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CANONICAL DOMAINS AND THEIR GEOMETRY IN Cn

KEIZO KIKUCHI

In this paper we introduce some differential geometric
properties of canonical domains of bounded domains in O,
using our synthetic expression by matrix. In the proofs of
the theorems, our formulas of matrix derivatives play the
leading part.

In order to construct relatively invariant matrices, the author
devised formulas of matrix derivatives and obtained some results ([2]).
Here we use these formulas for the calculations on the argument of
the theorems of geometry. The constructed matrix %2TD(β, z) (see [2])
becomes the curvature tensor, and 2V(z, z)(dTD(z, z)/dz) becomes Chri-
stoffel symbols in the Kaehler manifold with the metric dsD —
dz*TD(z, z)dz where 2TD(z, z) = (Enx TD(z, z))φidz*)(TJφ, z)(dTD(z, z)/dz))
and TD(z, z) = d2logKD(z, z)/dz*dz. We study some differential geometric
properties of canonical domains, that is, Bergman representative
domains, m-representative domains, homogeneous domains, and our
minimal domains of moment of inertia which are defined and investi-
gated in §2 ([1], [5], [7], [12]).

We calculate Christoffel symbols at the center of canonical domains
and give the condition which a geodesic curve through the center of
a representative domain satisfies in Theorems 3.4. In Theorems 3.7-
12 and Corollaries 3.1-4, we discuss scalar curvature and holomorphίc
sectional curvature.

The author wishes to thank Professor S. Ozaki for helpful discus-
sions in the preparation of the present paper.

1* Preliminaries* Let D be a domain in Cn which posses a
Bergman kernel function KD(t, z) = φ*(t)φ(z), t, zeD, where φ(z) =
(Φi(z)> 9*2(2)9 •••)' a n d the marks ' and * denote the transposed and
transposed conjugate matrices respectively. We consider a vector
function w(z) = (w^z), •••, wn(z))' in D. If the function w(z) is both
holomorphic and locally one-to-one, i.e., det(dw/dz)Φθ, then the func-
tion defines a pseudo-conformal mapping of D onto another domain
Δ a Cn. Further, the inner product of two functions /, g belonging
to a class ^fD

2 of all holomorphic functions ζ(z) of D which satisfy

( \ζ(z)\*dvD ΞΞ Sp(\ ζ(z)ζ*(z)dvD)<oo, as follows:

(/, g)D = \ f(z)g*(z)dvD ,

where dvD denotes the Euclidean volume element on Ό. Moreover we
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def ine a n o r m \\f\\D of f(z) a s

(i.i) Wfwi = sP(f, f)D = ί \f(z) \>:dvD.

We shall define some notations for derivatives of matrix functions
with respect to the vector variable z — (z19 •••, zn)Ί

where (d/δt)*h and (d/ds)fc denote fc-times and fc-times Kronecker product
of (d/dt)* = (3/δίΊ, , 3/aί"Λ)' and 3/3̂ ; = (3/3^, , d/dzn) respectively.
If w(z) is a function of 2 only, the kth derivative is denoted by
dkw{z)jdzk. In particular, if z and £ are both fixed, then we shall
write the derivatives merely wth*9k or dh+kw/dt*hdzk. Hereafter, some-
times we shall write TD(t0, t0) = TD, KD(t0, Q = KDJ d2KD(t0, Q/dt*dz =
32KD/dt*dz = Kt*z, and so on. Further we denote the following for-
mulas with respect to the matrix derivatives:

(1.3) ^ P - -F~^(En x F^) ,
dz dz

(F is a regular k x k matrix function and En is an n x n unit matrix)

(1.4) ψ ψ £
dz dz dz

(F and G are k x Z, I x m matrices respectively)

(F is a; /c x I matrix, z, ζ are n x 1 vectors)

(1.6) ? ί ^ ) = ̂  x G + (F x ^ ( ί ? , . x E.) ,
dz dz \ dzJ

(F, G are k x I, μ xv matrices respectively, and

where e4i are ϊ x 71 matrices in which only (i, i) element equal to 1,
and others 0). If ζ = ζ(z) is a pseudo-conformal mapping of a domain
JD onto a domain J, then we have

