THE CONVEX HULLS OF THE VERTICES OF A POLYGON OF ORDER n

Douglas Derry

Dedicated to Richard Rado on his sixty-fifth birthday.
Let $\pi_{n}: A_{1} A_{2} \cdots A_{r}$ be a polygon of real order n in real projective n-space $L_{n}, r \geqq n+3$, with the vertices $A_{1}, A_{2}, \cdots, A_{r}$. If H_{n-1} be a hyperplane for which $A_{i} \notin H_{n-1}, 1 \leqq i \leqq r$, let $H\left(\pi_{n}\right)$ be the convex full of the set $\left\{A_{1}, A_{2}, \cdots, A_{r}\right\}$ defined in the affine space $L_{n} \backslash H_{n-1}$. This paper gives a classification of the combinatorial types of the sets $H\left(\pi_{n}\right)$ for a fixed π_{n}.

The restriction $r \geqq n+3$ is necessary because the classification is obtained from the properties of the polygon π_{n} associated with $H\left(\pi_{n}\right)$. Such a polygon is determined uniquely by its vertices if and only if $r \geqq n+3$ [2]. If $r=n+3$ and the points $A_{1}, A_{2}, \cdots, A_{n+3}$ are in general position there is exactly one polygon π_{n} with these vertices [1]. Thus the set of all $H\left(\pi_{n}\right), r=n+3$, for which no vertex of π_{n} an interior point of $H\left(\pi_{n}\right)$ is also the set of convex polytopes with $n+3$ vertices in general position. Consequently the invariants which characterize the sets $H\left(\pi_{n}\right)$ can be used to characterize the convex polytopes with $n+3$ vertices in general position. The method used here is different from that used by M. A. Perles in his solution [3] of this problem.

The work is divided into three sections. The first contains definitions and known or easily proved results dealing with the polygons π_{n}. The second section develops theorems involving the convex hulls of the polygon vertices which are used to obtain the characterizing invariants in the final section. Except for the case in which H_{n-1} intersects π_{n} in n points the sets are characterized by a cycle of the type used in combinatorial analysis [4].

1. Preliminaries.

1.1. The subspace of the real projective n-space L_{n} spanned by the points or point sets A, B, \cdots is denoted by $[A, B, \cdots]$.
1.2. If $A_{1}, A_{2}, \cdots, A_{r}, r \geqq n+3$, are distinct points of L_{n}, π : $A_{1} A_{2} \cdots A_{r}$ denotes a closed polygon with the sides $A_{i} A_{i+1}, 1 \leqq i \leqq r$, $\left(A_{r+s}=A_{s}\right)$ and vertices $A_{1}, A_{2}, \cdots, A_{r}$.

An (open) segment $\alpha: A_{i} A_{i+1} \cdots A_{i+h}, 0 \leqq h \leqq r-1$, is called an arc of π of length h.
1.3. If any one hyperplane $L_{n-1}, A_{i} \notin L_{n-1}, 1 \leqq i \leqq r$, contains an even (odd) number of points of π then any hyperplane which does not contain any vertex of π also contains an even (odd) number of points of π. This property is known as the parity of π.
1.4. An intersection point of a hyperplane L_{n-1} and a polygon π is a point of $L_{n-1} \cap \pi$ which is either a vertex of π or the only point of a side of π within L_{n-1}.

A closed polygon in L_{n} for which no hyperplane contains more than n intersection points is said to have order n.

Such polygons will be denoted by the symbols π_{n}, σ_{n}.
A consequence of the order condition is that the vertices of a polygon π_{n} are in general position.

If P_{i} be an interior point of a side $A_{i} A_{i+1}, 1 \leqq i \leqq n$, of a polygon π_{n} then a hyperplane L_{n-1} exists for which $\left[P_{i}, P_{2}, \cdots, P_{n}\right] \subseteq L_{n-1}$. It follows from the order of π_{n} that $L_{n-1} \cap \pi_{n}$ is exactly the point set $\left\{P_{1}, P_{2}, \cdots, P_{n}\right\}$ and $L_{n-1}=\left[P_{1}, P_{2}, \cdots, P_{n}\right]$. Hence, by the parity of π_{n}, every hyperplane which does not contain any vertex of π_{n} intersects it in an even (odd) number of points if n is even (odd).
1.5. If, for $n>1, A_{i-1} A_{i+1}$ is the line segment in L_{n} which together with the arc $A_{i-1} A_{i} A_{i+1}$ of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$ forms an even triangle then the lines in the plane $\left[A_{i-1}, A_{i}, A_{i+1}\right.$] which contain A_{i} but do not contain an interior point of $A_{i-1} A_{i+1}$ are defined to be the tangents of π_{n} at A_{i}. A tangent at A_{i} is denoted by the symbol $L\left(A_{i}\right)$. The following result is a simple consequence of the order of π_{n}.
1.6. If, for $n>1, L_{n-1}$ is the projection of L_{n} from a vertex A_{k} of the polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}, A_{i}^{\prime} A_{i+1}^{\prime}, i \neq k, i+1 \neq k$, that of the side $A_{i} A_{i+1}$ and $A_{k+1}^{\prime} A_{k-1}^{\prime}$ that of the set of all the tangents $L\left(A_{k}\right)$, then the polygon $A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$ has order $n-1$ in L_{n-1}.

We shall call the polygon $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$ the projection of π_{n} from A_{k}.
1.7. If A is a point of hyperplane T_{n-1} of a projective (affine) space $L_{n}\left(R_{n}\right), n>1$, then if L_{n-1}, T_{n-2}, are the projections of $L_{n}\left(R_{n}\right)$, T_{n-1} respectively, from A the affine space $L_{n-1} \backslash T_{n-2}$ is said to be an affine projection of $L_{n}\left(R_{n}\right)$ from A.
1.8. Throughout this paper a fixed hyperplane $H_{n-1}, A_{i} \notin H_{n-1}$, $1 \leqq i \leqq r$, will be associated with each polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$. The
convex hull of the vertices of π_{n} defined in the affine space $L_{n} \backslash H_{n-1}$ is denoted by the symbol $H\left(\pi_{n}\right)$.

A segment $A_{p} A_{q}$ is said to be finite if $H_{n-1} \cap A_{p} A_{q}=\varnothing$ and otherwise infinite.
1.9. Hypothesis: A_{k} is a vertex of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}, n>1$, on the boundary of the convex hull $H\left(\pi_{n}\right)$ defined in $L_{n} \backslash H_{n-1}$.
T_{n-1} is a hyperplane which contains exactly the one vertex A_{k} of π_{n} and supports $H\left(\pi_{n}\right)$.

If $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$ is the projection of π_{n} and T_{n-2} that of T_{n-1} from $A_{k} H\left(\pi_{n-1}\right)$ is defined in the affine projection $L_{n-1} \backslash T_{n-2}$ of L_{n} from A_{k}.

