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MOORE SPACES AND w4-SPACES
R. E. HopeEL

This paper is dedicated to Professor J. H. Roberts
on the occasion of his sixty-fifth birthday.

This paper is a study of conditions under which a w4-space
is a Moore space, In §2 we introduce the notion of a G-
diagonal and show that every wi-space with a G5 -diagonal
is developable, In §3 we prove that every regular f-refinable
wd-space with a point-countable separating open cover is a
Moore space. In §4 we introduce the class of a-spaces and
show that a regular wd-space is a Moore space if and only
if it is an a-space. Finally, in §6 we study a new class of
spaces which generalizes both semi-stratifiable and wd-spaces,

1. Preliminaries. We begin with some definitions and known
results which will be used throughout this papsr. Unless otherwise
stated no separation axioms are assumed; however regular spaces are
always T, and paracompact spaces are always Hausdorff. The set of
natural numbers will be denoted by V.

Let X be a set, & a cover of X, « an element of X. The star
of x with respect to <, denoted st(x, &), is the union of all elements
of & containing x. The order of x with respect to &, denoted ord
(x, &), is the number of elements of & containing .

A space X is developable if there is a sequence &, &, ---of open
covers of X such that, for each z in X, {st{x, &,): n=1,2 ---} is a
fundamental system of neighborhoods of . Such a sequence of open
covers is called a development for X. A regular developable space is
called a Moore space. Bing [1] proved that every paracompact Moore
space is metrizable.

According to Borges [3] a space X is a wg-space if there is a
sequence &, &,, -++ of open covers of X such that, for each z in X,
if z,est(x, &,) for n = 1,2, -.- then the sequence <{z,> has a cluster
point. Such a sequence of open covers is called a wd-sequence for X.
Clearly every countably compact space is a wy-space, and in [3]
Borges proved that every developable space and every M-space is a
wy-space. For the relationship between wg-spaces, strict p-spaces,
and p-spaces, see [6].

A space X is subparacompact if every open cover of X has a
o-discrete closed refinement. Every paracompact space is subpara-
compact [16], and in [8] Creede proved that every semi-stratifiable
space is subparacompact. For further properties of subparacompact
spaces see [5], [11], and [15].
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A space X is O-refinable if for each open cover 7”7 of X there is
a sequence <, &, +++ of open refinements of 7~ such that, for each
2 in X, there is a » in N such that ord(z, £,) is finite. Such a
sequence of open covers is called a G-refinement of <77 In [24] Wicke
and Worrell state that every subparacompact space is #-refinable and
that a countably compact 7T, space is compact if and only if it is
f-refinable.

2. Spaces with a G;-diagonal. Recall that a space X has a
Gs-diagonal if its diagonal 4 = {(x, ©):  in X} is a G;,-subset of X x X.
The notion of a G,-diagonal plays an important role in metrization
theorems; see, for example, [2], [3], [7], [14], and [22].

Every semi-stratifiable Hausdorff space has a G,-diagonal [8].
On the other hand the space [0, 1] x {0, 1} with the lexicographic order
is a compact perfectly normal space which fails to have a G;-diagonal
[14].

In [7] Ceder obtained this characterization of spaces with a G,-
diagonal.

ProposiTioN 2.1. (Ceder) A space X has a Gy-diagonal if and
only if there is a sequence <&, <, -++ of open covers of X such that,
for any two distinct points x and y of X, there is a n in N such
that y ¢ st(x, &,).

In light of this ch_atracterization of a G;-diagonal and Borges’
study of spaces with a G,-diagonal (see [3]), we introduce the follow-
ing definition.

DEFINITION 2.2. A space X has a Gj-diagonal if there is a
sequence <, &, --+ of open covers of X such that, for any two
distinect points x and y of X, there is a » in N such that y¢
st(x, <,)~. Such a sequence of open covers is called a G¥-sequence for X.