(1.7) KD(t, z) = (det *Eβ)*KΛτ, Q det
V dt /
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dz
(1.8) Γ , ( M ) ^

M Nl W ^ *^e kl°ck subdivisions, it holds

that

(1.9) p-ι = lκ + XZ~l γ> ~

-z-*γ, z~ι

where K, N are square matrices, and X = K~^L, Y = MK~\ Z —

2* Moment of inertia and relative invariant matrix* For the
holomorphic mappings ζ(z) — A(z — t0) + (higher powers) with respect
to ί0, we define the classes which satisfy respectively the following
initial conditions at a fixed point tQe D:

Uh: detA = 1 ,

0 |;ίfl C ,, j

Bergman representaive and minimal domains were considered for the
classes < ^ ; ί o and ^A\-,toi respectively. If we define the moment of
inertia of Δ which is the image of D by ζ(z) as

(2.1) mom(Δ) = | | ζ | | j = ( \ζ\*dvΔ = \ \ζ-det^
U JD azaz

then a minimal domain of moment of inertia with ζ(t0) as center
which minimizes mom{Δ) may be considered for the classes of the
above four types. But now we treat for the class ^ ^ ; ί o . First, we
deal with the minimum problems following S. Bergman ([1], [5])
The following relations hold for any functions ζ(z) — A(z — t0) + (higher
powers), using (1.9),

(2.2) i| ζ(z) ||i = Sp\v?dvD ^ Sp(O, A)(f£ f ^

and minimizing function exists uniquely and is expressed as follows:

(2.3) (O,A)(ξ? ξ; T(f»{t% Z\.~.*) = KD{^ Z)ATA* TD(ΰ,z)dz ,
\Kt* Kt*J \dKD(t0, z)/dt*J KD hQ

where A is an n x n matrix. If ζ(z) e ^ ^ ; ί o , then ζ(z)det(dζ(z)/dz) also
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belongs to ^ ^ ; ί o , hence the mapping ζ(z) which maps D onto a minimal
domain of moment of inertia satisfies

(2.4)
dz KD

and the moment of inertia of this minimal domain is
(See [9]).

THEOREM 2.1. A necessary and sufficient condition for a domain
D to be a minimal domain of moment of inertia with t0 as center is

dz Jto

In fact, for the identity mapping ζ(z) = z of D, ζ(z)det(dζ(z)/dz) =
z, therefore the necessary and sufficient condition is

TD(t0, z)dz .
KD

THEOREM 2.2. A domain D is a minimal domain of moment of
inertia with tQ as center, if the following condition is fulfiled:

(2.6) d2KD(t0, z)/dt*dz = KDTD.

Proof. From the hypothesis, we have dKD(tQ, z)/dt* — KDTD*{z — ί0),
therefore dKD/dt* = 0. Hence, using the relation

TD(U, z)dz = dKD(toz)/dt* - EAA.dKD/dt* ,

we have

~(KD(t0, z)[ Tΰ(t0, z)dz) = KDTD,
dz Jί0

consequently the hypothesis of Theorem 2.1 is fulfiled.

COROLLARY 2.1. Let D be a minimal domain with center at t0,
then a necessary and sufficient condition for the domain D to be a
minimal domain of moment of inertia with the same center t0 is

(2.7) d>KD(t0, z)/dt*dz = KDTD.

COROLLARY 2.2. Let D be a representative domain with center at
t0, then D is a minimal domain of moment of inertia if and only if

/2#g\ —(K (t z) (z t)) Ξ K
dz
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Proof. By the hypothesis we have TD(tOi z) = TD, consequently

I TD(t0, z)dz = TD-(z — t0). Substituting this into (2.5), we obtain
J *o
(2.8).

COROLLARY 2.3. Let D be a representative domain with center at
to, and simultaneously a minimal domain with the same center, then
D is also a minimal domain of moment of inertia.

Proof. We can prove easily from d2KD(t0, z)/dt*dz = KDTD which
is a necessary and sufficient condition for a domain D to be a minimal
domain with center at t0 and simultaneously a representative domain
with the same center, and (2.6).

