i<2^{p}\right\} \cup\left\{2+s_{p i}: p \in \omega, i<2^{p}\right\}\right)
$$

Lemma 3.1. Let Q be the norm-closed cone in X generated by $\left\{x_{p q}: p, q \in \omega\right\}$. Then Q coincides with

$$
Q_{0}=\left\{\Sigma_{p} \Sigma_{q} a_{p q} x_{p q}: a_{p q} \geqq 0, \Sigma_{p} \Sigma_{q} a_{p q}<\infty\right\}
$$

where the indicated summations are over the set ω of all positive integers.

Proof. It is clear that Q_{0} is a cone containing $\left\{x_{p q}: p, q \in \omega\right\}$ and contained in Q. If $\left\{z_{n}\right\}$ is a sequence in Q_{0} which converges in norm to some $x \in X$, then each z_{n} has the form $z_{n}=\Sigma_{p} \Sigma_{q} a_{n p q} x_{p q}$ with $a_{n p q} \geqq$ 0 and $\Sigma_{p} \Sigma_{q} a_{n p q}<\infty$. As noted in [7] the limit $\lim _{n} a_{n p q} \equiv a_{p q}$ exists for all p, q; indeed, in the notation of [7],

$$
a_{p q}=c^{-1}\left(x\left(t_{p p}-2^{-2 p-q-2}\right)-x\left(t_{p p}-2^{-2 p-q-1}\right)\right)
$$

Clearly each $a_{p q} \geqq 0$, and if $r, s \in \omega$ then

$$
\Sigma_{p \leqq r} \Sigma_{q \leq s} a_{p q}=\lim _{n} \Sigma_{p \leqq r} \Sigma_{q \leqq s} \alpha_{n p q} \leqq \lim _{n} z_{n}\left(s_{11}\right)=x\left(s_{11}\right) ;
$$

hence $\Sigma_{p} \Sigma_{q} a_{p q} \leqq x\left(s_{11}\right)$ and $z \equiv \Sigma_{p} \Sigma_{q} a_{p q} x_{p q} \in Q_{0}$.
Let $\varepsilon>0$ be given. It follows from [7, p. 1196] that each $x_{p q}$ is continuous and vanishes at 0 and at $2-2^{-1}$ and hence that each element of X shares these properties. Since $s_{p_{1}} \rightarrow 0$, there exists $p_{1} \in \omega$ such that $z\left(s^{\prime}\right)<\varepsilon$ and $x\left(s^{\prime}\right)<\varepsilon$ for $s^{\prime}=s_{p_{1}+1,1}$. Since $\left\|z_{n}-x\right\| \rightarrow 0$, there exists n^{\prime} such that $z_{n}\left(s^{\prime}\right)<\varepsilon$ for all $n>n^{\prime}$. Thus, by [7], $\Sigma_{p>p_{1}} \Sigma_{q} a_{p q}=z\left(s^{\prime}\right)<\varepsilon$ and $\Sigma_{p>p_{1}} \Sigma_{q} a_{n p q}=z_{n}\left(s^{\prime}\right)<\varepsilon$ for $n>n^{\prime}$. Further, since $t_{1 j} \rightarrow 2-2^{-1}$, there exists by continuity $q_{1} \geqq p_{1}$ such that $z\left(t_{1, q_{1}}\right)$ $<c \varepsilon$ and $x\left(t_{1, q_{1}}\right)<c \varepsilon$; hence there exists $n^{\prime \prime} \geqq n^{\prime}$ such that $z_{n}\left(t_{1 q_{1}}\right)<c \varepsilon$ for all $n>n^{\prime \prime}$. It follows from [7] that

$$
\Sigma_{p \leqq p_{1}} \Sigma_{q>q_{1}} a_{p q} \leqq \Sigma_{p \leqq q_{1}} \Sigma_{q>q_{1}-p} a_{p q}=c^{-1} z\left(t_{1, q_{1}}\right)<\varepsilon
$$

and similarly $\Sigma_{p \leqq p_{1}} \Sigma_{q>q_{1}} a_{n p q} \leqq c^{-1} z_{n}\left(t_{1, q_{1}}\right)<\varepsilon$ for all $n>n^{\prime \prime}$. Moreover, since $a_{n p q} \rightarrow a_{p q}$, there exists $n_{1} \geqq n^{\prime \prime}$ such that $\Sigma_{p \leqq p_{1}} \Sigma_{q \leqq q_{1}}\left|a_{p q}-a_{n p q}\right|<\varepsilon$ for all $n>n_{1}$. Hence for $n>n_{1}$ the triangle inequality implies that

$$
\begin{aligned}
\left\|z-z_{n}\right\| & \leqq\left\|\Sigma_{p>p_{1}} \Sigma_{q} a_{p q} x_{p q}\right\|+\left\|\Sigma_{p>p_{1}} \Sigma_{q} a_{n p q} x_{p q}\right\| \\
& +\left\|\Sigma_{p \leqq p_{1}} \Sigma_{q>q_{1}} a_{p q} x_{p q}\right\|+\left\|\Sigma_{p \leqq p_{1}} \Sigma_{q>q_{1}} a_{n p q} x_{p q}\right\| \\
& +\left\|\Sigma_{p \leqq p_{1}} \Sigma_{q \leq q_{1}}\left(a_{p q}-\alpha_{n p q}\right) x_{p q}\right\| \\
& <5 c \varepsilon,
\end{aligned}
$$

since $\left\|x_{p q}\right\|=c$ for all p, q. Thus $\left\|z-z_{n}\right\| \rightarrow 0$ and therefore $x=z \in$ Q_{0}, proving that Q_{0} is norm-closed.

Lemma 3.2. Let $Q_{1}=\left\{\Sigma_{p} b_{p} x^{p}: b_{p} \geqq 0, \Sigma_{p} b_{p}<\infty\right\}$. Then $L_{1}(Q)=Q$ $+Q_{1}$.

Proof. Since $L_{1}(Q)$ is a norm-closed cone in $B([0 ; 3])$ by [6, Theorem 1, p. 192] and Theorem 2.1, and since $\left\{x^{p}\right\}_{p} \subset L_{1}(Q)$, it is clear that $Q+Q_{1} \subset L_{1}(Q)$. If $\left\{z_{n}\right\}$ is a bounded sequence in Q which is pointwise convergent to some $z \in L_{1}(Q)$, each z_{n} has the form $z_{n}=$ $\Sigma_{p} \Sigma_{q} a_{n p q} x_{p q}$ with $a_{n p q} \geqq 0$ and $\Sigma_{p} \Sigma_{q} a_{n p q}<\infty$. As in the proof of Lemma 3.1, for all $p, q \in \omega$ the limit $a_{p q}=\lim _{n} a_{n p q}$ exists. For all $p, q_{1} \in \omega$,

$$
\Sigma_{q \leqq q_{1}} a_{p q}=\lim _{n} \Sigma_{q \leqq q_{1}} a_{n p q} \leqq \lim _{n} c^{-1} z_{n}\left(t_{p p}\right)=c^{-1} z\left(t_{p p}\right) ;
$$

hence $\Sigma_{q} a_{p q} \leqq c^{-1} z\left(t_{p p}\right)$ for each $p \in \omega$. Let $b_{p}=c^{-1} z\left(t_{p p}\right)-\Sigma_{q} a_{p q}$ for each p, and note that all the numbers $a_{p q}$ and b_{p} are nonnegative.

For $n, p \in \omega$ let $u_{n p}=\Sigma_{q} a_{n p q} x_{p q}$ and $u_{p}=\Sigma_{q} a_{p q} x_{p q}+b_{p} x^{p}$. For each p, if $t \in[0 ; 3]$ and t is not of the form $s_{p i}, 2+s_{p i}$, or $t_{v j}$ with $v \leqq p$
$\leqq j$, in the notation of [7, p. 1196], $x_{p q}(t)=0$ for all sufficiently large q and hence $x^{p}(t)=0$, so that $u_{n p}(t) \underset{n}{\longrightarrow} u_{p}(t)$, If $t=s_{p i}$ or $t=2+$ $s_{p i}$, then

$$
u_{n p}(t)=\Sigma_{q} a_{n p q}=c^{-1} z_{n}\left(t_{p p}\right) \longrightarrow c^{-1} z\left(t_{p p}\right)=u_{p}(t) .
$$

Finally, if $v \leqq p \leqq j$, then

$$
\begin{aligned}
u_{n p}\left(t_{v j}\right) & =c \Sigma_{q>j-p} a_{n p q} \longrightarrow z\left(t_{p p}\right)-c \Sigma_{q \leq j-p} a_{p q} \\
& =c\left[b_{p}+\Sigma_{q>j-p} a_{p q}\right]=u_{p}\left(t_{v j}\right),
\end{aligned}
$$

proving that $\left\{u_{n p}\right\}$ converges pointwise to u_{p} on $[0 ; 3]$,
For each $r \in \omega$,

$$
\begin{aligned}
\Sigma_{p \leqq r}\left(\Sigma_{q} \alpha_{p q}+b_{p}\right) & =c^{-1} \Sigma_{p \leqq r} z\left(t_{p p}\right) \\
& =c^{-1} \lim _{n} \Sigma_{p \leqq r} z_{n}\left(t_{p p}\right)=\lim _{n} \Sigma_{p \leqq r} \Sigma_{q} a_{n p q} \\
& \leqq \lim _{n} z_{n}\left(s_{11}\right)=z\left(s_{11}\right)
\end{aligned}
$$

Hence $\Sigma_{p} u_{p} \in Q+Q_{1}$. Let $w=z-\Sigma_{p} u_{p}$; then w is easily seen to be a Baire function of the first class on [0;3] and hence by [8, p. 143] w must have a point t_{1} of continuity in [2;3].