In [13] Kullman proved that every regular #-refinable space with
a G,-diagonal has a G;-diagonal. Since every space with a G,-diagonal
has a G¥-diagonal, we have the following proposition.

PROPOSITION 2.3.  Ewvery regular 6O-refinable space with a G-
diagonal has a Gi-diagonal. In particular every regular semi-
stratifiable space has a Gj-diagonal.

The next result relates the G}-diagonal property to the diagonal
A

PROPO2ITION 2.4. Let X be a space, let {V,: n=12---} be a
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sequence of open subsets of XXX containing 4, and suppose that
N, V.= 4. Then X has a Gi-diagonal. In particular, if X 1is
Hausdorff and XX X is perfectly normal then X has a Gj-diagonal.

Proof. For n=1,2 .+ let &, ={G < X: G open, GxG < V,}.
Since V, is open and contains 4, &, covers X. To show that <,
&, +++ is a G§-sequence for X, let  and y be distinet points of X.
Choose n in N such that (z,y)¢ V,, and let U and W be open
neighborhoods of x and ¥ respectively such that (UxW) N V, = ¢.
It follows that W N st(x, &) = ¢ and so y¢ st(x, &,)".

We now prove the main result in this section.
THEOREM 2.5. Ewvery wg-space with a G-diagonal is developable.

Proof. Let X be a space, let 5#, o7, --+ be a wg-sequence for
X, and let .o, 9%, --+ be a G}-sequence for X. For each positive
integer n let

z, = {G: G = (Q H) n (Q K) Hes7, Kie %=1, 'n}

It is easy to check that <7,,, is an open refinement of &, for all =
in N and that &, &,, ++- in a wy-sequence and a Gj-sequence for X.

Suppose that &, &,, -+ is not a development for X. Then there
is a point x, a neighborhood W of x, and a sequence {x,> such that
for all n, x,¢est(x, Z,) and z,¢ W. Since &, &, --+ is a w-sequence
for X, the sequence <{x,> has a cluster point p. Clearly p¢ W so
p #x. Since &, &, -+- is a Gi-sequence for X, there is a positive
integer k and a neighborhood V of p such that V N st(z, &) = ¢.
Now for n = k, x,est(z, &,) < st(x, &) and so x,¢ V. This contra-
dicts the fact that p is a cluster point of <{z,». Thus &, &, +-- is
a development for X.

COROLLARY 2.6. The following are equivalent for a regular wd-
space X:

(a) X s a Moore space.

(b) X s semi-stratifiable.

(¢) X is O-refinadble and has a G;-diagonal.

d) X has a G¥-diagonal.

Proof. The implication (a) = (b) is due to Creede [8]; (b) = (c)
follows from results by Creede [8] and Wicke and Worrell [24]; (c)
= (d) follows from Proposition 2.3; (d) = (a) follows from Theorem
2.5.
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REMARK 2.7. The equivalence of (a) and (b) was first proved by
Creede in [8], and the equivalence of (a) and (c) is due to Siwiec
[23]. It is not known if every regular wd-space with a G;-diagonal
is a Moore space. For a study of p-spaces with a G,-diagonal, see
[13].

COROLLARY 2.8. The following are equivalent for a regular
countably compact space X:

(@) X ts metrizable.

(b) X x X x X is completely normal.

() X x X is perfectly normal.

(d) X has a Gi-diagonal.

Proof. Clearly (a) = (b); (b) = (c) follows from a theorem due
to Katetov [12]; (c) = (d) follows from Proposition 2.4. To prove
(d) = (a) observe that X is a Moore space (by Corollary 2.6) and
recall that every countably compact Moore space is metrizable.

3. Separating covers. In 1958 Filippov [9] proved that every
paracompact M-space with a point-countable base is metrizable.
Filippov’s theorem was generalized by Burke and Stoltenberg in [4],
and recently Burke [6] obtained another generalization as follows.