Next, we introduce relative invariant matrices which play an im-
portant part in Riemannian geometry of a complex ^-dimensional
manifold.

LEMMA 2.1. The following relation holds:

(En x TD(z, z))±lτϊ<β, z)dTf'z))
dz*\dz*\ dz

dz*dz dz* dz

( = tTD(p,z)),

and for any pseudo-conformal mapping ζ = ζ(z) which maps D onto
A, we have

(2.10) 2TD(zf z) = {dζ{z)ldz)*\TΔ{Z, Q(dζ(z)/dzγ ,

where the power means 2-times Kronecker product. (See [2]).

LEMMA 2.2. Let p^niz, z) be

(2.11) rfΛί.

where Kp = (KD(z, z))p and T = TD(z, z), then under any pseudo-con-
formal mapping we have

(2.12) pψD{z, z) = {dζ{z)ldz)*\fΔ(Z, ζ)(dζ(z)ldzy .

REMARK. For p > 2 we showed that pψD(z, z) are positive definite
(see [2]), but in the following (Corollary 3.4), we shall show that, for
p > 1, these quantities are also positive definite in a bounded domain
by the properties of holomorphic sectional curvature.

In fact, Using the formulas (1.4)~(1.6), we can calculate as
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follows:

= pK*-fJί X Γ
d

p K f X Γ ) + K
dz \dz / 3z

dz \dz

dz*dz

therefore, we have

(2.13) pψD(z, z) = 2TD(z, z) + pTD(z, z) x TD(z, z) .

From this and (2.10), we obtain (2.12).

3* Curvature in canonical domains* We introduce a positive
definite Kaehler metric on D which is invariant under any pseudo-
conformal mapping of D

ds2

n = dz*TD(z, z)dz ,

and consider a real 2^-dimensional manifold V2n of the variables

metric jbe

LOO £) Lb/if JL JJ \& , 6/J VJA/

0
(3.1)

0 , iTD(z,z)J\dz

dz) \dz

then we have ^ = J T ^ = ga-β, gaJ = \Taj = fά^ ^^ = ^^ = 0, where
Γ^ = (d2logKD(z, z)/dzadzβ), and i, i = 1, , n, 1, , n; a, β = 1, , n.
If we define a curve in V2n by the functions

with respect to a parameter ί, then the infinitesimal distance on this

curve is given by ds — \/dz*TD(z(t),z(t))dz, and the length of this curve

joining two points A, - βftj) and A2 - Qj^Λ is

S — \ V —z—-J-DK^I x>J—u,υ .

dt
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For the function F = (dz*/ds)TD(z, z)(dz/ds) = z*TD(z, z)z, we have
(dF/dz) = z*(dTD(z, z)/dz)(En x z), therefore substituting this into
Euler's equation we obtain

^-(i*TD(z, z)) - z*dTf'z)(En x z)
ds dz

\dz \ds / Vds /3«*/ dz

= z*T+ (i* x i*)^ξ - 0,
dz*

hence we have a differential equations of geodesic (see [6], [13])

z + 2V(z, z)dTDf'z\z x έ) = 0 ,

ϊ + ̂ ( ϊ , z)dfφz)φ x έ) = 0 .

Consequently, the Christoffel symbol is expressed as

( Γ*1 . . . P1 P1 . . . P 1 \
^ lit )M»fMi) t 1 M\

. . .

nu . rΐr?u 'r:J
\Γi,

(See [4], [10], [13]).
Now, for any pseudo-conformal mapping ζ = ζ(z), we can calculate

as follows by virtue of the above mentioned formulas (1.4) ~ (1.6):

- ^ P ί f ) " {§Yf, • (See [2]).

LEMMA 3.1. For any pseudo-conformal mapping, we obtain the
following relations with respect to the Christoffel symbol:

(3.4) | i =
dz2

(3 4 } ( ζ ζ ) V ( 2 ) λ

THEOREM 3.1. The vector εD(z, z) = z + T^fz, z)(dTD(z, z)/dz)(z x i)
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is a contravariant vector, and a geodesic curve in D is also a geodesic
curve in Δ under any pseudo-conformal mapping Δ — ζ(D).

