CHARACTERIZATIONS OF UNIFORM CONVEXITY

W. L. BYNUM

In this paper, three new characterizations of uniform convexity of a Banach space X are established. The characterization developed in Theorem 1 resembles the definition of the modulus of smoothness given by J. Lindenstrauss. The characterizations developed in Theorems 2 and 3 are interrelated, both involving the duality map of X into X^* . The methods used are adapted to give an abbreviated proof of a recent result of W. V. Petryshyn relating the strict convexity of X to the duality map of X into X^* .

The following definitions are included for reference. For a Banach space X, the unit sphere of X, denoted by S_1 , is the set of all elements of X having norm 1. A Banach space X is uniformly convex if for each t in (0, 2], $2 \ \delta(t) = \inf \{2 - ||x + y||: x, y \in S_1, ||x - y|| \ge t\}$ is positive ([1], [2]) (the function δ is called the modulus of convexity of X). A direct consequence of this definition is that each of the following conditions is equivalent to X being uniformly convex:

(i) Whenever $\{a_n\}$ and $\{b_n\}$ are sequences in S_1 such that $||a_n + b_n|| \rightarrow 2$, then $||a_n - b_n|| \rightarrow 0$.

(ii) Whenever $\{a_n\}$ and $\{b_n\}$ are sequences in X such that $||a_n|| \to 1$, $||b_n|| \to 1$, and $||a_n + b_n|| \to 2$, then $||a_n - b_n|| \to 0$.

(see [3, p. 113] or [9, p. 109]). The modulus of smoothness of X is the function ρ such that for $t \ge 0$,

2
$$\rho(t) = \sup \{ ||x + ty|| + ||x - ty|| - 2; x, y \in S_1 \}$$

([5]). A Banach space X is strictly convex if for each x and y in S_1 such that $x \neq y$ and each λ in (0, 1), $||\lambda x + (1 - \lambda)y|| < 1$ ([1], [6]). A function $J: X \to 2^{x*}$ is a duality map of X into X^* if for each x in $X, J(x) = \{w \in X^*: (w, x)(=w(x)) = ||w|| ||x|| \text{ and } ||w|| = ||x||\}$ (see [6] for notation and a list of pertinent literature).

I would like to thank Professor Tosio Kato for suggesting the following formulation of Theorem 1.

THEOREM 1. Let ϕ be a strictly convex and strictly increasing function on [0, 2] such that $\phi(1) = 1$. Then X is uniformly convex if and only if for each t in $(0, 1], \alpha(t) = \inf \{\phi(||x + ty||) + \phi(||x - ty||) - 2$: $x, y \in S_1\}$ is positive.

Proof. Suppose that X is uniformly convex and that there is a t in (0, 1] such that $\alpha(t) = 0$. Then there exist sequences $\{x_n\}$ and $\{y_n\}$ in S_1 such that if we let $a_n = x_n + ty_n$ and $b_n = x_n - ty_n$, then $\phi(||a_n||) + \phi(||b_n||) \rightarrow 2$. Since ϕ is convex and nondecreasing and $\phi(1) = 1, 2 \leq 2\phi((||a_n|| + ||b_n||)/2) \leq \phi(||a_n||) + \phi(||b_n||) \rightarrow 2$ and thus by the strict convexity of ϕ , we have that $|||a_n|| - ||b_n||| \rightarrow 0$. The preceding inequality and the continuity of ϕ^{-1} at 1 imply that $||a_n|| + ||b_n|| \rightarrow 2$ and consequently that $||a_n|| \rightarrow 1$ and $||b_n|| \rightarrow 1$. For each $n, ||a_n + b_n|| = 2$, so the uniform convexity of X implies that $2t = ||a_n - b_n|| \rightarrow 0$, which is contradictory.

Now suppose that $\alpha(t)$ is positive for each t in (0, 1]. For fixed x and y in S_1 , the function $h(t) = \phi(||x + ty||) + \phi(||x - ty||) - 2$ is convex, and since h(0) = 0 and $h \ge 0$ on [0, 1], h is nondecreasing. Therefore, since α is the infimum of a collection of nondecreasing functions, α is nondecreasing on [0, 1]. By the definition of α , if $||y|| \le ||x|| \ne 0$, then $\phi(||x + y||/||x||) + \phi(||x - y||/||x||) - 2 \ge \alpha(||y||/||x||)$. Thus if a and b are in S_1 and $||a - b|| \le ||a + b||$, we have that

$$(1) \quad 2\phi(2/||a+b||) - 2 \geqq lpha(||a-b||/||a+b||) \geqq lpha(||a-b||/2)$$
 .

Now, let $\{a_n\}$ and $\{b_n\}$ be sequences in S_1 such that $||a_n + b_n|| \rightarrow 2$. We may assume that for sufficiently large n, $||a_n - b_n|| \leq ||a_n + b_n||$. Thus inequality (1) and the continuity of ϕ at 1 imply that $\alpha(||a_n - b_n||/2) \rightarrow 0$, so $||a_n - b_n|| \rightarrow 0$ and X is uniformly convex.