BURKE’s THEOREM. Every regular subparacompact wA4-space with
a point-countable base is a Moore space.

In another direction Nagata [20] proved a metrization theorem
which not only generalizes Filippov’s theorem but a result by Oku-
vama as well [22]. In order to state Nagata’s theorem succinctly
we use the following terminology due to Michael [17]. A cover 77
of a set X is said to be separating if given distinct points « and y
of X, there is a V in 7° such that xe V,y¢ V.

NAGATA’S THEOREM. FEvery paracompact M-space with a potnt-
countable separating open cover is metrizable.

In this section we use the techniques developed by Burke, Filip-
pov, Nagata, and Stoltenberg, together with the results in §2, to
obtain a generalization of the abovementioned theorems by Burke and
Nagata. _

In light of the usefulness of the concept of a 6-base in the study
of developable spaces (see [24]), we begin with the following defini-
tion.
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DEFINITION 3.1. A 6#-separating cover of a space X is a sequence
L\, &, ++- of open collections such that, for any two distinct points
2 and y in X, there is a » in N such.that

(a) ord(x, &,) is finite;

(b) there is a G in &, such that e G and y¢ G.

The relationship between a #-separating cover and a G,-diagonal
is given by the following two propositions.

ProrosITION 3.2. Let X be a space with a 6O-separating cover.
If every closed subset of X is a G, then X has a G,-diagonal.

Proof. Let @, &, --- be a f-separating cover of X. For each
pair of positive integers n and k let 27, = {H: H+ ¢, H= N, G,
G, -+, G, distinct elements of &,} and let F',, = X — U{H: He 57,,}.
Now F,, is a closed set and so F,, = M=, W,.;, where each W,,; is
open. For j=1,2, ... let ;= &, U{W.;}. Then each _7;
is an open cover of X and the sequence {.9%;: m, k,7 in N} exhibits
the G;-diagonal property for X.

PROPOSITION 3.3. Ewery 6O-refinable space with a Gs-diagonal has
a O-separating cover.

Proof. Let X be a 6-refinable space and let &, &,, --- be open
covers of X exhibiting the G,-diagonal property for X. For each =
in N let 57, 57, - be a f-refinement of &,. Then

(S m=1,2, -+ k=12 -4}
is a f-separating cover of X.

The following lemmas, due to Burke and Miscenko [19], play a
key role in the proof of our theorem. For the sake of completeness
we sketch the proof of Burke’s result. (See Remark 1.9 in [6]).

LEmMA 38.4. (Burke) Let X be a regular, O-refinable wd-space.
Then there is a sequence &), &, +++ of open covers of X such that
for each x in X,

@) C, = N st(x, &,) is compact;

(b) {st(x,z.): n=1,2, -} is a base for C,.

Proof. Let &, #; -+ be a wd-sequence for X. By induction
on n construct for each positive integer % a sequence 97,, Hnw ***
of open covers of X such that

(1) for k=1,2,--+,{W: W in %;,) refines ¥, and %3,
1<is=n-—-1,1Z5<n—1;
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(2) for each z in X there is a k£ in N such that ord(z, 97;,)
is finite.

For n =1,2, ... let &, = 9%,,. Then the sequence &, <, .-
satisfies properties (a) and (b).

LEmMA 3.5. (Miscenko) Let 7° be a point-countable collection
of subsets of a set X and let M be a subset of X. Then there are at
most countably many finite minimal covers of M by elements of <

We now state and prove the main result in this section.

THEOREM 3.6. Let X be a regular, 0-refinable wd-space with a
point-countable separating open cover. Then X is a Moore space.

Proof. We are going to show that X has a 6#-separating cover
and that every closed subset of X is a G,. It follows by Proposition
3.2 that X has a Gj-diagonal and hence by Corollary 2.6 X is a
Moore space.