Conclusion: (1) $A_{k-1}^{\prime} A_{k+1}^{\prime}$ is finite in $L_{n-1} \backslash T_{n-2}$ if and only if exactly one of the two sides of the arc $A_{k-1} A_{k} A_{k+1}$ of π_{n} is finite in $L_{n} \backslash H_{n-1}$; each other side $A_{i}^{\prime} A_{i+1}^{\prime}$ of π_{n-1} is finite if and only if the corresponding side $A_{i} A_{i+1}$ of π_{n} is finite.
(2) A hyperplane $\left[A_{i_{2}}^{\prime}, A_{i_{3}}^{\prime}, \cdots, A_{i_{n}}^{\prime}\right]$ of $L_{n-1} \backslash T_{n-2}$ supports $H\left(\pi_{n-1}\right)$ if and only if the hyperplane $\left[A_{k}, A_{i_{2}}, \cdots, A_{i_{n}}\right]$ supports $H\left(\pi_{n}\right)$.

Proof. If Q_{n-1} be a hyperplane which supports $H\left(\pi_{n}\right)$ let A_{p}, A_{q} be distinct vertices of π_{n} for which $A_{p}, A_{q} \notin Q_{n-1}$. Then a segment $A_{p} A_{q}$ is finite if and only if $Q_{n-1} \cap A_{p} A_{q}=\varnothing$. But, by the definition 1.8, $A_{p} A_{q}$ is finite if and only if $H_{n-1} \cap A_{p} A_{q}=\varnothing$. Hence $Q_{n-1} \cap A_{p} A_{q}=\varnothing$ if and only if $H_{n-1} \cap A_{p} A_{q}=\varnothing$.

If Q_{n-1} is specialized to be T_{n-1} it follows that a side $A_{i} A_{i+1}, i \neq$ $k, i+1 \neq k$, of π_{n} is finite if and only if $T_{n-1} \cap A_{i} A_{i+1}=\varnothing$. Let $A_{i}^{\prime} A_{i+1}^{\prime}, T_{n-2}$ be the projections of $A_{i} A_{i+1}, T_{n-1}$, respectively, from A_{k}. Hence, as $T_{n-2} \cap A_{i}^{\prime} A_{i+1}^{\prime}=\varnothing$ if and only if $T_{n-1} \cap A_{i} A_{i+1}=\varnothing, A_{i}^{\prime} A_{i+1}^{\prime}$ is finite in $L_{n-1} \backslash T_{n-2}$ if and only if $A_{i} A_{i+1}$ is finite in $L_{n} \backslash H_{n-1}$. This means that the $\operatorname{arcs} A_{k+1} A_{k+2} \cdots A_{k+r-1}, A_{k+1}^{\prime} A_{k+2}^{\prime} \cdots A_{k+r-1}^{\prime}$ of π_{n}, π_{n-1}, respectively, both contain the same number of finite sides. π_{n-1}, because of its parity, must then contain either one infinite side more or one infinite side less than π_{n}. This implies that $A_{k-1}^{\prime} A_{k+1}^{\prime}$ is finite if and only if exactly one of the two sides of the arc $A_{k-1} A_{k} A_{k+1}$ of π_{n} is finite. (1) is now clear. (2) follows if Q_{n-1} is the hyperplane $\left[A_{k}, A_{i_{2}}, \cdots, A_{i_{n}}\right]$ and thus completes the proof.
1.10. A polygon $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$, constructed by projecting a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$ and a hyperplane $T_{n-1}, A_{k} \in T_{n-1}$, which supports $H\left(\pi_{n}\right)$, from A_{k}, as in 1.9 , is called a normal projection of π_{n}. The existence of the space T_{n-1} and the space $L_{n-1} \backslash T_{n-2}$ in which $H\left(\pi_{n-1}\right)$ is defined is tacitly assumed.

2. Maximal arcs.

2.1. An arc $A_{i} A_{i+1} \cdots A_{i+h}, h \geqq 0$, of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$ is defined to be a maximal arc of length h if $A_{i-1} A_{i}, A_{i+h} A_{i+h+1}$ are both finite and are the only finite sides of the arc $A_{i-1} A_{i} \cdots A_{i+h+1}$ of π_{n}.

A vertex of π_{n} within a maximal arc of positive length is called a j-point.
2.2. If one vertex of an infinite side $A_{i} A_{i+1}$ of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$ is not within a hyperplane $Q_{n-1}:\left[A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{n}}\right]$ which supports $H\left(\pi_{n}\right)$ then Q_{n-1} contains the other vertex of $A_{i} A_{i+1}$.

Proof. If $n=1 H\left(\pi_{1}\right)$ is the finite segment which is the complement of $A_{i} A_{i+1}$ in the projective line. Hence $Q_{0}=A_{i}$ or $Q_{0}=A_{i+1}$. Thus the result is proved for $n=1$. If, for $n>1, A_{i}, A_{i+1} \notin Q_{n-1}$ then as Q_{n-1} supports $H\left(\pi_{n}\right)$ it cannot separate A_{i} and A_{i+1}. It must therefore intersect the infinite side $A_{i} A_{i+1}$. As this is impossible because of the order of π_{n} the result is established.
2.3. If A_{i} is an interior point of the convex hull $H\left(\pi_{n}\right)$ of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$ then both sides $A_{i-1} A_{i}, A_{i} A_{i+1}$ of π_{n} are finite.

Proof. By $1.2 r \geqq n+3$. As the vertices of π_{n} are in general position a hyperplane $Q_{n-1}:\left[A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{n}}\right]$ exists which supports $H\left(\pi_{n}\right)$ and does not contain $A_{i-1}\left(A_{i+1}\right)$. As A_{i} is in the interior of $H\left(\pi_{n}\right) A_{i} \notin Q_{n-1}$. If $A_{i-1} A_{i}\left(A_{i} A_{i+1}\right)$ were infinite then, by $2.2, A_{i-1}\left(A_{i+1}\right)$ would be in Q_{n-1}. This contradiction proves the result. An immediate consequence is
2.4. A-point of a polygon π_{n} is on the boundary of $H\left(\pi_{n}\right)$,
2.5. If, for the side $A_{i} A_{i+1}$ of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}, A_{i}$ is on the boundary of $H\left(\pi_{n}\right)$ but A_{i+1} is in its interior then A_{i} is a j-point.

Proof. The result is clear for $n=1$ as the two boundary points of $H\left(\pi_{1}\right)$ are the endpoints of the single infinite side of π_{1}. If, for $n>1, A_{i}$ is not a j-point then both sides $A_{i-1} A_{i}, A_{i} A_{i+1}$ are finite. Then, as A_{i} is on the boundary $H\left(\pi_{n}\right)$, it follows from 1.9 that a projection $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{i-1}^{\prime} A_{i+1}^{\prime} \cdots A_{r}^{\prime}$ of π_{n} from A_{i} exists in an affine space $L_{n-1} \backslash T_{n-2}$ for which $A_{i-1}^{\prime} A_{i+1}^{\prime}$ is infinite. The j-point A_{i+1}^{\prime} of π_{n-1} is, by 2.4, on the boundary of $H\left(\pi_{n-1}\right)$. It follows, then, from 1.9 (2) that A_{i+1} is on the boundary of $H\left(\pi_{n}\right)$ contrary to the hypothesis. Hence A_{i} is a j-point and the result is established.
2.6. If $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$ is a normal projection of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}, n>1$, from a j-point A_{k} then every maximal arc α of π_{n} of length h is projected into a maximal arc α^{\prime} of π_{n-1} of length $h-1$ or h according as $A_{k} \in \alpha$ or $A_{k} \notin \alpha$.

Conversely every maximal arc α^{\prime} of π_{n-1} is the projection of a uniquely determined maximal arc of π_{n}.