At each point of the form $t=2+s_{r i}$ with $i \operatorname{odd}, u_{p}(t)=u_{p}\left(s_{11}\right)$ for each $p \geqq r$ and hence

$$
\begin{aligned}
w(t) & =\lim _{n}\left(\Sigma_{p<r} u_{n p}(t)+\Sigma_{p \geq r} \Sigma_{q} a_{n p q}\right)-\Sigma_{p} u_{p}(t) \\
& =\lim _{n}\left(z_{n}\left(s_{11}\right)-\Sigma_{p<r} u_{n p}\left(s_{11}\right)\right)-\Sigma_{p \geq r} u_{p}(t) \\
& =z\left(s_{11}\right)-\Sigma_{p} u_{p}\left(s_{11}\right)=w\left(s_{11}\right) .
\end{aligned}
$$

Since the set of such points t is dense in [2;3], w($\left.t_{1}\right)=w\left(s_{11}\right)$. On the other hand, it follows from [7] that for each point of the form $s=2$ $+s_{r i} \pm 2 c_{r i_{1}}$ with i odd, $x_{p q}(s)=0$ whenever $p \geqq r$, and hence

$$
w(s)=\lim _{n} \Sigma_{p<r} u_{n p}(s)-\Sigma_{p<r} u_{p}(s)=0 .
$$

Since the set of such points s is also dense in [2;3], it follows that $w\left(t_{1}\right)=0$ and hence that $w\left(s_{11}\right)=0$.

For each $r \in \omega$ let $w_{r}=z-\Sigma_{p<r} u_{p}$. Then $w_{r} \rightarrow w$ in the norm topology, and w_{r} is the pointwise limit of $\left\{\Sigma_{p \geq r} u_{n p}\right\}$. Hence

$$
\left\|w_{r}\right\| \leqq \lim \sup _{n}\left\|\Sigma_{p \geqq r} u_{n p}\right\| \leqq c \lim _{n} \Sigma_{p \geqq r} u_{n p}\left(s_{11}\right)=c w_{r}\left(s_{11}\right)
$$

and consequently

$$
\|w\|=\lim _{r}\left\|w_{r}\right\| \leqq c \lim _{r} w_{r}\left(s_{11}\right)=c w\left(s_{11}\right)=0
$$

Therefore $w=0$ and $z=\Sigma_{p} u_{p} \in Q+Q_{1}$, completing the proof of the lemma.

Note. The last paragraph of the previous proof shows that if
$\left\{z_{n}\right\}$ is a bounded pointwise convergent sequence in Q, then in the notation of that proof for each $\varepsilon>0$ there exist $p_{1}, n_{1} \in \omega$ such that $\Sigma_{p \geqq p_{1}} \Sigma_{q} a_{n p q}$ $<\varepsilon$ for all $n \geqq n_{1}$. Indeed, given $\varepsilon>0$ there exists p_{1} such that $c w_{p_{1}}\left(s_{11}\right)$ $<\varepsilon$. Since $\lim \sup _{n}\left\|\Sigma_{p \geqq p_{1}} u_{n p}\right\| \leqq c w_{p_{1}}\left(s_{11}\right)$, there exists n_{1} such that for each $n \geqq n_{1}$

$$
\Sigma_{p \geqq p 1} \Sigma_{q} \alpha_{n p q}=\left(\Sigma_{p \geqq p_{1}} u_{n p}\right)\left(s_{11}\right) \leqq\left\|\Sigma_{p \geqq p_{1}} u_{n p}\right\|<\varepsilon .
$$

Lemma 3.3. Let $Q_{2}=\left\{c_{0} x^{0}: c_{0} \geqq 0\right\}$. Then $L_{2}(Q)=L_{\Omega}(Q)=Q+Q_{1}$ $+Q_{2}$.

Proof. Clearly $Q+Q_{1}+Q_{2}$ is a cone containing $L_{1}(Q)$ and contained in $L_{2}(Q)$. To prove the lemma it suffices to show that $L(Q+$ $\left.Q_{1}+Q_{2}\right) \subseteq Q+Q_{1}+Q_{2}$. If $\left\{z_{n}\right\}$ is a bounded sequence in $Q+Q_{1}+Q_{2}$ which is pointwise convergent to a function z, then each z_{n} has the form

$$
z_{n}=y_{n}+\Sigma_{p} b_{n p} x^{p}+c_{n} x^{0}
$$

where $y_{n} \in Q, b_{n p} \geqq 0, c_{n} \geqq 0$, and $\Sigma_{p} b_{n p}<\infty$. Since $\left\{z_{n}\right\}$ is bounded, the diagonal process yields a subsequence $\left\{z_{n_{i}}\right\}$ of z_{n} such that $c_{0} \equiv$ $\lim _{i} c_{n_{i}}$ and $b \equiv \lim _{i} \Sigma_{p} b_{n_{i} p}$ exist and $b_{p} \equiv \lim _{i} b_{n_{i} p}$ exists for each $p \in \omega$. It is easily seen from [7, p. 1196] that these limits are finite and nonnegative, that $\Sigma_{p} b_{p} \leqq b$, and that the sequence $\left\{\Sigma_{p} b_{n_{i} p} x^{p}+c_{n_{i}} x^{0}\right\}$ is pointwise convergent to $\Sigma_{p} b_{p} x^{p}+\left(c_{0}+b-\Sigma_{p} b_{p}\right) x^{0}$. Hence also $\left\{y_{n_{i}}\right\}$ is pointwise convergent, and by Lemma 3.2 its pointwise limit is in Q $+Q_{1}$. Since z is the pointwise limit of $\left\{z_{n_{i}}\right\}$, it follows that $z \in Q+$ $Q_{1}+Q_{2}$.

Remark. It is clear from [7] that the representation of each z $\in L_{\Omega}(Q)$ in the form $\Sigma_{p} \Sigma_{q} a_{p q} x_{p q}+\Sigma_{p} b_{p} x^{p}+c_{0} x^{0}$ is unique.
4. Given an arbitrary countable ordinal $\alpha \geqq 2$ and a number c $\geqq 1$, we now construct a separable Banach space X_{α} containing a cone P_{α} for which there exists $z_{\alpha} \in L_{\alpha}\left(P_{\alpha}\right)$ such that $\left\|z_{\alpha}\right\|=1$ but such that if $\left\{w_{n}\right\}$ is a bounded sequence in $\bigcup_{\beta<\alpha} L_{\beta}\left(P_{\alpha}\right)$ converging pointwise to z_{α}, then $\lim _{n}\left\|w_{n}\right\| \geqq c$.

Let $\overline{B_{\alpha}}$ be the countable set $\{(2,1)\} \cup\{(\beta, \gamma): \alpha \geqq \beta>\gamma \geqq 2\}$. Then there exists a one-to-one mapping ν_{α} from D_{α} onto B_{α}, where $D_{\alpha}=$ $\left\{1, \cdots, 2^{-1}\left(\alpha^{2}-3 \alpha+4\right)\right\}$ if $\alpha<\omega$ and $D_{\alpha}=\omega$ if $\alpha \geqq \omega$, such that $\nu_{\alpha}(1)$ $=(2,1)$. Let $U=\{0\} \cup\left\{n^{-1}: n \in D_{\alpha}\right\}$ and let S_{α} be the compact subset $[0 ; 6] \times U$ of E^{2}. For each real function z defined on S_{α} and each u $\in U$, let

$$
z^{1, u}(t)=z(t, u), \quad z^{2, u}(t)=z(t+3, u)
$$

for $t \in[0 ; 3]$. Further, let \mathscr{S}_{α} be the set of all type $-\alpha$ generalized sequences $s=\left(s_{\beta}: 1 \leqq \beta \leqq \alpha\right)$ of positive integers.

Letting $x_{p q}$ be as in $\S 3$ and noting by [7] that $x_{p q}(0)=x_{p q}(3)=0$ for $p, q \in \omega$, we easily verify that for each $s \in \mathscr{S}_{\alpha}$ the function x_{s} defined by

$$
\begin{aligned}
& x_{s}^{1, u}= \begin{cases}x_{s_{\beta} s_{\gamma}} & \text { if } u>0, u^{-1} \leqq s_{1}, \nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma) \\
0 & \text { if } u>0, u^{-1}>s_{1} \\
0 & \text { if } u=0\end{cases} \\
& x_{s}^{2, u}= \begin{cases}u x_{s_{\beta} s_{\gamma}} & \text { if } u>0, \nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma) \\
0 & \text { if } u=0\end{cases}
\end{aligned}
$$

is an element of $C\left(S_{\alpha}\right)$. Let X_{α} be the norm-closed subspace and P_{α} the norm-closed cone in $C\left(S_{\alpha}\right)$ generated by $\left\{x_{s}: s \in \mathscr{S}_{\alpha}\right\}$. Since S_{α} is compact metric, $C\left(S_{\alpha}\right)$ is separable [3, p. 340] and hence also X_{α} is separable. Note that $\left\|x_{s}\right\|=c$ for each $s \in \mathscr{S}_{\alpha}$.

For $1 \leqq \delta \leqq \alpha$ and $s \in \mathscr{S}_{\alpha}$ let $z_{s i}$ be defined on S_{α} by

$$
\begin{aligned}
& z_{s, \delta}^{1,, u}=u^{-1} z_{s, \delta}^{2, u}= \begin{cases}x_{s_{\beta_{\gamma}} \gamma} & \text { if } u>0, \nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma), \beta>\gamma>\delta \\
x_{\beta}^{s_{\beta}} & \text { if } u>0, \nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma), \beta>\delta \geqq \gamma \\
x^{0} & \text { if } u>0, \nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma), \delta \geqq \beta>\gamma\end{cases} \\
& z_{s, \delta}^{1,0}=z_{s, \delta}^{2,0}=0 .
\end{aligned}
$$

Thus $\left\|z_{s . \delta}\right\|=c$ if $1 \leqq \delta<\alpha$, but $\left\|z_{s, \alpha}\right\|=1$ for each $s \in \mathscr{S}_{\alpha}$. In fact, $z_{s \alpha}$ is independent of $s \in \mathscr{S}_{\alpha}$ and we simply write z_{α} instead of $z_{s \alpha}$.