Proof. We have

dz dzz
ds dζ

.. _ d2z _ d fdzΛ __ d2z(f Λ , dzz
ds2 ds\dζ / dζ2 dζ

hence, substituting (3.4') into this formula, we have

χ

Therefore

e»(z, z) - f (ϊV(ζ, C ) 3 Γ ^ C ) k x C) + f C = f β,(ζf ζ) .
dζ\ dζ J dζ dζ

Hence, εD(z, z) is a contravariant vector, and εD(z, z) — 0 implies

e,(ζ, 0 - 0.

r-M which satisfies

the following transformation law: λj = (dζ/dz)XD, (λj = (dζ/dz)XD).
Then we have

x

Substituting (3.4) for (d2ζ/dz2), we obtain

dxΔ = §T?φ, z)dTf>z\dz x λ,,)
dz dz

- TΛZ, ζ)dTΛS'ζ\dζ x λ,) + §dxD ,
dζ dz

therefore we have the transformation expression of the covariant
differential:

δX4 = dXΔ + TTiL ζ)dTfjQ(dζ x λ,)

(3.5) 3 ζ

= ^(dλ,, + T?(z z)dT^z\dz x λ,)) = §(
dz

x λ,)) = §(
J dz
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(3.5)' δx< = dx, + TΛl, Qdf§>°(€ x λ,) = £r(S\B),
Oζ CiZ

( X Vτ-D) is given by

(3.6) VXD = (^2 + Tϊ(z, z)dTf'z)(E x \D), dp) ,
V dz dz dz /

(3.6)' FXD = ( ξ ^ , ̂  + 2V(«, z)dT°@>z\E x λ,)) .
\3z d« 3^ /

Now, we have the conditions of the parallel displacement

δXD _ d\D , rp^ dTfdz . \ _ π

as ds oz \ds J

δXD _ dλD , φ^dTίdz
ds ds 3̂ ; \ds

for a contra variant vector U ; on a curve, then substituting the

tangent (ZΛ of a curve for (γDj we obtain a differential equation

of geodesic (3.2). Therefore, a curve on which the tangent is dis-

placed parallelly is a geodesic.

THEOREM 3.2. At the center tQ of any representative domain D,
the Christoffel symbols with respect to the metric ds2

D = dz*TD(z, z)dz
are all zero.

Proof. A necessary and sufficient condition for a domain D to
be a representative domain with ί0 as center is T^T^to, z) — En,
therefore T»ι(dTD/dz) = 0.

THEOREM 3.3. The Christoffel symbols at any point t0 in a
bounded domain with Kaehler matric ds2

D = dz*TD(z, z)dz become all
zero by the Bergman representative function with respect to t0

(3.7) ζ(z) = TVΓ TD(t0, z)dz + to .
in

Proof. Substituting (dζ(to)/dz) = E, (d%(to)/dz2) = T^(dTD/dz) into
(3.4), we have T^(dTD/dz) = Tiι(dTD/dz) - Tjι(dTJdζ), therefore

= o.

THEOREM 3.4. Let t0 be an arbitrary point in D which is bounded
domain with the Kaehler metric ds% = dz*TD(z, z)dz, and let the
Bergman representative function with respect to t0 be

A * TD(t0, z)dz . (See [1], [2]).
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Then the point t0 lies on geodesic (3.2) if and only if

dVD(t0; to)/ds2 = 0 .

Proof. From Theorem 3.1 and Theorem 3.2, we have

dV»(t0; Q/ds2 = eD(z, z) .

THEOREM 3.5. The Christoffel symbols at the center c0 of any
m-representative domain A(m ̂  2, see [5], [2]) with respect to toεD
are equal to that at the point tQ.

Proof. For any m-representative function ζ(z) with respect to t0,
we have dζ(to)/dz = E, d2ζ(tQ)/dz2 = 0. Hence, by (3.4), we obtain

•*- D\L0y v0j Γ — -*• J\^Oj

dzdz dζ

THEOREM 3.6 At the center t0 of a minimal domain of moment of
inertia, if dKD(tQ, tQ)/dz — 0, then the Christoffel symbols are all zero.