Proof. If $\alpha: A_{i} A_{i+1} \cdots A_{i+h}$ be a maximal arc of π_{n} then, by the definition 2.1, all the sides of the arc $\bar{\alpha}: A_{i-1} A_{i} \cdots A_{i+h} A_{i+h+1}$ are infinite except $A_{i-1} A_{i}, A_{i+h} A_{i+h+1}$ both of which are finite. If $A_{k} \notin \bar{\alpha}$ then, by 1.9 , every side of the projection $A_{i-1}^{\prime} A_{i}^{\prime} \cdots A_{i+h+1}^{\prime}$ is infinite except $A_{i-1}^{\prime} A_{i}^{\prime}, A_{i+h}^{\prime} A_{i+h+1}^{\prime}$ both of which are finite. Thus the projection $\alpha^{\prime}: A_{i}^{\prime} A_{i+1}^{\prime} \cdots A_{i+h}^{\prime}$ is a maximal arc of π_{n-1}. If $A_{k}=$ $A_{i-1}\left(A_{i+h+1}\right)$ then $A_{i-2} A_{i-1}\left(A_{i+h+1} A_{i+h+2}\right)$ is infinite as A_{k} is a j-point. In this case, again by 1.9 , only the sides $A_{i-2}^{\prime} A_{i}^{\prime}, A_{i+h}^{\prime} A_{i+h+1}^{\prime}\left(A_{i-1}^{\prime} A_{i}^{\prime}\right.$, $\left.A_{i+h}^{\prime} A_{i+h+2}^{\prime}\right)$ of the arc $A_{i-2}^{\prime} A_{i}^{\prime} \cdots A_{i+h+1}^{\prime}\left(A_{i-1}^{\prime} A_{i}^{\prime} \cdots A_{i+h}^{\prime} A_{i+h+2}^{\prime}\right)$ are finite. Thus, as before, the projection $A_{i}^{\prime} A_{i+1}^{\prime} \cdots A_{i+h}^{\prime}$ is maximal. If $A_{k} \in \alpha$ then the length of α is positive as it contains at least one infinite side. The projection $A_{i-1}^{\prime} \cdots A_{i+h+1}^{\prime}$ of $A_{i-1} A_{i} \cdots A_{i+h+1}$ is an arc of length $h+1$ of which only the first and last sides are finite. Hence the projection of α in this case is a maximal arc of length $h-1$. The proof of the result is now complete.

To prove the converse let $\alpha^{\prime}: A_{u}^{\prime} \cdots A_{v}^{\prime}$ be a maximal arc of π_{n-1} and $A_{u} A_{u+1} \cdots A_{v}$ the corresponding arc of π_{n}. As A_{k} is a j-point it follows from 1.9 that every side of this latter are is infinite. Consequently it is included in a maximal arc $\alpha: A_{j} A_{j+1} \cdots A_{j+m}$ of π_{n} which is unique as a maximal arc is determined by any one of its vertices. As proved in the previous paragraph the projection of α is a maximal arc of π_{n-1}. As this projection includes α^{\prime} which is itself maximal it must coincide with α^{\prime}. The converse is thus established and the proof is complete.
2.7. A hyperplane $Q_{n-1}:\left[A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{n}}\right]$ which supports the convex hull $H\left(\pi_{n}\right)$ of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$ must contain at least h vertices of every maximal arc of π_{n} of length h.

Proof. If a maximal arc has length 1 the theorem coincides with 2.2 and so is already proved. We assume, then, that it is true for all maximal ares of lengh $h-1, h>1$, and proceed by induction. We can assume $n>1$ as π_{1} contains only 1 infinite side. As the side $A_{i} A_{i+1}$ of a maximal arc $\alpha: A_{i} A_{i+1} \cdots A_{i+h}, h>1$, is infinite, at least one of the two j-points A_{i}, A_{i+1} is within Q_{n-1} by 2.2. If A_{k} is such a j-point the subscripts can be adjusted so that Q_{n-1} is
$\left[A_{k}, A_{i_{2}}, \cdots, A_{i_{k}}\right]$. As $n>1$ a normal projection $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$ of π_{n} from A_{k} exists, by 1.9, so that if $H\left(\pi_{n-1}\right)$ is defined in an affine space $L_{n-1} \backslash T_{n-2}$, the projection $Q_{n-2}:\left[A_{i_{2}}^{\prime}, \cdots, A_{i_{n}}^{\prime}\right]$ of Q_{n-1} supports $H\left(\pi_{n-1}\right)$. By 2.6α is projected into a maximal arc α^{\prime} of π_{n-1} of length $h-1$. By applying the induction assumption to $\pi_{n-1}, \alpha^{\prime}$ and Q_{n-2} it follows that Q_{n-2} contains at least $h-1$ vertices of α^{\prime}. As these are projections of vertices of α within Q_{n-1} if follows that Q_{n-1} contains at least h vertices of α as $A_{k} \in Q_{n-1}$. The result now follows by induction.
2.8. A hyperplane Q_{n-1}, spanned by n vertices of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$, supports $H\left(\pi_{n}\right)$ if and only if
(1) for every arc $\alpha: A_{i} A_{i+1} \cdots A_{i+h}, h>0$, within Q_{n-1} with $A_{i-1}, A_{i+h+1} \notin Q_{n-1}, p+h$ is odd where p is the number of infinite sides of the arc $A_{i-1} A_{i} \cdots A_{i+h+1}$, and
(2) Q_{n-1} contains at least h vertices of every maximal arc of π_{n} of length h.

Proof. To check the result for $n=1$ let $A_{i} A_{i+1}$ be the infinite side of π_{1}. This side is the only maximal arc of π_{1} of positive length and $H\left(\pi_{1}\right)$ is the finite complement of $A_{i} A_{i+1}$ in the projective line. Q_{0} supports $H\left(\pi_{1}\right)$ if and only if $Q_{0}=A_{i}$ or $Q_{0}=A_{i+1}$. This is true if and only if Q_{0} satisfies (2). If Q_{0} satisfies (2) it also satisfies (1). Thus the result is true for $n=1$. We assume it true for polygons $\pi_{n-1}, n>1$, and proceed by induction.

We first assume that Q_{n-1} satisfies (1) and (2) and show that it supports $H\left(\pi_{n}\right)$. Let A_{k} be a vertex of π_{n} within Q_{n-1} which is a j-point if Q_{n-1} contains such a point and otherwise arbitrary. It follows from (2) that if A_{k} is not a j-point that π_{n} has only finite sides. By 2.4 and $2.5 A_{k}$ is on the boundary of $H\left(\pi_{n}\right)$. The subscripts may be adjusted so that Q_{n-1} may be written as $\left[A_{k}, A_{i_{2}}, \cdots, A_{i_{n}}\right]$. Let $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$ be a normal projection of π_{n} from A_{k} where, following 1.10, $H\left(\pi_{n-1}\right)$ is defined in an affine space $L_{n-1} \backslash T_{n-2}$. Let Q_{n-2} be the projection $\left[A_{i_{2}}^{\prime}, A_{i_{s}}^{\prime}, \cdots, A_{i_{n}}^{\prime}\right.$] of Q_{n-1} from A_{k}.