Lemma 4.1. For each $s \in \mathscr{S}_{\alpha}$ and $1 \leqq \delta \leqq \alpha, z_{s, \delta} \in L_{\dot{\delta}}\left(P_{\alpha}\right)$.
Proof. If $\delta=1$ and $s \in \mathscr{S}_{\alpha}$, then for each $q \in \omega$ let $s^{q} \in \mathscr{S}_{\alpha}$ be defined by

$$
s_{\beta}^{q}= \begin{cases}q & \text { if } \beta=1 \\ s_{\beta} & \text { if } 1<\beta \leqq \alpha\end{cases}
$$

It is easy to verify that $\left\{x_{s}\right\}_{q=1}^{\infty}$ is a bounded sequence in P_{α} converging pointwise to $z_{s, 1}$, so that $z_{s, 1} \in L_{1}\left(P_{\alpha}\right)$.

Proceeding by transfinite induction, assume that $1<\delta \leqq \alpha$ and that $z_{s, \varepsilon} \in L_{\varepsilon}\left(P_{\alpha}\right)$ for each $s \in \mathscr{S}_{\alpha}$ and $1 \leqq \varepsilon<\delta$. Let $s \in \mathscr{S}_{\alpha}$ be given, and let $t^{q} \in \mathscr{S}_{\alpha}$ be defined for each $q \in \omega$ by

$$
t_{\beta}^{q}= \begin{cases}s_{\beta} & \text { if } \delta \neq \beta \leqq \alpha \\ q & \text { if } \beta=\delta\end{cases}
$$

If δ is not a limiting ordinal, then δ has an immediate predecessor $\delta-1$, and it is straightforward to show that the bounded sequence
$\left\{z_{t} q_{, \delta-1}\right\}_{q=1}^{\infty}$ in $L_{\delta-1}\left(P_{\alpha}\right)$ converges pointwise to $z_{s, \delta}$ on S_{α}. On the other hand, if the countable ordinal δ is limiting, there exists an increasing sequence $\left\{\varepsilon_{q}\right\}_{q=1}^{\infty}$ of ordinals whose limit is δ, and it can be verified that the bounded sequence $\left\{z_{t q,{ }_{\varepsilon q}}{ }^{\infty}{ }_{q=1}^{\infty}\right.$ in $\mathbf{U}_{\varepsilon<\delta} L_{\varepsilon}\left(P_{\alpha}\right)$ is pointwise convergent to $z_{s, j}$. Thus the lemma is proved inductively. In particular, our proof has shown that z_{α}, whose norm is 1 , is the pointwise limit of a sequence of elements of norm c in $\bigcup_{\beta<\alpha} L_{\beta}\left(P_{\alpha}\right)$.

Note that if $1 \leqq \delta \leqq \Omega, z \in L_{\hat{\delta}}\left(P_{\alpha}\right), i \in\{1,2\}$, and $u \in U$, then $z^{i, u} \in$ $L_{\hat{j}}(Q) \subseteq L_{\Omega}(Q)=Q+Q_{1}+Q_{2}$ by Lemma 3.3, and trivially $z^{i, 0}=0$.

Lemma 4.2. Let $1 \leqq \delta \leqq \Omega$ and $z \in L_{\delta}\left(P_{\alpha}\right)$ with

$$
\boldsymbol{z}^{1,1}=\Sigma_{p} \Sigma_{q} a_{p q} x_{p q}+\Sigma_{p} b_{p} x^{p}+c_{0} x^{0} .
$$

Then also $y \in L_{\hat{\delta}}\left(P_{\alpha}\right)$, where

$$
y^{1,1}=y^{2,1}=\Sigma_{p}\left(b_{p}+\Sigma_{q} a_{p q}\right) x^{p}+c_{0} x^{0}
$$

$y^{2,0}=y^{1,0}=0$, and $u y^{1, u}=y^{2, u}=z^{2, u}$ for each $u \in U \backslash\{0,1\}$.
Proof. The proof will be by induction on δ. If $\delta=1$, then $z^{1,1}$ $\in L_{1}(Q)=Q+Q_{1}$ and hence $c_{0}=0$. There exists a bounded sequence $\left\{w_{n}\right\}$ in P_{α} which converges pointwise to z on S_{α}. Since the finite linear combinations with nonnegative coefficients of elements in $\left\{x_{s}: s\right.$ $\left.\in \mathscr{S}_{\alpha}\right\}$ are norm-dense in P_{α}, each w_{n} can be assumed to have the form $w_{n}=\Sigma_{i \epsilon \omega} r_{n i} x_{(s n i)}$, where each $s^{n i} \in \mathscr{S}_{\alpha}$, each $r_{n i} \geqq 0$, and for each n there exist only finitely many i such that $r_{n i}>0$. If $t^{n i} \in \mathscr{S}_{\alpha}$ is defined for all $n, i \in \omega$ by $\left(t^{n i}\right)_{\beta}=\left(s^{n i}\right)_{\beta}$ for $2 \leqq \beta \leqq \alpha$ and $\left(t^{n i}\right)_{1}=n$, then the sequence $\left\{w_{n}^{\prime}\right\}$, where $w_{n}^{\prime}=\sum_{i \in \omega} r_{n i} x_{(t n i)}$, is clearly a bounded sequence in P_{α}. It will now be shown that $\left\{w_{n}^{\prime}\right\}$ converges pointwise to y.

For each $u \in U \backslash\{0,1\}, \nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma)$ for some β, γ such that $\beta>$ $\gamma \geqq 2$, and hence for each $n \geqq u^{-1}$,

$$
\begin{aligned}
w_{n}^{\prime 2, u} & =u^{-1} w_{n}^{2,2, u}=\sum_{i \epsilon \omega} r_{n i} x_{(t n i)_{\beta}(t n i)_{r}} \\
& =\sum_{i \epsilon \omega} r_{n i} x_{\left(s^{n i}\right)_{\beta}\left(s^{(s i)}\right)_{T}}=u^{-1} w_{n}^{2, u} ;
\end{aligned}
$$

therefore, $w_{n}^{\prime_{n}, u}(t) \xrightarrow[n]{ } u^{-1} z^{2, u}(t)=y^{1, u}(t)$ and $w_{n}^{2, u}(t) \rightarrow z^{2, u}(t)=y^{2, u}(t)$ for all $t \in[0 ; 3]$.

Since the situation for $u=0$ is trivial, it remains only to consider the case in which $u=1$. Given $n, p, q \in \omega$ let

$$
a_{n p q}=\Sigma\left\{r_{n i}:\left(s^{n i}\right)_{2}=p,\left(s^{n i}\right)_{1}=q\right\} .
$$

Thus each $a_{n p q} \geqq 0$, and for each n there are only finitely many pairs (p, q) for which $a_{n p q}>0$. Since $w_{n}^{1,1}=\Sigma_{p} \Sigma_{q} \alpha_{n p q} x_{p q}$ for each n, it follows from the proof of Lemma 3.2 and the note following that proof that
$\lim _{n} a_{n p q}=a_{p q}$ for each p, q; that

$$
\lim _{n} \Sigma_{q} a_{n p q}=c^{-1} z^{1,1}\left(t_{p p}\right)=\Sigma_{q} a_{p q}+b_{p}
$$

for each p; and that $\lim \sup _{n} \Sigma_{p \geqq r} \Sigma_{q} a_{n p q} \rightarrow 0$ as $r \rightarrow \infty$. Thus given $\varepsilon>0$, there exist r and n_{1} such that $\Sigma_{p \geqq r}\left(\Sigma_{q} a_{p q}+b_{p}\right)<\varepsilon / 3 c$ and $\Sigma_{p \geqq r} \Sigma_{q} a_{n p q}$ $<\varepsilon / 3 c$ for all $n>n_{1}$. Now $w_{n}^{1,1}=\Sigma_{p}\left(\Sigma_{q} a_{n p q}\right) x_{p n}$, and for each $t \in[0 ; 3]$ there exists $n_{2}(t)>n_{1}$ such that

$$
\left|\left(\Sigma_{q} a_{n p q}\right) x_{p n}(t)-\left(\Sigma_{q} a_{p q}+b_{p}\right) x^{p}(t)\right|<\frac{\varepsilon}{3 r}
$$

for each $n>n_{2}(t)$ and $p<r$. It follows easily by the triangle inequality that

$$
\left|w_{n}^{r_{1}, 1}(t)-\Sigma_{p}\left(b_{p}+\Sigma_{q} a_{p q}\right) x^{p}(t)\right|<\varepsilon
$$

for each $n>n_{2}(t)$. Thus

$$
w_{n}^{r_{1}, 1}(t)=w_{n}^{\prime 2,1}(t) \longrightarrow y^{1,1}(t)=y^{2,1}(t)
$$

for all t, completing the proof for $\delta=1$.
Now let $\delta>1$ and assume that the statement of the lemma is true for each ordinal ε such that $1 \leqq \varepsilon<\delta$. If $z \in L_{\hat{\delta}}\left(P_{\alpha}\right)$, there exists a bounded sequence $\left\{w_{n}\right\} \subset \bigcup_{\varepsilon<\delta} L_{s}\left(P_{\alpha}\right)$ which converges pointwise to z. By the induction hypothesis the sequence $\left\{y_{n}\right\}$ is contained in $\bigcup_{\varepsilon<\delta} L_{\varepsilon}\left(P_{\alpha}\right)$, where, if

$$
w_{n}^{1,1}=\Sigma_{p, q} a_{n p q} x_{p q}+\Sigma_{p} b_{n p} x^{p}+c_{n} x^{0},
$$

then

$$
y_{n}^{1,1}=y_{n}^{2,1}=\Sigma_{p}\left(b_{n p}+\Sigma_{q} a_{n p q}\right) x^{p}+c_{n} x^{0}
$$

and $y_{n}^{1,0}=y_{n}^{2,0}=0$ and $u y_{n}^{1, u}=y_{n}^{2, u}=w_{n}^{2, u}$ for $u \neq 0,1$. An easy induction argument shows that $\left\|f^{2, u}\right\| \leqq u c f^{1,1}\left(s_{11}\right)$ for each $u \in U$ and $f \in L_{\Omega}\left(P_{\alpha}\right)$, and from this result it follows that the sequence $\left\{y_{n}\right\}$ is bounded. To see that $\left\{y_{n}\right\}$ converges pointwise to y, note first that $y_{n}^{1,0}=y_{n}^{2,0}=0=$ $y^{1,0}=y^{2,0}$ for each n. Next, if $u \neq 0,1$ and $t \in[0 ; 3]$, then

$$
u y_{n}^{1, u}(t)=y_{n}^{2, u}(t)=w_{n}^{2, u}(t) \longrightarrow z^{2, u}(t)=u y^{1, u}(t)=y^{2, u}(t)
$$