Proof. From Theorem 2.1, we have

TD(t0, z)dz)

dz

therefore, dTD/dz = 0.

REMARK. By theorem 3.4, we may locate the geodesic through
a point ί0, that is, doing coordinate transformation

ζ(z) = TB1^ TD(t0, z)dz + ίo

at t0, the curve through the point t0 on which d2ζ(t0)ds2 = 0 is geodesic.
Next, according to our method we express Riemann-Christoffel

tensor as

djηπ-i(ψ *\dTD(Zm Z)\ _ ,τn γ-i(~ ?\\ φ (% ?\
—^I 1 D [Z, Z) I — \J2J X 1 D \ z , Z))21 D[Z, Z)

dz*\ dz J
' - T?^ -\ / T?^-~ 7?^-
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For any pseudo-conformal mapping ζ = ζ(z), we have

therefore it is a tensor of contra variant [degree 1 and co variant
degree 3.

Further, we can express the curvature tensor as

UE x TD(z, z))^-(τ-D\z, z)dTf'z)) - ±2TD(z, z)
2 dz*\ dz / 2

(o . lU) / r> r> \ / r> r>
/ ^ Ί T ' ' ' * V Ί Ί \ itCi ' ' ' ^ Ί

And, we can express the contracted Christoffel symbols as

(3.11) (SpT~iψ-, , SpT^fΠ = (ΓL, , Πa) .
\ dz dzj

By^the^rule dlog (detT)/dZi = SpT~ι(dTldz^ we obtain iϋίccΐ tensor

(3.12) - d2 log (det T)ldz*dz =

Therefore, the scalar curvature becomes

(3.13) Ro = dz*dz

which is invariant under any pseudo-conformal mapping.

THEOREM 3.7. At any bounded domain D> Ro < £n(n + 1).

Proof. It is known that both M = (w + 1)T + (32 ίo^ (deί T)jdz*dz)
and Γ"1 are positive definite Hermitian matrices (see [1], [3]), therefore

f(Σft), or pJΣλ) £ or

where λj_ ̂  ^λ% > 0 and pt ^ ^ /ow > 0 are eigenvalues of T
and M, respectively. Thus we have

n(n + 1) - ftSpΓ-1 ,
or

n(n + 1) - —SpM ^ ^ ^ n(n + 1) -
λ* 4
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or

/ , 1 X SpM
n(n + 1) — — - —

λ

THEOREM 3.8. Let D be a homogeneous domain, then we have
always

(3.14) RQ = -An .

Proof. At the homogeneous domain, it becomes

d2 log (det T) = τ

dz*dz

therefore we have Ro = -iSp(T~ιT) = -in.

THEOREM 3.9. In a manifold D with the metric ds?

D = dz*TD(z, z)dz,
if there exists a fixed point t0 in D such that ID(z, z) ^ ID(tQ, ί0) every-

(-}_ —
where in D, and if — 4n^R01 then we must have ID(z, z) = ID(t, oto)

( = ) _
everywhere in D, and consequently we have Ro = —in, where ID(z,z) is a

real valued (invariant) function defined by ID(z, z) = KD{z, z)/detTD(z,z).

Proof. From T = d2 log I/dz*dz + d2 log (det T)/dz*dz, we obtain

n = S

dz*dz 1 4

Therefore, by Theorem of E. Hopf (see [13]), our proof is completed.

THEOREM 3.10. In a bounded domain D, if there exists a fixed
point t0 in D such that JD(z, z) ^ JD(t0, t0) everywhere in D, then we
must have JD(z, z) = JD(tQ, tQ) everywhere in D, and consequently
Ro = An(n + 1), where JD(z, z) = (KD(zy z))n+1 det TD(z, z).

Proof. From (n + ΐ)T + d2 log (det T)/dz*dz = d2 log J/dz*dz, we
obtain

(n + l)n - £° ? ^
4 dz*dz

Since, by Theorem 3.7, we have SpT~ι(d2 log J/dz*dz) > 0 everywhere
in Dy then J is constant by theorem of E. Hopf. Consequently we
obtain the following Ricci tensor: (Raβ) = (n + l)TD(z, z). Thus we
have RQ — An(n + 1).