To show that Q_{n-2} satisfies (1) for π_{n-1} let $\alpha^{\prime}: A_{u}^{\prime} \cdots A_{v}^{\prime}$ be an arc of π_{n-1} within Q_{n-2} chosen so that, for the arc $\bar{\alpha}^{\prime}: A_{t}^{\prime} A_{w}^{\prime} \cdots A_{v}^{\prime} A_{w}^{\prime}$ of $\pi_{n-1}, A_{t}^{\prime}, A_{w}^{\prime} \notin Q_{n-2} . \quad \bar{\alpha}^{\prime}, \alpha^{\prime}$ are the projections from A_{k} of the arcs $\bar{\alpha}: A_{t} A_{t+1} \cdots A_{w}, \alpha: A_{t+1} A_{t+2} \cdots A_{w-1}$ of π_{n}, respectively. $\alpha \cong Q_{n-1}$ as $\alpha^{\prime} \cong Q_{n-2}$ while $A_{t}, A_{w} \notin Q_{n-1}$ as $A_{t}^{\prime}, A_{v}^{\prime} \notin Q_{n-2}$. If p be the number of infinite sides of $\bar{\alpha}$ and h the length of α then, as Q_{n-1} satisfies (1), $p+h$ is odd. If $A_{k} \notin \bar{\alpha}$, then, by $1.9, \alpha^{\prime}$ has length h while a side of $\bar{\alpha}^{\prime}$ is finite if and only if it is a projection of a finite side of $\bar{\alpha}$. As $\bar{\alpha}^{\prime}$ has, then, p infinite sides Q_{n-2} satisfies (1) for π_{n-1}. If $A_{k} \in \bar{\alpha}$, then $A_{k} \neq A_{t}, A_{k} \neq A_{w}$ as $A_{t}, A_{w} \notin Q_{n-1}$. By $1.9 \bar{\alpha}^{\prime}$ has $p-1$ or $p+1$
infinite sides according as A_{k} is or is not a j-point, while α^{\prime} has length $h-1$. As $(p \pm 1)+h-1$ is odd, Q_{n-2} satisfies (1) in this case also.

To check that Q_{n-2} satisfies (2) let β^{\prime} be a maximal arc of length $m, m>0$ of π_{n-1}. If A_{k} is not a j-point β^{\prime} must, by 1.9 , be the single infinite side $A_{k-1}^{\prime} A_{k+1}^{\prime}$ for, by the choice of A_{k}, π_{n} has only finite sides. As Q_{n-1} satisfies (1) at least one of A_{k-1}, A_{k+1} is within Q_{n-1} and so at least one of $A_{k-1}^{\prime}, A_{k+1}^{\prime}$ is within Q_{n-2}. Hence Q_{n-2} satisfies (2). If A_{k} is a j-point then, by 2.6, β^{\prime} is the projection of a maximal arc β of π_{n} of length $m+1$ or m according as $A_{k} \in \beta$ or $A_{k} \notin \beta$. As Q_{n-1} satisfies (2) this implies that Q_{n-2} contains at least m vertices of β^{\prime}. Hence Q_{n-2} satisfies (2) for π_{n-1} in all cases.

If we now apply the induction assumption to Q_{n-2} and π_{n-1} it follows that Q_{n-2} supports $H\left(\pi_{n-1}\right)$. Consequently Q_{n-1} supports $H\left(\pi_{n}\right)$ by 1.9 .

If, conversely, Q_{n-1} supports $H\left(\pi_{n}\right)$ then, by $2.7, Q_{n-1}$ must satisfy (2). This implies that Q_{n-1} contains a j-point A_{k} unless π_{n} has no infinite sides in which case A_{k} is chosen to be an arbitrary vertex of π_{n} in Q_{n-1}. As above let $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$ be a normal projection of π_{n} from A_{k} and $Q_{n-2}:\left[A_{i_{2}}^{\prime}, A_{i_{3}}^{\prime}, \cdots, A_{i_{n}}^{\prime}\right]$ that of Q_{n-1}. By $1.9 Q_{n-2}$ supports $H\left(\pi_{n-1}\right)$ and so by the induction assumption Q_{n-2} satisfies (1) for π_{n-1}. We retain the previous notation and let $\bar{\alpha}: A_{t} A_{t+1} \cdots A_{w}$ be an arc of π_{n} for which the subarc $\alpha: A_{t+1} A_{t+2} \cdots A_{w-1}$ is included in Q_{n-1} but for which $A_{t}, A_{w} \notin Q_{n-1}$.

It remains to show that α satisfies (1). Suppose first that α has exactly one vertex A_{t+1} which is also the point A_{k}. If $A_{t} A_{t+1}, A_{t+1} A_{t+2}$ were either both finite or both infinite then Q_{n-1} would contain a tangent $L\left(A_{k}\right)$. It would then follow from 1.6 that Q_{n-2} would contain a point of the side $A_{k-1}^{\prime} A_{k+1}^{\prime}$ as well as $n-1$ vertices of π_{n-1}. As this is impossible because of the order of π_{n-1}, exactly one of $A_{t} A_{t+1}, A_{t+1} A_{t+2}$ is finite. Hence (1) is satisfied if α is the single vertex A_{k}. If α is not the single vertex A_{k} then let $\alpha^{\prime}: A_{u}^{\prime} \ldots A_{v}^{\prime}, \bar{\alpha}^{\prime}$: $A_{t}^{\prime} A_{u}^{\prime} \cdots A_{v}^{\prime} A_{w}^{\prime}$ be the projections of α and $\bar{\alpha}$ from A_{k}. By reversing the previous argument it follows that if (1) is valid for α^{\prime} and $\bar{\alpha}^{\prime}$ it is also valid for α and $\bar{\alpha}$. This implies that α satisfies (1) and so that Q_{n-1} satisfies (1) for all arcs α which it contains.

The proof can now be completed by induction.
2.9. If a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$ has n infinite sides then,
(1) each vertex on the boundary of $H\left(\pi_{n}\right)$ is a j-point and
(2) the necessary and sufficient condition that a hyperplane Q_{n-1} spanned by n vertices of π_{n} support $H\left(\pi_{n}\right)$ is that it contain exactly h vertices of each maximal arc of π_{n} of length h.

Proof. Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}$ be the maximal arcs of π_{n} of positive length and $h_{1}, h_{2}, \cdots, h_{p}$ their respective lengths. As π_{n} has n infinite sides $h_{1}+h_{2}+\cdots+h_{p}=n$. By $2.7 Q_{n-1}$ contains at least h_{i} vertices of each arc $\alpha_{i}, 1 \leqq i \leqq p$. Hence as π_{n} has order $n Q_{n-1}$ contains exactly h_{i} vertices of each of these arcs and each vertex of π_{n} within it is a j-point.