For $u=1$, since $y_{n}^{1,1}=y_{n}^{2,1}$ and $y^{1,1}=y^{2,1}$, it remains only to show that $y_{n}^{1,1}(t) \rightarrow y^{1,1}(t)$ for each $t \in[0 ; 3]$. If t is not of the form $s_{p i}, 2+s_{p i}$, or $t_{v j}$ with $v \leqq j$, then $y_{n}^{1,1}(t)=0=y^{1,1}(t)$. If $t=s_{p_{1} i_{1}}$ or $2+s_{p_{1} i_{1}}$ with i_{1} odd, then

$$
y_{n}^{1,1}(t)=w_{n}^{1,1}(t)-\Sigma_{p<p_{1}} \Sigma_{q} a_{n p q} x_{p q}(t)
$$

and

$$
y^{1,1}(t)=z^{1,1}(t)-\Sigma_{p<p_{1}} \Sigma_{q} a_{p q} x_{p q}(t) ;
$$

since $w_{n}^{1,1}(t) \rightarrow z^{1,1}(t)$ and $a_{n p q} \rightarrow a_{p q}$ (as noted in the proof of Lemma 3.1), and since there exists q_{1} such that $x_{p q}(t)=0$ whenever $p<p_{1} q>q_{1}$, it follows that $y_{n}^{1,1}(t) \rightarrow y^{1,1}(t)$. Finally, if $t=t_{v j}$ with $1 \leqq v \leqq j$, then

$$
\begin{aligned}
y_{n}^{1,1}(t) & =w_{n}^{1,1}(t)+c \sum_{p=v}^{j} \sum_{q=1}^{j=p} a_{n p q} \\
& \longrightarrow z^{1,1}(t)+c \sum_{p=v}^{j} \sum_{q=1}^{j j=p} a_{p q}=y^{1,1}(t) .
\end{aligned}
$$

This completes the induction step and hence the proof of the lemma.
Lemma 4.3. Let $0 \leqq \delta \leqq \Omega$ and $z \in L_{\delta}\left(P_{\alpha}\right)$. Then $z^{1, u} \leqq u^{-1} z^{2, u}$ for each $u \in U \backslash\{0\}$. If

$$
z^{1,1}=\Sigma_{p} \Sigma_{q} a_{p q} x_{p q}+\Sigma_{p} b_{p} x^{p}+c_{0} x^{0}
$$

and if $q_{1} \in \omega$, then

$$
z^{1, u} \leqq u^{-1} z^{2, u}-c \Sigma_{p} \Sigma_{q<q_{1}} a_{p q}
$$

for each $u \geqq q_{1}^{-1}$.
proof. The first assertion is immediate by induction on δ. For the second assertion suppose first that z has the form $z=\Sigma_{s \in o} d_{s} x_{s}$ where σ is a finite subset of \mathscr{S}_{α} and $d_{s} \geqq 0$ for each s. Then $z^{1,1}=\Sigma_{p} \Sigma_{q} a_{p q} x_{p q}$, where

$$
a_{p q}=\Sigma\left\{d_{s}: s \in \sigma, s_{2}=p, s_{1}=q\right\}
$$

Thus $\Sigma_{p} \Sigma_{q<q_{1}} a_{p q}=\Sigma\left\{d_{s}: s \in \sigma, s_{1}<q_{1}\right\}$ and hence if $u \geqq q_{1}^{-1}$ and $\nu_{\alpha}\left(u^{-1}\right)$ $=(\beta, \gamma)$, then

$$
\begin{aligned}
z^{2, u} & =u \Sigma_{s \in o} d_{s} x_{s_{\beta^{8} \gamma}}=u \mathcal{Z}^{1, u}+u \Sigma_{s_{1}<u}{ }^{-1} d_{s} x_{s_{s^{8} \gamma}} \\
& \leqq u\left(z^{1, u}+\Sigma_{s_{1}<q_{1}} d_{s} x_{s_{\beta^{8}}{ }^{s} \gamma}\right) \leqq u\left(z^{1, u}+c \Sigma_{p} \Sigma_{p<q_{1}} a_{p q}\right)
\end{aligned}
$$

as desired.
Next, suppose z is the pointwise limit of a bounded sequence $\left\{w_{n}\right\}_{n e \omega}$ in $L_{\Omega}\left(P_{\alpha}\right)$ such that each w_{n} has the desired property; i.e., for each $u \geqq q_{1}^{-1}$,

$$
w_{n}^{\mathrm{L}, u} \geqq u^{-1} w_{n}^{2, u}-c \Sigma_{p} \Sigma_{q<q_{1}} a_{n p q}
$$

where

$$
w_{n}^{\mathrm{L}, 1}=\Sigma_{p} \Sigma_{q} a_{n p q} x_{p q}+\Sigma_{p} b_{n p} x^{p}+c_{n} x^{0}
$$

By the proof of Lemma 3.3 there is a subsequence $\left\{w_{n_{i}}\right\}$ of $\left\{w_{n}\right\}$ such that $\left\{\Sigma_{p} \Sigma_{q} a_{n_{i} p q} x_{p q}\right\}$ is pointwise convergent, and by the note following

Lemma 3.2 for each $\zeta>0$ there exist p_{1} and i_{1} such that for each i $>i_{1}$,

$$
\Sigma_{p \geq p_{1}} \Sigma_{q} a_{n_{i} p q}<c \zeta .
$$

Since $a_{n_{i} p q} \rightarrow a_{p q}$ for each p and q, there exists $i_{2}>i_{1}$ such that for each $i>i_{2}$,

$$
\Sigma_{p<p_{1}} \Sigma_{q<q_{1}} a_{n_{i} p q}<\Sigma_{p<p_{1}} \Sigma_{q<q 1} a_{p q}+\zeta .
$$

Hence, for each $i>i_{2}$,

$$
\begin{aligned}
\Sigma_{p} \Sigma_{q<q_{1}} a_{n_{i} p q} & <\Sigma_{p<p_{1}} \Sigma_{q<q_{1}} a_{p q}+(1+c) \zeta \\
& \leqq \Sigma_{p} \Sigma_{q<q_{1}} a_{p q}+(1+c) \zeta .
\end{aligned}
$$

For each $t \in[0 ; 3]$ and $u \geqq q_{1}^{-1}$,

$$
\begin{aligned}
z^{1, u}(t)=\lim _{i} w_{n_{i}}^{1, u}(t) & \geqq \overline{\lim }_{i}\left(u^{-1} w_{n_{i}}^{2, u}(t)-c \Sigma_{p} \Sigma_{q<q_{1}} a_{n_{i} p q}\right) \\
& \geqq u^{-1} z^{2, u}(t)-c\left[\Sigma_{p} \Sigma_{q<q_{1}} a_{p q}+(1+c) \zeta\right]
\end{aligned}
$$

Since ζ can be arbitrarily small,

$$
z^{1, u} \geqq u^{-1} z^{2, u}-c \Sigma_{p} \Sigma_{q<q_{1}} a_{p q}
$$

for each $u \geqq q_{1}^{-1}$, as desired.
The preceding paragraphs provide both the base step and the inductive step for the proof of the second assertion of the lemma.

Lemma 4.4. Let G be the set of all $z \in L_{\Omega}\left(P_{\alpha}\right)$ such that $z^{1,1} \in Q_{1}$ $+Q_{2}$. If $z \in G$, then $z^{1, u}=u^{-1} z^{2, u}$ for each $u \in U \backslash\{0\}$.

Proof. In the notation of Lemma 4.3, $a_{p q}=0$ for all p, q and hence $\Sigma_{p} \Sigma_{q<u^{-1}} a_{p q}=0$. The present result now follows immediately from Lemma 4.3.

Lemma 4.5. $\quad L_{\delta}\left(P_{\alpha}\right) \cap G= \begin{cases}L_{\hat{\delta}-1}\left(L_{1}\left(P_{\alpha}\right) \cap G\right) \quad \text { if } 1 \leqq \delta<\omega \\ L_{\dot{\delta}}\left(L_{1}\left(P_{\alpha}\right) \cap G\right) \quad \text { if } \omega \leqq \delta \leqq \Omega .\end{cases}$
Proof. The result is trivial for $\delta=1$. Let $1<\delta<\omega$ and assume the result is true for all $\varepsilon<\delta$. Then for each $z \in L_{\delta}\left(P_{\alpha}\right) \cap G$ it follows from Lemma 4.4 that $z^{1, u}=u^{-1} z^{2, u}$ for each $u \neq 0$. Since $z \in G$, it follows that z is identical with the y occurring in the statement of Lemma 4.2 and hence is the pointwise limit of the bounded sequence $\left\{y_{n}\right\} \subset G \cap \bigcup_{1 \leqq c<\delta} L_{\varepsilon}\left(P_{\alpha}\right)$ which appears in the inductive step of the proof of Lemma 4.2. By the inductive hypothesis

$$
\left\{y_{n}\right\} \subset \bigcup_{1 \leqq c<\delta} L_{\varepsilon-1}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)=L_{\hat{j}-2}\left(L_{1}\left(P_{2}\right) \cap G\right)
$$

and hence $z \in L_{\delta-1}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$. Conversely, if $z \in L_{\delta-1}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$, then z is the pointwise limit of a bounded sequence $\left\{w_{n}\right\} \subset L_{\delta-2}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$. By the inductive hypothesis $L_{\delta-2}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)=L_{\delta-1}\left(P_{\alpha}\right) \cap G$. Hence clearly $z \in L_{\delta}\left(P_{\alpha}\right)$, and also $z \in G$ by the proof of Lemma 3.3. Thus the proof is complete for $\delta<\omega$.