Let 7 be a point-countable separating open cover of X. We
assume that Xe 27; and hence for every subset M of X there is a
finite subcollection of 7 which covers M, namely {X}. Let &, &,, -
be open covers of X such that for each z in X,

(@ C,= Ny, st(x, &, is compact;

() {stxz,Z,): n=1,2,...} is a base for C..

For each n in N let 2£,, 57, --- be a 6O-refinement of Z,. Recall
that

(¢) &£, refines &, k=1,2,+-+ ;

(d) for each z in X there is a &k in NN such that ord(z, 57,,) is
finite.

X has a 6-separating cover. For each pair of positive integers
n and k and for each H in 57, let H(n, k, 1), H(n, k, 2), «++ be all
finite minimal covers of H by elements of <; and let

Fmi={HNV: He 27,,, Ve Hn, k, 5)} .

To show that { %, m,k,7 in N} is a 6f-separating cover of X, let
2 and y be two distinct points of X. Choose V, in 7~ such that
xeV, and y¢ V,, and let {V, .-+, V,} be a finite cover of C, by
elements of 7~ such that ¢ V, for 1 =2, .--,¢t. Now C,<& Ui, Vi
and so by (b) there is a » in N such that st(x, &,) = Ui, V.
Choose k in N such that ord(x, 57, is finite, and let H be some
element of 57, such that x ¢ H. Since 57, refines &,, H < st(x, &,)
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and so H< Y., V;. Choose a minimal subcollection of {V,, ---, V;}
which covers H and label it H(n, k, j). Note that V, e H(n,k, j).
Thus (HN V)e 24 cc(HNV), and y¢ (HN V). Finally, suppose
H, -+, H, are all elements of 5%, containing x. Since H;(n,k, J)
is finite for 7 =1, --., » it follows that ord(z, 5%,,;) is finite. This
completes the proof that X has a f-separating cover.

Every closed subset of X s a G;. Let M be a closed subset of
X. For each pair of positive integers n and %k, and for each H in
o, such that HN M = @, let H(n,k,7),7=1,2, --- be all finite
minimal covers of HN M by elements of <7 By repezatedly counting
a cover if necessary, we may assums that H(n, k, j) exists for all j
in N. For j=1,2,.-- let H*(n, k, j) denote the union of all ele-
ments of H(n, %, j), and let W,,; = U{HN (N, H*(n, k, ?)): He 5Z,,,
HnN M+ @}. Clearly each W,,; is open and contains M. To com-
plete the proof that M is a G, it suffices to show that if x¢ M then
there exist #, k, and j such that xz¢ W,,;.

First suppose that C,N M= @. Choose » in N such that
st(z, &,) N M = @, and let k and j be any positive integers. Suppose
x€ W,,;» Then there is a H in 5%, such that xc H and HN M +# Q.
Now 27, refines &, and so H < st(x, &,). Hence st(z, &,) N M # @
and this contradicts the choice of #.

Next suppose that C,.N M= @. Let {V, .--, V,} be a finite
cover of C,N M by elements of 7 such that x¢ V,, r=1, -«+, ¢.
Choose 7 in N such that st(x, ) = (U:-, V,) U(X — M). Let kin
N be such that ord(z, 5#,,) is finite and let H, ---, H, be all ele-
ments of 57, which contain «# and intersect M. For 72=1, ...,s,
H, Zst(z, &) and so H;N M= Ji., V.. Select from {V,, --+, V.} a
minimal subcollection which covers H; N M and label it Hn, k, 7).
Now ¢ H%(n, k, j;) and so if we take j = max{j,, «--, j,} then x ¢ W,,;.

4. a-spaces. A space with a o-closure preserving separating
closed cover is called a o*-space. This definition was introduced by
Nagata and Siwiec in [21].

PRrOPOSITION 4.1. Ewvery subparacompact space with a G,-diagonal
18 a ot-space.