Therefore, to complete the proof of (2) it remains to show that any hyperplane Q_{n-1} which contains h_{i} vertices of each $\alpha_{i}, 1 \leqq i \leqq p$, supports $H\left(\pi_{n}\right)$. Q_{n-1} satisfies 2.8 (2). To show that it also satisfies 2.8 (1) let $\alpha: A_{i} A_{i+1} \cdots A_{i+h}$ be an arc of π_{n} within Q_{n-1} for which $A_{i-1}, A_{i+h+1} \notin Q_{n-1}$. If $\alpha \subseteq \alpha_{i}$ then $h=h_{i}-1$ and exactly one of $A_{i-1} A_{i}, A_{i+h} A_{i+h+1}$ is within α_{i}. The side not within α_{i} is finite. Hence $A_{i-1} A_{i} \cdots A_{i+h+1}$ contains exactly $h+1$ infinite sides. As the number $(h+1)+h$ is odd α satisfies 2.8 (1). If α is not a subarc of a maximal arc then the vertices of α are included in two consecutive maximal arcs as α cannot contain all the vertices of any maximal arc. Moreover the two maximal arcs which contain α must be separated by a single finite side because all the vertices of α are j-points. Hence both the sides $A_{i-1} A_{i}, A_{i+h} A_{i+h+1}$ are infinite. As before $A_{i-1} A_{i} \cdots A_{i+h+1}$ contains exactly $h+1$ infinite sides. Thus α satisfies 2.8 (1) in all cases and so by $2.8 Q_{n-1}$ supports $H\left(\pi_{n}\right)$. The proof is now complete.
2.10 If a vertex of a polygon π_{n} is an interior point of $H\left(\pi_{n}\right)$ then π_{n} has n infinite sides.

Proof. If $n=1$ there is nothing to prove. To prove the result it is sufficient to show that, if a polygon π_{n} has less than n infinite sides, each of its vertices is on the boundary of $H\left(\pi_{n}\right)$. This follows from 2.5 if every side of π_{n} is finite. In particular this establishes the result for $n=2$. We assume it true for polygons $\pi_{n-1}, n>2$, and proceed by induction. As we may assume that π_{n} has at least one infinite side, it has at least one j-point $A_{k} . \quad A_{k}$ is, by 2.4 , on the boundary of $H\left(\pi_{n}\right)$. Therefore a normal projection $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$ of π_{n} from A_{k} exists following 1.10. By $1.9 \pi_{n-1}$ has at most $n-3$ infinite sides. Consequently, by the induction assumption, every vertex of π_{n-1} is on the boundary of $H\left(\pi_{n-1}\right)$. Hence, by 1.9 , every vertex of π_{n} is within a supporting hyperplane of $H\left(\pi_{n}\right)$ which contains A_{k} and so is on the boundary of $H\left(\pi_{n}\right)$. The result now follows by induction.

3. Equivalence.

3.1. Two sets $U:\left\{A_{1}, A_{2}, \cdots, A_{r}\right\}, V:\left\{B_{1}, B_{2}, \cdots, B_{r}\right\}$ of r points,
$r \geqq n+1$, in general position in the affine subspaces R_{n}, \bar{R}_{n} of L_{n}, respectively, are defined to be equivalent if a $1-1$ mapping $A_{i} \rightarrow$ $f\left(A_{i}\right), 1 \leqq i \leqq r$, of the points of U onto those of V exists with the property that each hyperplane $\left[A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{n}}\right.$] supports the convex hull $H(U)$ in R_{n} if and only if $\left[f\left(A_{i_{1}}\right), f\left(A_{i_{2}}\right), \cdots, f\left(A_{i_{n}}\right)\right.$] supports the convex hull $H(V)$ in \bar{R}_{n}.
3.2. Hypothesis: $A_{i} \rightarrow f\left(A_{i}\right), 1 \leqq i \leqq r$, is an equivalence mapping for the sets $U:\left\{A_{i}, A_{2}, \cdots, A_{r}\right\}, V:\left\{B_{1}, B_{2}, \cdots, B_{r}\right\}$ in the affine spaces R_{n}, \bar{R}_{n}, respectively, $n>1$.
$T_{n-1}\left(\bar{T}_{n-1}\right)$ is a hyperplane of $R_{n}\left(\bar{R}_{n}\right)$ which supports $H(U)(H(V))$ for which $T_{n-1} \cap U=A_{k}\left(\bar{T}_{n-1} \cap V=f\left(A_{k}\right)\right)$.
$L_{n-1}, T_{n-2}, U^{\prime}, A_{i}^{\prime}, i \neq k,\left(\bar{L}_{n-1}, \bar{T}_{n-2}, V^{\prime}, f^{\prime}\left(A_{i}\right), i \neq k\right.$,) are the projections of $L_{n}, T_{n-1}, U, A_{i}\left(L_{n}, \bar{T}_{n-1}, V, f\left(A_{i}\right)\right)$ from $A_{k}\left(f\left(A_{k}\right)\right)$.

Conclusion. $A: \rightarrow f\left(A_{i}^{\prime}\right), i \neq k$, is an equivalence mapping of U^{\prime} onto V^{\prime} where the convex hulls $H\left(U^{\prime}\right), H\left(V^{\prime}\right)$ are defined in the affine spaces $L_{n-1} \backslash T_{n-2}, \bar{L}_{n-1} \backslash \bar{T}_{n-2}$, respectively.

Proof. The points of $U^{\prime}\left(V^{\prime}\right)$ are in general position in $L_{n-1}\left(\bar{L}_{n-1}\right)$ as those of $U(V)$ are in general position in $L_{n}\left(L_{n}\right)$.

Let Q_{n-2} be a hyperplane $\left[A_{i_{2}}^{\prime}, A_{i_{3}}^{\prime}, \cdots, A_{i_{n}}^{\prime}\right]$ of $L_{n-1} \backslash T_{n-2}$ which does not support $H\left(U^{\prime}\right)$. We show that the corresponding hyperplane $\bar{Q}_{n-2}:\left[f^{\prime}\left(A_{i_{2}}\right), f^{\prime}\left(A_{i_{3}}\right), \cdots, f^{\prime}\left(A_{i_{n}}\right)\right]$ does not support $H\left(V^{\prime}\right)$. A segment $A_{p}^{\prime} A_{q}^{\prime}$ exists in $L_{n-1} \backslash T_{n-2}$ for which $A_{p}^{\prime}, A_{q}^{\prime} \notin Q_{n-2}$ and $Q_{n-2} \cap A_{p}^{\prime} A_{q}^{\prime} \neq \varnothing$. If $A_{p} A_{q}$ be the segment of L_{n} the projection of which from A_{k} is $A_{p}^{\prime} A_{q}^{\prime}$ then $T_{n-1} \cap A_{p} A_{q}=\varnothing$ as $A_{p}^{\prime} A_{q}^{\prime} \subseteq L_{n-1} \backslash T_{n-2}$. Hence $A_{p} A_{q} \subseteq R_{n}$ as T_{n-1} supports $H(U)$. As Q_{n-2} is the projection of the hyperplane $Q_{n-1}:\left[A_{k}, A_{i_{2}}, \cdots, A_{i_{n}}\right]$ from $A_{k}, Q_{n-1} \cap A_{p} A_{q} \neq \varnothing$. Thus Q_{n-1} does not support $H(U)$ and so, by the definition 3.1, the corresponding hyperplane $\bar{Q}_{n-1}:\left[f\left(A_{k}\right)\right.$, $f\left(A_{i_{2}}\right), \cdots, f\left(A_{i_{n}}\right)$ d does not support $H(V)$. This implies that B_{h}, B_{k} exist in $V, B_{h}, B_{k} \notin \bar{Q}_{n-1}$, so that $\bar{Q}_{n-1} \cap B_{h} B_{k} \neq \varnothing$. As \bar{T}_{n-1} supports $H(V), \bar{T}_{n-1} \cap B_{h} B_{k}=\varnothing$. Consequently $\bar{T}_{n-2} \cap B_{h}^{\prime} B_{k}^{\prime}=\varnothing$ and $B_{h}^{\prime} B_{k}^{\prime} \subseteq$ $\bar{L}_{n-1} \backslash \bar{T}_{n-2}$. As \bar{Q}_{n-2} is the projection of \bar{Q}_{n-1} from $f\left(A_{k}\right), \bar{Q}_{n-2} \cap B_{n}^{\prime} B_{k}^{\prime} \neq \varnothing$ and so \bar{Q}_{n-2} does not support $H\left(V^{\prime}\right)$.