Now let $\omega \leqq \delta \leqq \Omega$ and assume the result is true for all $\varepsilon<\delta$. As in the previous case each $z \in L_{\delta}\left(P_{\alpha}\right) \cap G$ is the pointwise limit of a bounded sequence $\left\{y_{n}\right\} \subset G \cap \bigcup_{\varepsilon<\delta} L_{\varepsilon}\left(P_{\alpha}\right)$. By the inductive hypothesis $\left\{y_{n}\right\} \subset \bigcup_{\varepsilon<\delta} L_{\varepsilon}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$, and hence $z \in L_{\delta}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$. Conversely, if $z \in L_{\hat{o}}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$, then z is the pointwise limit of a bounded sequence $\left\{w_{n}\right\} \subset \bigcup_{\varepsilon<\delta \delta} L_{\varepsilon}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$. By the inductive hypothesis $\left\{w_{n}\right\} \subset G \cap$ $\bigcup_{\varepsilon<\delta \delta} L_{\varepsilon}\left(P_{\alpha}\right)$ and hence $z \in G \cap L_{\delta}\left(P_{\alpha}\right)$, completing the proof of the lemma.

Lemma 4.6. Let $\left\{w_{n}\right\}$ be a bounded sequence in $\mathbf{U}_{\varepsilon<\alpha} L_{\varepsilon}\left(P_{\alpha}\right)$ which converges pointwise on S_{α} to the function z_{α} defined earlier in the present section. If

$$
w_{n}^{1,1}=\Sigma_{p} \Sigma_{q} a_{n p q} x_{p q}+\Sigma_{p} b_{n p} x^{p}+c_{n} x^{0}
$$

for each $n \in \omega$, then $\lim _{n} \Sigma_{p} \Sigma_{q} a_{n p q}=0$.
Proof. If the conclusion is not true, then as in the proof of Lemma 3.3 a subsequence $\left\{w_{n_{i}}\right\}$ of $\left\{w_{n}\right\}$ exists such that $\inf _{i} \Sigma_{p} \Sigma_{q} a_{n_{i} p q}>0$ and such that the limits $c_{0}=\lim _{i} c_{n_{i}}, b=\lim _{i} \Sigma_{p} b_{n_{i} p}, b_{p}=\lim _{i} b_{n_{i} p}$, and $\mathrm{a}_{p}=\lim _{i} \Sigma_{q} a_{n_{i} p q}$ all exist $(p \in \omega)$. Since $z_{\alpha}^{1,1}=x^{0}$ by definition of z_{α}, the coefficient of each $x_{p q}$ in the unique expansion of $z_{\alpha}^{1,1}$ must vanish and it is easily verified that $\left\{\Sigma_{p} b_{n_{i} p} x^{p}+c_{n_{i}} x^{0}\right\}$ and $\left\{\Sigma_{p} \Sigma_{q} a_{n_{i} p_{q}} x_{p q}\right\}$ converge pointwise to $\Sigma_{p} b_{p} x^{p}+\left(c_{0}+b-\Sigma_{p} b_{p}\right) x^{0}$ and $\Sigma_{p} a_{p} x^{p}$ respectively, as in the proofs of Lemmas 3.3 and 3.2 (note that the symbol b_{p} is used differently in those two proofs). Hence

$$
z_{\alpha}^{1,1}=\Sigma_{p}\left(a_{p}+b_{p}\right) x^{p}+\left(c_{0}+b-\Sigma_{p} b_{p}\right) x^{0} .
$$

Now the uniqueness of the expansion of $z_{\alpha}^{1,1}$ shows that $a_{p}+b_{p}=0$ for each p and $c_{0}+b-\Sigma_{p} b_{p}=1$. Since a_{p} and b_{p} are nonnegative, they must both vanish for each p and hence $c_{0}+b=1$. Now

$$
\begin{aligned}
1=z_{\alpha}^{1,1}\left(s_{11}\right) & =\lim _{i}\left(\sum_{p} \Sigma_{q} a_{n_{i} p q}+\sum_{p} b_{n_{i} p}+c_{n_{i}}\right) \\
& =\lim _{i} \Sigma_{p} \Sigma_{q} a_{n_{i} p q}+b+c_{0}
\end{aligned}
$$

and hence $\lim _{i} \Sigma_{p} \Sigma_{q} a_{n_{i} p q}=0$, contradicting our assumption and thus proving the lemma.

Theorem 4.1. If $\left\{w_{n}\right\}$ is a bounded sequence in $\bigcup_{s<\alpha} L_{\varepsilon}\left(P_{\alpha}\right)$ which converges pointwise to z_{α}, then there exists a sequence

$$
\left\{y_{n}\right\} \subset G \cap \bigcup_{\varepsilon<\alpha} L_{\varepsilon}\left(P_{\alpha}\right) \text { such that }\left\|y_{n}-w_{n}\right\| \rightarrow 0
$$

Proof. Each $w_{n}^{1,1}$ has the form

$$
w_{n}^{1,1}=\Sigma_{p} \Sigma_{q} a_{n p q} x_{p q}+\Sigma_{p} b_{n p} x^{p}+c_{n} x^{0}
$$

By Lemma 4.2 these exists a sequence $\left\{y_{n}\right\} \subset \bigcup_{\varepsilon<\alpha} L_{\varepsilon}\left(P_{\alpha}\right)$ such that

$$
y_{n}^{1,1}=y_{n}^{2.1}=\Sigma_{p}\left(b_{n p}+\Sigma_{q} a_{n p q}\right) x^{p}+c_{n} x^{0}
$$

and $y_{n}^{2,0}=y_{n}^{1,0}=0$ and $u y_{n}^{1, u}=y_{n}^{2, u}=w_{n}^{2, u}$ for each $u \neq 0,1$. Since obviously $\left\{y_{n}\right\} \subset G$, if remains only to show that $\lim _{n}\left\|y_{n}-w_{n}\right\|=0$.

First note that $\left(y_{n}-w_{n}\right)^{1,0}=0$ and $\left(y_{n}-w_{n}\right)^{2, u}=0$ for all $u \neq 1$.
For each real $r>0$ there exists by Lemma 4.6 an $n_{r} \in \omega$ such that $\Sigma_{p} \Sigma_{q} a_{n p q}<r$ for all $n>n_{r}$. For each $u \neq 0$ there exists $q_{u} \in \omega$ such that $u \geqq q_{u}^{-1}$ and hence by Lemma 4.3,

$$
\begin{aligned}
u^{-1} w_{n}^{2, u}-c r & <u^{-1} w_{n}^{2, u}-c \Sigma_{p} \Sigma_{q<q_{u}} \alpha_{n p q} \\
& \leqq w_{n}^{1, u} \leqq u^{-1} w_{n}^{2, u}
\end{aligned}
$$

for each $n>n_{r}$. Since $y_{n}^{2, u}=w_{n}^{2, u}$ for each $u \neq 1$,

$$
\left\|\left(y_{n}-w_{n}\right)^{1, u}\right\|=\left\|u^{-1} y_{n}^{2, u}-w_{n}^{1, u}\right\|=\left\|u^{-1} w_{n}^{2, u}-w_{n}^{1, u}\right\| \leqq c r
$$

for each $n>n_{r}$ and $u \neq 0,1$.
Finally, since $z^{1,1}=z^{2,1}$ for each $z \in L_{\Omega}\left(P_{\alpha}\right)$,

$$
\begin{aligned}
\left\|\left(y_{n}-w_{n}\right)^{2,1}\right\| & =\left\|\left(y_{n}-w_{n}\right)^{1,1}\right\|=\left\|\Sigma_{p}\left(\Sigma_{q} a_{n p q} x^{p}-\Sigma_{q} a_{n p q} x_{p q}\right)\right\| \\
& <2 c r
\end{aligned}
$$

for each $n>n_{r}$.
We have now shown that $\left\|y_{n}-w_{n}\right\|<2 c r$ for each $n>n_{r}$, completing the proof of the theorem.

Lemma 4.7. Let ζ be a countable ordinal, and let $y \in L_{\zeta}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$. Let $\zeta^{\prime}=\zeta+1$ if $\zeta<\omega$ and $\zeta^{\prime}=\zeta$ if $\zeta \geqq \omega$. If $u \in U \backslash\{0\}$ and $\nu_{\alpha}\left(u^{-1}\right)$ $=(\beta, \gamma)$ with $\beta>\gamma>\zeta^{\prime}$, then $y^{1, u}$ is continuous and hence has the form $y^{1, u}=\Sigma_{p} \Sigma_{q} a_{p q}^{u} x_{p q}$. If also $v \in U \backslash\{0\}$ and $\nu_{\alpha}\left(v^{-1}\right)=(\gamma, \delta)$ with $\beta>$ $\gamma>\delta>\zeta^{\prime}$, then for each $r \in \omega, \Sigma_{p} a_{p r}^{u}=\Sigma_{q} a_{r q}^{v}$.