Proof. Let X be a subparacompact space and let &, &, --+ be
open covers of X exhibiting the G;-diagonal property for X. For
each n in N let #,, Z,.., +++ be a o-discrete closed refinement of
%y Then {#,: n=12 -+, k=1,2, ...} is a o-closure preserving
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separating closed cover of X.

In [6] Burke showed that a regular wd4-space is a Moore space if
and only if it is a o*-space. His method of proof suggests introdue-
ing a new class of spaces which we call a-spaces. We shall show
that o*-spaces are a-spaces and that a regular wd-space is a Moore
space if and only if it is an a-space.

DEFINITION 4.2. A space X is an a-space if there is a function
g from Nx X into the topology of X such that for each # in X,

(@ N g9, 2) = {a};

(b) if yeg(n, x) then g(n, y) < g(n, v).
Such a function is called an a-function for X.

PROPOSITION 4.3. FEwvery o*-space is an a-space.

Proof. Let &, %, -+-- be a o-closure preserving separating closed
cover of a o*space X. For n in N and #z in X let

gn,2) = X — U{FeF,: ¢ F}.

It is easy to check that the function ¢ is an a-function for X.

PROPOSITION 4.4. Ewvery space with a o-point finite separating
open cover is an a-space. In particular, every T, space with a o-point
finite base is an a-space.

Proof. Let &, &, -+ be a og-point finite separating open cover
of a space X. We may assume that Xe %, for all » in N. For
=12 +.- and z in X let g(n,2) = N{G in &,: z in G}). Then
the function g is an a-function for X.

The following characterization of semi-stratifiable spaces will be
useful in proving the main theorem in this section.

LEMMA 4.5. The following are equivalent for a space X:

(a) X 1is semi-stratifiable.

(b) There is a function g from NxX into the topology of X
such that (1) for each x in X, Ni= g(n, ®) = {2}~ @) of xeg(n,x,)
for m=1,2, -+ then the sequence {x,> converges to x.

() There is a function g from NxX into the topology of X
such that (1) for each x in X and n in N, xcg(n, x); (2) of x€gn, x,)
for m=1,2, .-+ then x is a cluster point of the sequence {x,).

Proof. The equivalence of (a) and (b) is due to Creede [8], and
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(b) = (c) is obvious. To complete the proof we show that (c) = (b).
Thus, let g be a function satisfying (¢), and assume that g(n + 1, 2) &
g(n, x) for all » in N and z in X.

To prove (1) of (b), first let ye N3, g(n, ). Then by (2) of (c),
y is a cluster point of the sequence {z, x, ---} and so ye {r}-. Next
let ye{x}-. Then zeg(n,y) for n=1,2,--- so by (2) of (c) it
follows that « is a cluster point of the sequence {y, %, ---}. Thus
yegn,x) for n =1,2, --- and so ye N, g(n, x).

To prove (2) of (b), let xeg(n, x,), n=1,2, --- and suppose that
the sequence <z,» does not converge to . Then there is a neigh-
borhood W of x and a subsequence {x,,> of {v,» such that =, ¢ W
for all k in N. Now zeg(n, ) < 9(k, v,) for k=1,2, -+ so by
(2) of (c), = is a cluster point of the sequence <=, >. But this is
impossible, and so we conclude that {z,)> converges to z.

THEOREM 4.6. A regular wd-space is a Moore space if and only
iof it is an a-space.

Proof. By Propositions 4.1 and 4.3 every Moore space is an
a-space. To complete the proof let X be a regular w4-space which
is also an a-space and let us show that X is a Moore space. By
Corollary 2.6 it suffices to show that X is semi-stratifiable.

Let &, &,, -+ be a wd-sequence for X, let ¢ be an a-function
for X. We may assume that for z in X and # in N, g(n + 1,2) &
gn,z). Forz in X and n=1,2, ..- let h(n, ) = g(n, x) N st(z, Z,).
We shall show that the function & satisfies (¢) of Lemma 4.5.