If follows from the symmetry of the equivalence relation that if \bar{Q}_{n-2} does not support $H\left(V^{\prime}\right)$ that Q_{n-2} does not support $H\left(U^{\prime}\right)$. Hence $A_{i}^{\prime} \rightarrow f^{\prime}\left(A_{i}\right), i \neq k$, is an equivalence mapping for the sets U^{\prime}, V^{\prime} and the proof is complete.
3.3. If U and V are the vertex sets of two polygons $\pi_{n}: A_{1} A_{2} \cdots A_{r}$, $\sigma_{n}: B_{1} B_{2} \cdots B_{r}$, defined in spaces $L_{n} \backslash H_{n-1}, L_{n} \backslash \bar{H}_{n-1}$, respectively, we say the polygons are equivalent if U and V are equivalent and write $\pi_{n} \sim \sigma_{n}$.

A vertex A_{k} of the polygon π_{n} on the boundary of $H\left(\pi_{n}\right)$ is in a hyperplane $\left[A_{k}, A_{i_{2}}, \cdots, A_{i_{n}}\right.$] which supports $H\left(\pi_{n}\right)$. Hence if $\pi_{n} \sim$
$\sigma_{n}\left[f\left(A_{k}\right), f\left(A_{i_{2}}\right), \cdots, f\left(A_{i_{n}}\right)\right]$ supports $H\left(\sigma_{n}\right)$ and $f\left(A_{k}\right)$ is on the boundary of $H\left(\sigma_{n}\right)$. Therefore if A_{k} is a boundary point of $H\left(\pi_{n}\right)$ and $n>1$ the hypothesis of 3.2 is satisfied as the vertices of π_{n}, σ_{n} are in general position. Let $f\left(A_{k}\right)=B_{e}$. If $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$, $\sigma_{n-1}: B_{1}^{\prime} B_{2}^{\prime} \cdots B_{e-1}^{\prime} B_{e+1}^{\prime} \cdots B_{r}^{\prime}$ are the normal projections of π_{n}, σ_{n} from A_{k}, B_{e}, respectively for which $H\left(\pi_{n-1}\right), H\left(\sigma_{n-1}\right)$ are defined in $L_{n-1} \backslash T_{n-2}$, $\bar{L}_{n-1} \backslash \bar{T}_{n-2}$ then, by $3.2, A_{i}^{\prime} \rightarrow f^{\prime}\left(A_{i}\right), i \neq k$, is an equivalence mapping for the vertex sets of π_{n-1} and σ_{n-1}. In short, if $\pi_{n} \sim \sigma_{n}$, then projections π_{n-1}, σ_{n-1} exist for which $\pi_{n-1} \sim \sigma_{n-1}$.
3.4. If π_{n}, σ_{n} are two polygons each with r sides, $r \geqq n+3$, for which $\pi_{n} \sim \sigma_{n}$, then (1) both polygons have the same number of infinite sides and (2) an equivalence mapping maps a j-point of one onto a j-point of the other.

Proof. If $n=1$ (1) is trivial as π_{1} and σ_{1} both have one infinite side. An equivalence mapping maps the endpoints of the segment $H\left(\pi_{1}\right)$ into the endpoints of the segment $H\left(\sigma_{1}\right)$ following the Definition 3.1. But these endpoints are the j-points as the convex hull is the complement of the infinite side in the projective line. Thus (2) is satisfied by an equivalence mapping if $n=1$. We now assume the result to be true for equivalent polygons $\pi_{n-1}, \sigma_{n-1}, n>1$, and proceed by induction.

One of the two polygons π_{n}, σ_{n} say σ_{n}, has at least as many infinite sides as the other. If π_{n} has at least one infinite side let A_{k} be a j-point of π_{n} and otherwise an arbitrary vertex. By 2.4 and $2.5 A_{k}$ is on the boundary of $H\left(\pi_{n}\right)$ 。 If $B_{e}=f\left(A_{k}\right)$ let $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$, $\sigma_{n-1}: B_{1}^{\prime} B_{2}^{\prime} \cdots B_{e-1}^{\prime} B_{e+1}^{\prime} \cdots B_{r}^{\prime}$ be normal projections of π_{n}, σ_{n} from A_{k}, B_{e}, respectively. Then, following $3.3, A_{i}^{\prime} \rightarrow f^{\prime}\left(A_{i}\right), i \neq k$, is an equivalence mapping for π_{n-1} and σ_{n-1}. The induction assumption may be applied to these two polygons as they both have $r-1$ vertices and $r-1 \geqq(n-1)+3$. Consequently they have the same number of infinite sides. Let q be this number. Suppose first that A_{k} is a j-point. It follows, then, from 1.9 that π_{n} has $q+1$ infinite sides and that σ_{n} has $q+1$ or $q-1$ infinite sides according as B_{e} is or is not a j-point. As σ_{n} is assumed to have at least as many infinite sides as π_{n} it follows that B_{e} is a j-point and that π_{n}, σ_{n} have the same number of infinite sides. Because of the last assertion it follows, by interchanging π_{n} and σ_{n} in the above argument, that every j-point of σ_{n} is the map of a j-point of π_{n}. Thus the result is true if π_{n} has at least one j-point. In the remaining case π_{n} has no infinite sides. It follows from 1.9 that π_{n-1} has exactly one infinite side and then that σ_{n} has either 0 or 2 infinite sides. As $r \geqq n+3$ and $n \geqq 2, \sigma_{n}$ has at least 5 vertices.

Consequently a vertex A_{k} exists so that $f\left(A_{k}\right)$ is not a j-point of σ_{n}. It now follows that σ_{n-1} has one infinite side more than σ_{n}. This means that σ_{n} has no infinite sides and consequently no j-points. Thus (1) and (2) hold for π_{n} and σ_{n}.

The result now follows by induction.
3.5. An equivalence mapping for two polygons $\pi_{n}: A_{1} A_{2} \cdots A_{r}$, $\sigma_{n}: B_{1} B_{2} \cdots B_{r}, r \geqq n+3$, maps the set of the vertices of a maximal arc of one polygon onto the set of the vertices of a maximal arc of the other polygon.

Proof. It follows from the definition 2.1 that the maximal arcs of a polygon of length 0 are those vertices of the polygon which are not j-points. The result for the maximal arcs of length 0 is now clear as, by 3.4 , the vertices of π_{n} which are not j-points are mapped into the vertices of σ_{n} which are not j-points. If one of the polygons, and consequently the other, has no infinite sides the proof is complete.

If π_{n} has exactly one maximal arc $\alpha: A_{i} A_{i+1} \cdots A_{i+h}$ of positive length h then π_{n} has h infinite sides and $h+1 j$-points. By 3.4 the equivalent polygon σ_{n} also has h infinite sides and $h+1 j$-points. As the number of j-points of any polygon is the number of maximal ares of positive length plus the number of infinite sides it follows that σ_{n} has exactly one maximal arc of length h. As j-points are mapped into j-points the result follows. In particular this proves the result for $n=1$. We assume it true for polygons of order $n-1$, $n>1$, and proceed by induction.