Next, a holomorphic sectional curvature tc(z; u) with respect to a
contravariant vector u which is invariant under any pseudo-conformal
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mapping is expressed by our method as follows:

/Q 15x κ(z. u) 2 (u x *)**TDφ,z)(v, x u)
1 5 κ(z u) 2

V * ; V ' ; (ux u)*(TD(z, z) x TD(z, z))(u x u) '

THEOREM 3.11. If D is a homogenous domain with the metric
ds% = dz*Tdz, then the holomorphic sectional curvature κ(z;u) is con-
stant everywhere in D.

Proof. Since fc(z; u) is invariant, then for arbitrary points z, t in
D we have /c(z; u) = κ(t; u) by a suitable holomorphic automorphism.

THEOREM 3.12. In a manifold of constant holomorphic curvature
tc, for the scalar curvature Ro, we have

(3.16) Ro = n(n + l)κ .

Proof. By the hypothesis, the culvature tensor becomes

(3.17) Ra-βr-δ = ±(gaJg7l + galgrJ) , (see [13])

Δ

consequently we have Raj — (n + l)/2 tcgaj. Thus we have

ϊaβ = n(n + l)κ .
COROLLARY 3.1. The unit hypersphere \z\2 < 1 is a manifold of

constant holomorphic curvature K and we have it = — 4/(n 4- 1). (See
Theorem 4 in [10]).

Proof. Using the formulas (1.3) ~ (1.6), we obtain

TD(0, 0) = (n + 1)E , dTD(O, O)/dz = 0 ,

3 2n(0, O)/dz*dz - (n + 1)(E* + Enn) .

Then we have

2TD(0, 0) = (n EL

and consequently Λ:(0; U) = —A(n + l)(u*u)2/(^ + ϊ)2(u*u)2 = — 4/(n + 1).
Therefore, the holomorphic sectional curvature are all the same at
origin. Consequently, by Theorem 3.11, we obtain the required
results.

REMARK. Since a unit hypersphere is a homogeneous domain,
then RQ = —in. Therefore, by Theorem 3.12, we can compute tc —
-An/n(n + 1) = -A(/n + 1).
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C O R O L L A R Y 3 . 2 . I n a polydisc {\zj\ <rifj = 1, •••, w}, f o r t h e
holomorphic sectional curvature tc, we have — 2 ̂  K <^ —2/n. (See [10]).

Proof. We may calculate at origin as follows:

'(i)1 0
), 0) = 2

0 (•!'

, 1Γ2>(0,0) =

Thus, we have

= -2Σ(l%l/r 3 )7(Σ(l%IM-)2)2

3 3

and consequently - 2 ^ / τ ^ — 2/n, (n^2).

COROLLARY 3.3. In a complex spheres

mM - {z I \z'z\ < 1,1 - 2 |z | 2 + |*'*|2 > 0} ,

for the holomorphic sectional curvature /c, we have

-!/2-l)<c<-!.

Proof. Since we have

TD(z, z) = %β-[K0(E - 2zz') + 2(E - zz')zz*(E - zz')\

where Ko = 1 — 2 | z |2 + | z'z |2, in the complex spheres (see [8]), then
we have

TD(0, 0) =

tTB(0, 0) = 4M

Aί l 0
\

0

0
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Consequently,

iΓ+ ^ ]
n L \u\4

where u — (ulf •• ,uny9 hence we have the required result.
It is known that the holomorphic sectional curvature for a bounded

domain in Cn is less than 2 ([1], [3]), therefore we have

COROLLARY 3.4. Let D be a bounded domain with Kaehler metric
ds% = dz*Tdz, then

l t M Z ' Z ) ~ Kl dz*dz dz* K } 8z
(3.18)

= iTDβ, z) + TDφ, z) x TD(z, z)

is relative invariant under any pseudo-conformal mapping and posi-
tive definite.

Proof. From tc < 2, we have (u x u)*(2T + T x T) (u x u) > 0.
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