Proof. The proof will be by induction on ζ. If $y \in L_{0}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$ $=L_{1}\left(P_{\alpha}\right) \cap G$, there is a bounded sequence $\left\{w_{n}\right\} \subset P_{\alpha}$ which converges pointwise to y. The sequence $\left\{w_{n}\right\}$ can be chosen so that each w_{n} is a finite linear combination of elements of $\left\{x_{s}: s \in \mathscr{S}_{\alpha}\right\}$, and hence there exists a countable subset σ of \mathscr{S}_{α} such that each w_{n} has the form $w_{n}=$ $\Sigma_{s \in o} b_{n s} x_{s}$, where each $b_{n s}$ is nonnegative and for each n only a finite number of the $b_{n s}$ are nonzero. If $u \neq 0$ and $\nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma)$, then

$$
w_{n}^{2, u}=u \Sigma_{s \in \sigma} b_{n s} x_{s_{\beta} s_{\gamma}}=u \Sigma_{p} \Sigma_{q} a_{n p q}^{u} x_{p q}
$$

where

$$
a_{n p q}^{u}=\Sigma\left\{b_{n s}: s_{\beta}=p, s_{\gamma}=q\right\} .
$$

Now $y^{1, u}=u^{-1} y^{2, u}$ by Lemma 4.4 since $y \in G$; hence $y^{1, u}$ is the pointwise limit of the bounded sequence $\left\{\Sigma_{p} \Sigma_{q} a_{n p q}^{u} x_{p q}\right\}$. The function $y^{1, u}$ is in $L_{1}(Q)$ and hence has the form

$$
y^{1, u}=\Sigma_{p} \Sigma_{q} a_{p q}^{u} x_{p q}+\Sigma_{p} b_{p}^{u} x^{p} ;
$$

by the proof of Lemma 3.2, $a_{p q}^{u}=\lim _{n} a_{n p q}^{x}$ for all p, q and

$$
b_{p}^{u}=c^{-1} y^{1, u}\left(t_{p p}\right)-\Sigma_{q} a_{p q}^{u}=\lim _{n} \Sigma_{q} a_{n p q}^{u}-\Sigma_{q} a_{p q}^{u}
$$

for all p.
Now assume further that $\nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma)$ with $\gamma>1$, and let $\lambda=$ 2 if $\gamma>2$ and $\lambda=1$ if $\gamma=2$. Then $(\gamma, \lambda) \in B_{\alpha}$ so there exists $v_{1} \in$ $U \backslash\{0\}$ such that $\nu_{\alpha}\left(\nu_{1}^{-1}\right)=(\gamma, \lambda)$. Since $\left\{\Sigma_{p} \Sigma_{q} a_{n p q}^{u} x_{p q}\right\}$ and $\left\{\Sigma_{p} \Sigma_{q} \alpha_{n p q}^{v_{1}} x_{p q}\right\}$ are bounded pointwise convergent sequences in Q, it follows from the note following Lemma 3.2 that for each real $\varepsilon>0$ there exist integers p_{1} and n_{1} such that $\Sigma_{p>p_{1}} \Sigma_{q} a_{n p q}^{u}<\varepsilon$ and $\Sigma_{p>p_{1}} \Sigma_{q} a_{n p_{p q}}^{v_{1}}<\varepsilon$ for all $n \geqq n_{1}$. Since

$$
\Sigma_{p} \Sigma_{q>p 1} a_{n p q}^{u}=\Sigma\left\{b_{n s}: s_{\gamma}>p_{1}\right\}=\Sigma_{p>p_{1}} \Sigma_{q} a_{n p q}^{v_{1}}<\varepsilon
$$

for each $n \geqq n_{1}$, it follows that if $f_{n}=\Sigma_{p \leqq p_{1}} \Sigma_{q \leqq p_{1}} a_{n p q}^{u} x_{p q}$,

$$
\left\|u^{-1} w_{n}^{2, w}-f_{n}\right\| \leqq c \Sigma\left\{a_{n p q}^{u}: p>\mathrm{p}_{1} \text { or } q<p_{1}\right\}>2 c \varepsilon
$$

for each $n \geqq n_{1}$. Since $\left\|f_{n}\right\| \leqq\left\|u^{-1} w_{n}^{2, u}\right\| \leqq u^{-1} \sup _{n}\left\|w_{n}\right\|$ for each n, it follows that for each $n \geqq n_{1}, f_{n}$ belongs to the compact subset

$$
\mathscr{C}_{u, p_{1}}=\left\{\Sigma_{p \leqq p_{1}} \Sigma_{q \leqq p_{1}} k_{p q} x_{p q}: k_{p q} \geqq 0, \Sigma_{p \leqq p_{1}} \Sigma_{q \leqq p_{1}} k_{p q} \leqq u^{-1} \sup _{n}\left\|w_{n}\right\|\right\}
$$

of $C[0 ; 3]$. By compactness some subsequence $\left\{f_{n_{i}}\right\}$ of $\left\{f_{n}\right\}$ must converge to an element f of $\mathscr{C}_{u, p_{1}}$, and since $\left\{u^{-1} w_{n_{i}}^{2, u}\right\}$ converges pointwise to $y^{1, u}$, it follows that $\left\|y^{1, u}-f\right\| \leqq 2 c \varepsilon$. Thus, for each $\varepsilon>0$ there exists an $f \in C[0 ; 3]$, depending on ε, such that $\left\|y^{1, u}-f\right\| \leqq 2 c \varepsilon$. Since $C[0 ; 3]$ is complete in norm, $y^{1, u} \in C[0 ; 3]$ and must therefore be equal to $\Sigma_{p} \Sigma_{q} a_{p q}^{u} x_{p q}$.

Now if $0 \neq v \in U$ and $\nu_{\alpha}\left(v^{-1}\right)=(\gamma, \delta)$ with $\gamma>\delta>1$, then for all n and r,

$$
\Sigma_{p} a_{n p r}^{u}=\Sigma\left\{b_{n s}: s_{\gamma}=r\right\}=\Sigma_{q} a_{n r q}^{v} .
$$

Since $y^{1, v}=\Sigma_{p} \Sigma_{q} a_{p q}^{v} x_{p q}$, it follows that

$$
\begin{aligned}
\Sigma_{q} a_{r q}^{v} & =c^{-1} y^{1, v}\left(t_{r r}\right)=\lim _{n} c^{-1} v^{-1} w_{n}^{P, v}\left(t_{r r}\right) \\
& =\lim _{n} \Sigma_{q} a_{n r q}^{v}=\lim _{n} \Sigma_{p} a_{n p r}^{v} .
\end{aligned}
$$

On the other hand the bounded sequence $\left\{\Sigma_{p} \Sigma_{q} a_{n p q}^{u} x_{p q}\right\}$ converges pointwise to $y^{1, u}=\Sigma_{p} \Sigma_{q} a_{p q}^{u} x_{p q}$. By the note following Lemma 3.2, for each $\varepsilon>0$ there exist p_{1} and n_{1} such that $\Sigma_{p>p_{1}} \Sigma_{q} a_{n p q}^{u}<\varepsilon$ for all $n \geqq n_{1}$ and also $\Sigma_{p>p_{1}} \Sigma_{q} a_{p q}^{u}<\varepsilon$. Hence

$$
\begin{aligned}
\left|\Sigma_{p} a_{p r}^{u}-\lim _{n} \Sigma_{p} a_{n p r}^{u}\right| & <2 \varepsilon+\left|\Sigma_{p \leqq p_{1}} a_{p r}^{u}-\lim _{n} \Sigma_{p \leqq p_{1}} a_{n p r}^{u}\right| \\
& =2 \varepsilon .
\end{aligned}
$$

Since ε is an arbitrary positive number,

$$
\Sigma_{p} a_{p r}^{u}=\lim _{n} \Sigma_{p} a_{n p r}^{u}=\Sigma_{q} a_{r q}^{v}
$$

This completes the proof of the lemma for $\zeta=0$.
For the induction step let $0<\zeta<\Omega$, assume the desired result holds for each $\eta<\zeta$, and let $y, \zeta^{\prime}, u, \beta$, and γ be as in the statement of the lemma. Then there exists a bounded sequence $\left\{y_{n}\right\}$ in $\bigcup_{\eta<\Sigma} L_{\eta}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$ which converges pointwise to y. Since $1<\zeta^{\prime}<\gamma$ $\leqq \alpha$, there exists $v_{1} \in U \backslash\{0\}$ such that $\nu_{\alpha}\left(v_{1}^{-1}\right)=\left(\gamma, \zeta^{\prime}\right)$. For each n there exists $\eta_{n}<\zeta$ such that $y_{n} \in L_{\eta_{n}}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$, and it follows that $\beta>\gamma>\zeta^{\prime}>\eta_{n}^{\prime}$ for each n, where η_{n}^{\prime} is de fined in terms of η_{n} as ζ^{\prime} was defined in terms of ζ. By the induction assumption $y_{n}^{1, u}$ and $y_{n}^{1, v_{1}}$ are continuous and have the form $y_{n}^{\mathrm{L}, u}=\Sigma_{p} \Sigma_{q} a_{n p q}^{n} x_{p q}$ and $y_{n}^{1, \nu_{1}}=\Sigma_{p} \Sigma_{q} a_{n p q}^{v_{1}} x_{p q}$, and $\Sigma_{p} a_{n p r}^{u}=\Sigma_{q} a_{n r q}^{v_{1}}$ for all n and r.

As in the proof for $\zeta=0$, for each $\varepsilon>0$ there exist n_{1} and p_{1} such that $\Sigma_{p>p_{1}} a_{n p q}^{u}<\varepsilon$ and $\Sigma_{p>p_{1}} \Sigma_{q} a_{n p q}^{v_{1}}<\varepsilon$ for all $n \geqq n_{1}$. Hence, since $\Sigma_{p} a_{n p r}^{u}=\Sigma_{q} a_{n r q}^{v_{1}}$ for all n and r, it follows that for $n \geqq n_{1}$, the distance between $y_{n}^{1, u}$ and the compact subset

$$
\mathscr{D}_{p_{1}}=\left\{\Sigma_{p \leqq p_{1}} \Sigma_{q \leqq p_{1}} k_{p q} x_{p q}: k_{p q} \geqq 0, \Sigma_{p \leqq p_{1}} \Sigma_{q \leqq p_{1}} k_{p q} \leqq \sup _{n}\left\|y_{n}^{1, u}\right\|\right\}
$$

of $C[0 ; 3]$ is less than $2 \varepsilon c$. Since $\left\{y_{n}^{1, n}\right\}$ converges pointwise to $y^{1, u}$, the compactness of $\mathscr{D}_{p_{1}}$ implies that $\left\|y^{1, u}-w\right\| \leqq 2 \varepsilon c$ for some continuous w depending on ε. Then the completeness of $C[0 ; 3]$ implies that $y^{1, u}$ $\in C[0 ; 3]$ and therefore, since also $y^{1, u} \in L_{1}(Q)$, that $y^{1, u}$ has the form $\Sigma_{p} \Sigma_{q} a_{p q}^{u} x_{p q}$.