We may assume that π_{n} contains at least two maximal arcs of positive length. If $\alpha: A_{i} A_{i+1} \cdots A_{i+k}$ be one of these let A_{k}, A_{k+1} be two vertices from a second maximal arc. Let $A_{i} \rightarrow f\left(A_{i}\right)$ be an equivalence mapping for the polygons π_{n} and σ_{n}. If $B_{e}=f\left(A_{k}\right)$ then, following 3.3 , normal projections $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}$, $\sigma_{n-1}: B_{1}^{\prime} B_{2}^{\prime} \cdots B_{c-1}^{\prime} B_{e+1}^{\prime} \cdots B_{r}^{\prime}$ of π_{n}, σ_{n} from A_{k}, B_{e}, respectively, exist for which $A_{i}^{\prime} \rightarrow f^{\prime}\left(A_{i}\right), i \neq k$, is a equivalence mapping for π_{n-1} and σ_{n-1}. By 2.6 the projection $\alpha^{\prime}: A_{i}^{\prime} A_{i+1}^{\prime} \cdots A_{i+k}^{\prime}$ of α from A_{k} is a maximal arc of π_{n-1} as A_{k} is a j-point and $A_{k} \notin \alpha$. As π_{n-1} has $r-1$ vertices and $r-1 \geqq(n-1)+3$, the equivalent polygons π_{n-1}, σ_{n-1} satisfy the hypothesis. It follows, then, from the induction assumption that $f^{\prime}\left(A_{i}\right), f^{\prime}\left(A_{i+1}\right), \cdots, f^{\prime}\left(A_{i+k}\right)$ are the vertices of a maximal arc of σ_{n-1}. By 2.6 either $f\left(A_{i}\right), f\left(A_{i+1}\right), \cdots, f\left(A_{i+h}\right)$ are the vertices of a maximal arc of σ_{n}, in which case the result is proved or $f\left(A_{k}\right), f\left(A_{i}\right), \cdots, f\left(A_{i+n}\right)$ are the vertices of a maximal arc of σ_{n}. If the latter case occurs the procedure may be repeated with the use of A_{k+1} instead of A_{k}.

In this case $\left\{f\left(A_{k+1}\right) f\left(A_{i}\right), \cdots,\left(A_{i+h}\right)\right\}$ would be the vertex set of a maximal are of σ_{n}. As $A_{i} \rightarrow f\left(A_{i}\right)$ is a $1-1$ mapping the two sets $\left\{f\left(A_{k}\right), f\left(A_{i}\right), \cdots, f\left(A_{i+h}\right)\right\},\left\{f\left(A_{k+1}\right), f\left(A_{i}\right), \cdots, f\left(A_{i+k}\right)\right\}$ are distinct. This is impossible as any single vertex within a maximal arc determines it uniquely. Hence $\left\{f\left(A_{i}\right), f\left(A_{i+1}\right), \cdots, f\left(A_{i+h}\right)\right\}$ is the set of the vertices of a maximal arc of σ_{n} and the result is clear.

The proof now follows by induction.
3.6. If a polygon π_{n} : $A_{1} A_{2} \cdots A_{r}, r \geqq n+3$, has n infinite sides then a polygon $\sigma_{n}: B_{1} B_{2} \cdots B_{r}$ is equivalent to π_{n} if and only if, for each $h, 0 \leqq h \leqq n, \pi_{n}$ and σ_{n} both have the same number of maximal arcs of length h.

Proof. If $\pi_{n} \sim \sigma_{n}$ then, by 3.5, each of the polygons have the same number of maximal ares of length $h, 0 \leqq h \leqq n$.

If, conversely, π_{n} and σ_{n} satisfy this condition we construct a mapping of the vertices of π_{n} onto those of σ_{n} as follows. As π_{n} and σ_{n} have the same number of maximal ares of length $h, 0 \leqq h \leqq n$, an arbitrary $1-1$ correspondence can be defined between the maximal arcs of π_{n} of length h and those of σ_{n} of length h for each $h, 0 \leqq$ $h \leqq n$. After this has been done we define a $1-1$ correspondence $A_{i} \rightarrow f\left(A_{i}\right)$ which maps the vertices of each maximal arc of length h onto the set of vertices of the corresponding maximal are of σ_{n} of length h.

To check that the mapping $A_{i} \rightarrow f\left(A_{i}\right)$ is an equivalence mapping let $Q_{n-1}:\left[A_{i_{1}}, A_{i_{2}} \cdots A_{i_{n}}\right]$ be a hyperplane which supports $H\left(\pi_{n}\right)$. By 2.9 (2) Q_{n-1} contains h vertices of each maximal arc of π_{n} of length h. By the construction of the mapping $\bar{Q}_{n-1}:\left[f\left(A_{i_{1}}\right), f\left(A_{i_{2}}\right), \cdots, f\left(A_{i_{n}}\right)\right]$ contains h vertices of every maximal arc of σ_{n} of length h. Hence, by 2.9 (2), $\bar{Q}_{n \rightarrow 1}$ supports $H\left(\sigma_{n}\right)$. Hence $A_{i} \rightarrow f\left(A_{i}\right)$ is an equivalence mapping and the proof is complete.
3.7. Hypothesis: $\quad A_{i} \rightarrow f\left(A_{i}\right), 1 \leqq i \leqq r$, is an equivalence mapping for the polygons $\pi_{n}: A_{1} A_{2} \cdots A_{r}, \sigma_{n} B_{1} B_{2} \cdots B_{r}, r \geqq n+3$, both of which have less than n infinite sides.
$\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}$ are the maximal arcs of π_{n} arranged in the orden in which they occur on π_{n}.
$\left\{f\left(\alpha_{j}\right)\right\}$ is the set of vertices $f\left(A_{i}\right)$ of σ_{n} for which A_{i} is a vertei: of $\alpha_{j}, 1 \leqq j \leqq s$.

Conclusion: The sets $\left\{f\left(\alpha_{j}\right)\right\}$ occur in the order

$$
\left\{f\left(\alpha_{1}\right)\right\},\left\{f\left(\alpha_{2}\right)\right\}, \cdots,\left\{f\left(\alpha_{s}\right)\right\}
$$

on σ_{n}.

Proof. As π_{n} has less than n infinite sides $n>1$. Let A_{k} be a j-point of π_{n} if π_{n} has at least one infinite side but otherwise an arbitrary vertex of π_{n}. If follows from 3.4 that $B_{e}=f\left(A_{k}\right)$ is a j-point of σ_{n} if and only if σ_{n} has at least one infinite side. Let $\pi_{n-1}: A_{1}^{\prime} A_{2}^{\prime} \cdots A_{k-1}^{\prime} A_{k+1}^{\prime} \cdots A_{r}^{\prime}, \sigma_{n-1}: B_{1}^{\prime} B_{2}^{\prime} \cdots B_{e-1}^{\prime} B_{e+1}^{\prime} \cdots B_{r}^{\prime}$ be normal projections of π_{n}, σ_{n} from A_{k}, B_{e}, respectively. Following $3.3 A_{i}^{\prime} \rightarrow$ $f^{\prime}\left(A_{i}\right), i \neq k$, is an equivalence mapping for π_{n-1} and σ_{n-1}.