Clearly (1) of (c) is satisfied. To check (2) let zeh(n,x,) for
n=1,2,++-. Then for n=1,2, ..., xzest, &) and so x,¢€
st(x, &,). Thus the sequence <x,) has a cluster point y. Suppose y = .
Now {y} = N3=. 9(n, y) and so there is a k& in N such that z¢ g(k, v).
Since y is a cluster point of {x,> there is a m = k such that z,¢
g(k, y). Since g is an a-function for X, x, € g(k, y) implies g(k, x,,) &
gk, y). But zeh(m, x,) < g(m, x,) = gk, x,) and so x € g(k, y), a con-
tradiction. Thus x = y and « is a cluster point of {x,).

COROLLARY 4.7. Ewery regular wd-space with a o-point finite
separating open cover is a Moore space.

COROLLARY 4.8. Ewvery regular countably compact space with a
g-point finite separating open cover is metrizable.

5. A generalization of semi-stratifiable and w4-spaces. Let X
be a space and let g be a function from Nx X into the topology of



650 R. E. HODEL

X such that for all x in X and # in N, zeg(n,2). Consider the
following properties of the function g.

(A) If xeg(n,x,) and y,cg(n, x,) for n=1,2,.-- then z is a
cluster point of the sequence {y,>.

®) If zeg(n,z,) and y,cgn,x,) for n=1,2,.-. then the
sequence <{y,> has a cluster point.

©C) If z,eg(n,x) for n=1,2, .-- then z is a cluster point of
the sequence <{x,).

(D) If z,egn,x) for n =1,2, --- then the sequence <{z,> has a
cluster point.

E) If xeg(n,x,) for n =1,2, .-+ then x is a cluster point of
the sequence <{z,).

F) If xeg(n,o,) for n =1,2, --- then the sequence <{x,> has a
cluster point.

In [10] Heath proved that developable spaces can be characterized
in terms of a function g satisfying (A), and similarly w4-spaces can
be characterized in terms of a function g satisfying (B). Clearly 1%
countable spaces are characterized by (C), and (D) is precisely the
definition of a ¢-space [18]. Finally, as proved in §4, semi-stratifiable
spaces are characterized by a function ¢ satisfying (E). These
observations suggest introducing a new class of spaces, based on (F),
which generalizes semi-stratifiable and wd4-spaces.

DEFINITION 5.1. A space X is a B-space if there is a function g
from N x X into the topology of X such that

(a) for all z in X and n in N, xe€g(n, x);

(b) if xegn,x,) for n = 1,2, ... then the sequence <{x,> has a
cluster point.
Such a function is called a B-function for X.

THEOREM 5.2. The following are equivalent for a regular space
X:

(a) X s semi-stratifiable.

(b) X is a B-space with a Gi-diagonal.

(¢) X is an a-space and a B-space.

Proof. Clearly (a) = (b) and (a) = (¢). To prove (b)=(a) let ¢
be a pB-function for X and let &, &, --- be a G}-sequence for X,
where it is assumed that <,,, refines &, for all n. For 2 in X
and n in N let h{n,2) = g(n, 2) Nst(x, £,). Then A satisfies (c) of
Lemma 4.5 and so X is semi-stratifiable.

To prove (c) = (a) let g be a g-function for X and let » be an
a-function for X, where h(n + 1, ) & h(n,2) for all » in N and x
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in X. For x in X and n=1,2,..- let k(n, z) = g(n, ) N k(n, x).
Then % satifies (¢) of Lemma 4.5 and so X is semi-stratifiable.

REMARK 5.3. The implication (d) = (a) of Corollary 2.6 and
Theorem 4.6 can be proved using the above theorem together with
Creede’s result that every regular semi-stratifiable wd4-space is a
Moore space.

6. Summary. The relationship between some of the classes of
spaces considered in this paper can be summarized in a diagram as
follows.

developable
15t countable  wd-space //sérm stra@i
>~Space/ \ﬁ’space a-space
Fig. 1
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