If also $0 \neq v \in U$ and $\nu_{\alpha}\left(v^{-1}\right)=(\gamma, \delta)$ with $\beta>\gamma>\delta>\zeta^{\prime}$, then $y^{1, v}$ and each $y_{n}^{1, v}$ are continuous and have form corresponding to $y^{1, u}$ and $y_{n}^{l, u}$ respectively. Further, by the induction assumption, $\Sigma_{p} a_{n p r}^{u}=\Sigma_{q} a_{n r q}^{v}$ for all n and r. Hence

$$
\begin{aligned}
\Sigma_{q} a_{r q}^{v}=c^{-1} y^{1, v}\left(t_{r r}\right) & =\lim _{n} c^{-1} y_{n}^{1, v}\left(t_{r r}\right)=\lim _{n} \Sigma_{q} r_{n r q}^{v} \\
& =\lim _{n} \Sigma_{p} a_{n p r}^{u} .
\end{aligned}
$$

Exactly as in the last part of the proof for $\zeta=0$ it is seen that
$\Sigma_{p} a_{p r}^{u}=\lim _{n} \Sigma_{p} a_{n p r}^{u}$. This completes the proof of the induction step and hence of the lemma.

Lemma 4.8. If $y \in L_{\zeta}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$ for some countable ζ and if u, v $\in U \backslash\{0\}$ with $\nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma)$ and $\nu_{\alpha}\left(v^{-1}\right)=(\beta, \delta)$ for certain ordinals β, γ, δ then in the expression

$$
y^{1, u}=\Sigma_{p} \Sigma_{q} a_{p q}^{u} x_{p q}+\Sigma_{p} b_{p}^{u} x^{p}+c^{u} x^{0}
$$

and the corresponding expression for $y^{1, v}$ it must be true that $y^{1, u}\left(2^{-1}\right)$ $=y^{1, v}\left(2^{-1}\right), c^{u}=c^{v}$, and $b_{p}^{u}+\Sigma_{q} a_{p q}^{u}=b_{p}^{v}+\Sigma_{q} a_{p q}^{v}$ for each p.

Proof. By Lemma 4.5, $y \in G$. Hence, by Lemma 4.4, $y^{1, u}=u^{-1} y^{2, u}$ and $y^{1, v}=v^{-1} y^{2, v}$.

If $\zeta=0$, then y is the pointwise limit of a bounded sequence $\left\{y_{n}\right\}$ of functions of the form $y_{n}=\Sigma_{s \in \sigma_{n}} b_{n s} x_{s}$, where σ_{n} is a finite subset of \mathscr{S}_{α} and each $b_{n s}$ is nonnegative. For each p and n,

$$
u^{-1} y_{n}^{2, u}\left(t_{p p}\right)=c \Sigma\left\{b_{n s}: s_{\beta}=p\right\}=v^{-1} y_{n}^{2, v}\left(t_{p p}\right)
$$

Since $\left\{y_{n}^{2, u}\right\}$ converges pointwise to $y^{2, u}$,

$$
y^{1, u}\left(t_{p p}\right)=u^{-1} y^{2, u}\left(t_{p p}\right)=v^{-1} y^{2, v}\left(t_{p p}\right)=y^{1, v}\left(t_{p p}\right)
$$

for each p, and hence it follows immediately that

$$
\begin{aligned}
b_{p}^{u}+\Sigma_{q} a_{p q}^{u} & =c^{-1} y^{1, u}\left(t_{p p}\right)=c^{-1} y^{1, v}\left(t_{p p}\right) \\
& =b_{p}^{v}+\Sigma_{q} a_{p q}^{v}
\end{aligned}
$$

for each p. Since $y^{1, u}$ and $y^{1, v}$ are Baire functions of the first class, $c^{u}=0=c^{v}$. Hence

$$
y^{1, u}\left(2^{-1}\right)=\Sigma_{p}\left(b_{p}^{u}+\Sigma_{q} a_{p q}^{u}\right)=y^{1, v}\left(2^{-1}\right)
$$

For the induction step let $\zeta>0$ and assume the statement of the lemma holds for each $\eta<\zeta$. By hypothesis there exists a bounded sequence $\left\{y_{n}\right\}$ in $\bigcup_{\eta<\zeta} L_{\eta}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$ which converges pointwise to y. Under the usual notation the relations

$$
b_{n p}^{v}+\Sigma_{q} a_{n p q}^{u}=b_{n p}^{v}+\Sigma_{q} a_{n p q}^{v}
$$

$c_{n}^{u}=c_{n}^{v}$, and $y_{n}^{1, u}\left(2^{-1}\right)=y_{n}^{1, v}\left(2^{-1}\right)$ must hold for all n and p. It is seen immediately that $y^{1, u}\left(2^{-1}\right)=y^{1, v}\left(2^{-1}\right)$ and $y^{1, u}\left(t_{p p}\right)=y^{1, v}\left(t_{p p}\right)$ for all p, from which the remaing desired relations for $y^{1, u}$ and $y^{1, v}$ follow. The proof is thus complete.

Theorem 4.2. Let ζ be a countable ordinal, and let ζ^{\prime} be defined as in Lemma 4.7. If $y \in L_{\zeta}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$ and $0 \neq u \in U$ with $\nu_{\alpha}\left(u^{-1}\right)=(\beta, \gamma)$
and $\beta>\zeta^{\prime}$, then $y^{1, u} \in Q+Q_{1}$.
Proof. If $\zeta=0$, then $y \in L_{1}\left(P_{\alpha}\right)$ and hence trivially $y^{1, u} \in L_{1}(Q)$, which is equal to $Q+Q_{1}$ by Lemma 3.2.

If $\zeta>0$ and the desired result is true for each $\eta<\zeta$, then $2 \leqq$ $\zeta^{\prime}<\beta \leqq \alpha$ and hence there exists $v \in U \backslash\{0\}$ such that $\nu_{\alpha}\left(v^{-1}\right)=\left(\beta, \zeta^{\prime}\right)$. There exists a bounded sequence $\left\{y_{n}\right\}$ in $\bigcup_{\eta<\Sigma} L_{\eta}\left(L_{1}\left(P_{\alpha}\right) \cap G\right)$ which converges pointwise to y. Since $\beta>\zeta^{\prime}>\eta^{\prime}$ for each $\eta<\zeta$ it follows from Lemma 4.7 that each $y_{n}^{1, v}$ is continuous and hence belongs to Q. Hence $y^{1, v} \in L_{1}(Q)=Q+Q_{1}$. Thus in the usual notation for $y^{1, u}$ and $y^{1, v}$ it follows that $c^{v}=0$, but then also $c^{u}=0$ by Lemma 4.8, hence $y^{1, u} \in Q+Q_{1}$, and the proof is complete.

The following theorem justifies the claim made at the beginning of the present section.

Theorem 4.3. The element $z_{\alpha} \in L_{\alpha}\left(P_{\alpha}\right)$ has the property that $\left\|z_{\alpha}\right\|$ $=1$ but that if $\left\{w_{n}\right\}$ is a bounded sequence in $\mathbf{U}_{\beta<\alpha} L_{\beta}\left(P_{\alpha}\right)$ converging pointwise to z_{α}, then $\underline{\lim }_{n}\left\|w_{n}\right\| \geqq c$.

Proof. By Lemma 4.1 and the remarks preceding it we know that $z_{\alpha} \in L_{\alpha}\left(P_{\alpha}\right)$ and $\left\|z_{\alpha}\right\|=1$. If $\left\{w_{n}\right\}$ is a bounded sequence in $\bigcup_{\beta<\alpha} L_{\beta}\left(P_{\alpha}\right)$ converging pointwise to z_{α}, then by Theorem 4.1 there exists a sequence $\left\{y_{n}\right\}$ in $G \cap \bigcup_{\beta<\alpha} L_{\beta}\left(P_{\alpha}\right)$ such that $\left\|y_{n}-w_{n}\right\| \rightarrow 0$. Clearly $\underline{\lim }_{n}\left\|w_{n}\right\|=$ $\lim _{n}\left\|y_{n}\right\|$. Now by Lemma 4.5,

$$
\left\{y_{n}\right\} \subset\left\{\begin{array}{l}
L_{\alpha-2}\left(L_{1}\left(P_{\alpha}\right) \cap G\right) \quad \text { if } 2 \leqq \alpha<\omega \\
\bigcup_{\beta<\alpha} L_{\beta}\left(L_{1}\left(P_{\alpha}\right) \cap G\right) \quad \text { if } \omega \leqq \alpha<\Omega
\end{array}\right.
$$

Defining ζ^{\prime} as in Lemma 4.7, one sees easily that each $y_{n} \in L_{\zeta_{n}}\left(L_{1}\left(P_{\alpha}\right)\right.$ $\cap G)$ for some ζ_{n} such that $\alpha>\zeta_{n}^{\prime}$. Now there exists $u_{1} \in U \backslash\{0\}$ such that $\nu_{\alpha}\left(u_{1}^{-1}\right)=(\alpha, \gamma)$ for some $\gamma<\alpha$; for example, take $\gamma=1$ if $\alpha=$ 2 and $\gamma=2$ if $\alpha>2$. Then by Theorem 4.2, $y_{n}^{1, u_{1}} \in Q+Q_{1}=L_{1}(Q)$ for each n. Now $z_{\alpha}^{1, u_{1}}=x^{0}$ by definition, and hence $\underline{\lim }_{n}\left\|y_{n}{ }^{1, u_{1}}\right\| \geqq c$ by Theorem 1 of [7]. It follows that

$$
\underline{\lim }_{n}\left\|w_{n}\right\|=\underline{\lim _{n}}\left\|y_{n}\right\| \geqq \underline{\lim _{n}}\left\|y_{n}^{1, u_{1}}\right\| \geqq c .
$$

Corollary 4.1. Let T be the mapping of Theorem 2.1 for the space X_{α}, and let $G_{\alpha}=T z_{\alpha}$. Then $G_{\alpha} \in K_{\alpha}\left(J_{X_{\alpha}} P_{\alpha}\right)$ and $\left\|G_{\alpha}\right\|=1$, but if $\left\{F_{n}\right\}$ is a sequence in $\bigcup_{\beta<\alpha} K_{\beta}\left(J_{X_{\alpha}} P_{\alpha}\right)$ such that $F_{n} \xrightarrow{\mathrm{w}^{*}} G_{\alpha}$, then $\lim _{n}\left\|F_{n}\right\|$ $\geqq c$.