We consider the case for which π_{n} has no infinite sides. By $3.4 \sigma_{n}$ also has no infinite sides. By $1.9 A_{k-1}^{\prime} A_{k+1}^{\prime}\left(B_{e-1}^{\prime} B_{e+1}^{\prime}\right)$ is the only infinite side of $\pi_{n-1}\left(\sigma_{n-1}\right)$. By $3.4 f^{\prime}\left(A_{k-1}\right), f^{\prime}\left(A_{k+1}\right)$ are the only j-points of σ_{n-1} and so these must be the vertices $B_{e-1}^{\prime}, B_{e+1}^{\prime}$. This implies that $f^{\prime}\left(A_{k}\right), f^{\prime}\left(A_{k+1}\right)$ must be consecutive vertices of σ_{n-1}. As an equivalence mapping is a 1-1 mapping this implies that as A_{k} runs monotonously through consecutive vertices of π_{n} that $f\left(A_{k}\right)$ runs monotonously through consecutive vertices of σ_{n}. By the definition 2.1 each maximal arc of a polygon with no infinite sides consists of a single vertex. Thus $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}$ are consecutive vertices $A_{i}, A_{i+1}, \cdots, A_{i+r-1}$. Hence $\left\{f\left(\alpha_{1}\right)\right\},\left\{f\left(\alpha_{2}\right)\right\}, \cdots,\left\{f\left(\alpha_{s}\right)\right\}$ either is a sequence $\left\{\mathrm{B}_{j}\right\},\left\{B_{j+1}\right\}, \cdots,\left\{B_{j+r-1}\right\}$ or a sequence $\left\{B_{j}\right\}\left\{B_{j-1}\right\}, \cdots,\left\{B_{j-r+1}\right\}$. This proves the result if π_{n} has no infinite sides. In particular the proof is complete if $n=2$. We assume it to be true for polygons $\pi_{n-1}, \sigma_{n-1}, n>2$, and proceed by induction.

In the case which remains π_{n} has at least one infinite side. Consequently A_{k} is a j-point. Therefore the maximal arc which contains A_{k} has at least two vertices. Hence we may choose vertices $A_{i_{j}}, A_{i_{j}} \in \alpha_{j}, 1 \leqq j \leqq s, A_{i_{i}} \neq A_{k}$. By 3.5 each set $\left\{f\left(\alpha_{j}\right)\right\}$ consists of the vertices of a maximal arc of σ_{n}. To show that these sets are ordered on σ_{n} it is therefore sufficient to show that $f\left(A_{i_{1}}\right), f\left(A_{i_{2}}\right), \cdots, f\left(A_{i_{s}}\right)$ are ordered on σ_{n}. As $f\left(A_{i_{j}}\right) \neq f\left(A_{k}\right)=B_{e}, 1 \leqq j \leqq s$, to prove this result it is sufficient to show that the projections $f^{\prime}\left(A_{i_{1}}\right), f^{\prime}\left(A_{i_{2}}\right), \cdots, f^{\prime}\left(A_{i_{s}}\right)$ are ordered on σ_{n-1} as the order of the vertices of σ_{n-1} is that of the order of the corresponding vertices of σ_{n}.

To do this we consider the polygons π_{n-1}, σ_{n-1}. As A_{k} is a j-point it follows from 2.6 that the maximal arcs of π_{n-1} are the projections α_{j}^{\prime} of α_{j} from $A_{k}, 1 \leqq j \leqq s$. Again, as A_{k} is a j-point, it follows from 1.9 that π_{n-1} has exactly one infinite side less than π_{n} and so has less than $n-1$ infinite sides. Hence we may apply the induction assumption to the equivalent polygons π_{n-1}, σ_{n-1}. If $\left\{f^{\prime}\left(\alpha_{j}^{\prime}\right)\right\}$ denotes the map of set of vertices of α_{j}^{\prime} defined by the mapping $A_{i}^{\prime} \rightarrow f^{\prime}\left(A_{i}\right)$, $1 \leqq j \leqq s$, then the sets $\left\{f^{\prime}\left(\alpha_{1}\right)\right\},\left\{f^{\prime}\left(\alpha_{2}^{\prime}\right)\right\}, \cdots,\left\{f^{\prime}\left(\alpha_{s}^{\prime}\right)\right\}$ occur in this order on σ_{n-1} as $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \cdots, \alpha_{s}^{\prime}$ are ordered on π_{n-1}. Consequently
$f^{\prime}\left(A_{i_{1}}\right), f^{\prime}\left(A_{i_{2}}\right), \cdots, f^{\prime}\left(A_{i_{s}}\right)$ follow in order on σ_{n-1} as no two of these points are in the same set $\left\{f^{\prime}\left(\alpha_{j}^{\prime}\right)\right\}$.

The result now follows by induction.
3.8. $C\left(\pi_{n}\right)$ is the cycle of the cyclically ordered sequence of 0 's and 1's obtained by replacing each side $A_{i} A_{i+1}$ of the set of sides $A_{1} A_{2}, A_{2} A_{3}, \cdots, A_{r} A_{1}$ of a polygon $\pi_{n}: A_{1} A_{2} \cdots A_{r}$ by 0 or 1 according as $A_{i} A_{i+1}$ is finite or infinite. If the vertices of a polygon π_{n} are written in reverse order the numbers of the corresponding cycle are written in reverse order. For this reason if a cycle is obtained by writing the numbers of another cycle in the reverse order the cycles are considered to be the same.
3.9. Two polygons $\pi_{n}: A_{1} A_{2} \cdots A_{r}, B_{1} B_{2} \cdots B_{r}, r \geqq n+3$, both of which have less than n infinite sides are equivalent if and only if $C\left(\pi_{n}\right)=C\left(\sigma_{n}\right)$.

Proof. If $\pi_{n} \sim \sigma_{n}$ then, by $3.7, C\left(\pi_{n}\right)=C\left(\sigma_{n}\right)$.
If $C\left(\pi_{n}\right)=C\left(\sigma_{n}\right)$ then the subscripts of $\pi_{n}: A_{1} A_{2} \cdots A_{r}, \sigma_{n}: B_{1} B_{2} \cdots B_{r}$ can be adjusted so that $A_{i} A_{i+1}$ is finite if and only if $B_{i} B_{i+1}$ is finite, $1 \leqq i \leqq r$. It follows, then, from 2.8 that a hyperplane $\left[A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{n}}\right]$ supports $H\left(\pi_{n}\right)$ if and only if $\left[B_{i_{1}}, B_{i_{2}}, \cdots, B_{i_{n}}\right]$ supports $H\left(\sigma_{n}\right)$. Therefore $A_{i} \rightarrow B_{i}$ is an equivalence mapping for π_{n} and σ_{n}. Thus the result is proved.

References

1. D. Derry, Iperpiani ad inflessione di poligoni, Ann. Mat. pura appl. (4) $\mathbf{7 1}$ (1966), 267-280.
2. -, Polygons of order n in L_{n} with $n+2$ vertices, Math. Scand., 23 (1968), 73-95.
3. B. Grünbaum, Convex Polytopes, Wiley, London. New York. Sydney (1967).
4. Marshall Hall Jr., Combinatorial Theory, Blaisdell, Waltham. Toronto. London (1967)

Received October 10, 1970.
The University of British Columbia