Proof. It is immediate from Theorem 2.1 that $G_{\alpha} \in K_{\alpha}\left(J_{X_{\alpha}} P_{\alpha}\right)$ and $\left\|G_{\alpha}\right\|=1$. If $\left\{F_{n}\right\} \subset \bigcup_{\beta<\alpha} K_{\beta}\left(J_{X_{\alpha}} P_{\alpha}\right)$ and $F_{n} \xrightarrow{\mathrm{w}^{*}} G_{\alpha}$, then by Theorem 2.1 the sequence $\left\{T^{-1} F_{n}\right\}$ is in $\bigcup_{\beta<\alpha} L_{\beta}\left(P_{\alpha}\right)$ and $\left\|T^{-1} F_{n}\right\|=\left\|F_{n}\right\|$ for each
n. Now $\sup _{n}\left\|T^{-1} F_{n}\right\|=\sup _{n}\left\|F_{n}\right\|<\infty$ since $\left\{F_{n}\right\}$ is w^{*}-convergent. For each $t \in S_{\alpha}$ let $f_{t} \in X_{\alpha}^{*}$ be defined as in the proof of Theorem 2.1. Then

$$
\left(T^{-1} F_{n}\right)(t)=F_{n}\left(f_{t}\right) \longrightarrow G_{\alpha}\left(f_{t}\right)=z_{\alpha}(t)
$$

for each t, and hence

$$
\underline{\lim }_{n}\left\|F_{n}\right\|=\underline{\lim }_{n}\left\|T^{-1} F_{n}\right\| \geqq c
$$

5. Our main theorems will now be proved through consideration of product spaces, as defined in [2, p. 31], of spaces of the type X_{α}. Since X_{α}, P_{α}, and G_{α} depend on the given number $c \geqq 1$ as well as on α, the objects mentioned will henceforth be indicated with double subscripts as $X_{c, \alpha}, P_{c \alpha}$, and $G_{c, \alpha}$ respectively. Recall that if I is a set and X_{s} is a Banach space for each $s \in I$, then the product spaces $\Pi_{l_{1}(I)} X_{s}^{*}$ and $\Pi_{m(I)} X_{s}^{* *}$ are respectively the dual and bidual of the Banach space $\Pi_{c_{r}(I)} X_{\mathrm{s}}$ under the natural identifications.

Theorem 5.1. For each countable ordinal $\alpha \geqq 2$ let Y_{α} be the Banach space $\Pi_{c_{0}(\omega)} X_{n^{2}, \alpha}$ and let

$$
Q_{\alpha}=\bigcap_{n \in \omega}\left\{y \in Y_{\alpha}: y(n) \in P_{n^{2}, \alpha}\right\} .
$$

Then Y_{α} is separable, and Q_{α} is a norm-closed cone in Y_{α} such that $K_{\alpha}\left(J_{Y_{\alpha}} Q_{\alpha}\right)$ is not norm-closed in $Y_{\alpha}^{* *}$.

Proof. It is evident that Y_{α} is separable and Q_{α} is a closed cone in Y_{α}. An easy transfinite induction argument shows that for each n the functional F_{n} belongs to $K_{\alpha}\left(J_{Y_{\alpha}} Q_{\alpha}\right)$, where $F_{n}(n)=G_{n^{2}, \alpha}$ and $F_{n}(i)$ $=0$ for all $i \neq n$. Hence $\sum_{n=1}^{m} n^{-1} F_{n} \in K_{\alpha}\left(J_{Y_{\alpha}} Q_{\alpha}\right)$ for each positive integer m, and therefore $\Sigma_{n \in \omega} n^{-1} F_{n} \in \overline{K_{\alpha}\left(J_{Y_{\alpha}} Q_{\alpha}\right)}$. If $\left\{H_{k}\right\}$ were a sequence in $\bigcup_{\beta<\alpha} K_{\beta}\left(J_{Y_{\alpha}} Q_{\alpha}\right)$ such that $H_{k} \xrightarrow{\mathrm{w}^{*}} \Sigma_{n} n^{-1} F_{n}$, then for each $i \in \omega$ it would follow that

$$
\left\{H_{k}(i)\right\}_{k} \subset \bigcup_{\beta<\alpha} K_{\beta}\left(J_{X_{i^{2} \cdot \alpha}{ }^{2}} P_{\imath^{2} \alpha}\right)
$$

and

$$
H_{k}(i) \xrightarrow{\mathrm{w}^{*}} \Sigma_{n} n^{-1} F_{n}(i)=i^{-1} G_{i^{2}, \alpha}
$$

It would then result by Corollary 4.1 that

$$
\underline{\lim _{k}}\left\|H_{k}\right\| \geqq \underline{\lim _{k}}\left\|\mathrm{H}_{k}(i)\right\| \geqq i
$$

but then since i is arbitrary the sequence $\left\{H_{k}\right\}$ would be unbounded in norm, contradicting the fact that a w^{*}-convergent sequence in $Y_{\alpha}^{* *}$ must be bounded [3, p. 60]. Hence $\Sigma_{n} n^{-1} F_{n} \notin K_{\alpha}\left(J_{Y_{\alpha}} Q_{\alpha}\right)$, and the proof
is complete.
THEOREM 5.2. For each countable ordinal $\alpha \geqq 2$ there exists a separable Banach space W_{α} containing a norm-closed cone R_{α} such that if $2 \leqq \beta \leqq \alpha$, then $K_{\beta}\left(J_{W_{\alpha}} R_{\alpha}\right)$ is not norm-closed in $W_{\alpha}^{* *}$.

Proof. Let $A_{\alpha}=\{\beta$: $2 \leqq \beta \leqq \alpha\}$ and for each $\beta \in A_{\alpha}$ let Y_{β} and Q_{β} be as defined in Theorem 5.1. Let $W_{\alpha}=\Pi_{c_{0}\left(A_{\alpha}\right)} Y_{\beta}$ and $R_{\alpha}=\bigcap_{\beta \in \Lambda_{\alpha}}\{w$ $\left.\in W_{\alpha}: w(\beta) \in Q_{\beta}\right\}$. Then the Banach space W_{α} is separable since A_{α} is countable, and R_{α} is clearly a norm-closed cone in W_{α}. For each $\beta \in$ A_{α} there exists by Theorem 5.1 a sequence $\left\{\phi_{\beta, n}\right\}$ in $K_{\beta}\left(J_{Y_{\beta}} Q_{\beta}\right)$ which coverges in norm to an element $\phi_{\beta, 0} \in Y_{\beta}^{* *}$ not in $K_{\beta}\left(J_{Y_{\beta}} Q_{\beta}\right)$. If $\psi_{\beta, n}$ is defined for each integer $n \geqq 0$ by $\psi_{\beta, n}(\gamma)=0$ for $\gamma \neq \beta$ and $\psi_{\beta, n}(\beta)=$ $\phi_{\beta, n}$, it is easily shown that $\left\{\psi_{\beta, n}\right\}_{n \in \omega} \subset K_{\beta}\left(J_{W_{\alpha}} R_{\alpha}\right)$ and $\left\{\psi_{\beta, n}\right\}$ converges in norm to $\psi_{\beta 0}$, but that $\psi_{\beta, 0} \notin K_{\beta}\left(J_{W_{\alpha}} R_{\alpha}\right)$. Hence for each $\beta \in A_{\alpha}$, $K_{\beta}\left(J_{W_{\alpha}} R_{\alpha}\right)$ fails to be norm-closed in $W_{\alpha}^{* *}$.

Theorem 5.3. There exists a Banach space Z contaning a normclosed cone P such that if β is a countable ordinal $\geqq 2$, then $K_{\beta}\left(J_{Z} P\right)$ fails to be norm-closed in $Z^{* *}$.

Proof. The proof is almost identical with that of Theorem 5.2. Let $A=\{\beta: 2 \leqq \beta<\Omega\}, Z=\Pi_{0_{0}(A)} Y_{\beta}$, and $P=\bigcap_{\beta \in A}\left\{z \in Z: z(\beta) \in Q_{\beta}\right\}$. Since A is uncountable, the Banach space Z is nonseparable. It is clear that P is a closed cone in Z. The pooof that $K_{\beta}\left(J_{Z} P\right)$ fails to be norm-closed in $Z^{* *}$ for each $\beta \in A$ is identical with the corresponding part of the proof of Theorem 5.2, in which it was shown that $K_{\beta}\left(J_{W_{\alpha}} R_{\alpha}\right)$ fails to be norm-closed in $W_{\alpha}^{* *}$ for each $\beta \in A_{\alpha}$.

References

1. N. Bourbaki, Topologie générale, Hermann, Paris, 1948.
2. M. M. Day, Normed linear spaces, Springer, Berlin, 1958.
3. N. Dunsford and J. T. Schwartz, Linear operators, Vol. I, Interscience, New York, 1958.
4. F. Hausdorff, Set theory (translated by J. R. Aumann, et al.), Chelsea, New York, 1962.
5. C. Kuratowski, Topologie, Vol. I, Warszawa, 1958
6. R. D. McWilliams, On the w^{*}-sequential closure of a cone, Proc. Amer. Math. Soc., 14 (1963), 191-196.
7. \qquad , Iterated w^{*}-sequential closure of a Banach space in its second conjugate, Proc. Amer. Math. Soc., 16 (1965), 1195-1199.
8. I. P. Natanson, Theory of functions of a real variable, Vol. II (translated by L. F. Boron), Ungar, New York, 1960.
Recieved June 22, 1970. Supported in part by National Science Foundation Grants GP7243 and GP-9632.

Florida State University