Inequality (1) above gives a bound on the modulus of convexity, δ , in terms of ϕ^{-1} and α . By considering each of the cases $||a - b|| \leq ||a + b||, 1 \leq ||a + b|| \leq ||a - b||$, and ||a + b|| < 1, it follows that $2\delta(||a - b||)$ is not less than the smaller of

1,
$$||a - b|| \{\phi^{-1}(1 + 1/2 \, lpha(1/2)) - 1\}$$
 ,

and $||a - b|| \{\phi^{-1}(1 + 1/2 \alpha(||a - b||/2)) - 1\}$.

In Theorem 1, the case when $\phi(t) = t^2$ merits special attention. Note that for each Banach space X and each t in $[0, 1], \alpha(t) \leq 2t^2$; moreover, X is an inner product space if and only if $\alpha(t) = 2t^2$ for each t in [0, 1]. In the same vein, note that X obeys a weak parallelogram law (i.e., there is a λ in (0, 1] such that for each x and y in X, $||x + y||^2 + \lambda ||x - y||^2 \leq 2 ||x||^2 + 2 ||y||^2$ – see [4]) if and only if there is a μ in (0, 2] such that $\alpha(t) \geq \mu t^2$ for each t in [0, 1].

THEOREM 2. A Banach space X is uniformly convex if and only if for each t in (0, 2], $\beta(t) = \inf \{1 - (f, y): x, y \in S_1, ||x - y|| \ge t, f \in J(x)\}$ is positive, where J is the duality map from X into X^{*}.

Proof. If X is uniformly convex and $x, y \in S_1$ and $f \in J(x)$, then

 $1 - (f, y) = 2 - (f, x + y) \ge 2 - ||x + y|| \ge 2 \,\delta(||x - y||).$

Now suppose that $\beta > 0$ on (0, 2] and that X is not uniformly convex. Then by the definition there exist sequences $\{x_n\}$ and $\{y_n\}$ in S_1 such that $0 < ||x_n + y_n|| \rightarrow 2$ and for each $n, ||x_n - y_n|| \ge t$. For each n, let $a_n = ||x_n + y_n||^{-1}$, $z_n = a_n(x_n + y_n)$, $h_n \in J(z_n)$, $f_n \in J(x_n)$, and $g_n \in J(y_n)$. Then,

$$egin{aligned} 2 &- ||x_n + y_n|| = 1 - (h_n, x_n) + 1 - (h_n, y_n) \geqq eta(||x_n - z_n||) \ &+ eta(||y_n - z_n||) \ . \end{aligned}$$

But neither $||x_n - z_n||$ nor $||y_n - z_n||$ is less than $ta_n - |1 - 2a_n|$, so that for sufficiently large *n*, we have $||x_n - z_n|| \ge t/4$, $||y_n - z_n|| \ge t/4$, and $2 - ||x_n + y_n|| \ge 2\beta(t/4)$, which is contradictory.

THEOREM 3. A Banach space X is uniformly convex if and only if the duality map J of X into X^* is uniformly monotone-in the sense that for each t in (0, 2], $\gamma(t) = \inf \{(f - g, x - y): x, y \in S_1, ||x - y|| \ge t, f \in J(x), g \in J(y)\}$ is positive.

Proof. If X is uniformly convex and $x, y \in S_1, f \in J(x), g \in J(y)$, then $(f - g, x - y) = 2 - (g, x + y) + 2 - (f, x + y) \ge 2(2 - ||x + y||)$, so J is uniformly monotone.

Suppose J is uniformly monotone and X is not uniformly convex. By Theorem 2, $\beta(t) = 0$ for some t in (0, 2]; i.e., there exist sequences $\{x_n\}$ and $\{y_n\}$ in S_1 and $\{f_n\}$ in X^* such that for each n,

$${f_n} \in J({x_n}), \left|\left| {{x_n} - {y_n}}
ight|
ight| \ge t$$
 ,

and $1 - (f_n, y_n) \to 0$. Since $1 - (f_n, y_n) \ge 2 - ||x_n + y_n|| \ge 0$, then $||x_n + y_n|| \to 2$ and we may assume that $||x_n + y_n|| > 0$ for each *n*. As in Theorem 2, let $a_n = ||x_n + y_n||^{-1}$, $z_n = a_n(x_n + y_n)$, and $h_n \in J(z_n)$. Thus, $(h_n, x_n + y_n) = ||x_n + y_n|| \to 2$ and since $||h_n|| = 1 = ||x_n|| = ||y_n||$, then $(h_n, x_n) \to 1$. So,

$$(h_n - f_n, z_n - x_n) = 1 - a_n - a_n(f_n, y_n) + 1 - (h_n, x_n) \rightarrow 0$$

However, as in Theorem 2, for sufficiently large n, we have that $||x_n - z_n|| \ge t/4$ and $(h_n - f_n, z_n - x_n) \ge \gamma(t/4)$, which is contradictory.

Now we turn to the previously mentioned result of Petryshyn [6, Theorem 1, p. 284-287]. We need the following theorem, proved in slightly different form in [8, Theorem, part iii]. We include a proof of it here for completeness. In the sequel, we shall use the following characterization of strict convexity due to Ruston [7]: A Banach space X is strictly convex if and only if for x and y in S_1 such that $x \neq y, 2 - ||x + y|| > 0$.

Theorem (Torrance [8]). A Banach space X is strictly convex if and only if for x and y in S_1 such that $x \neq y$ and for f in J(x), 1 - (f, y) > 0.

Proof. Suppose that X is strictly convex and let x, y, and f be as above. Then, $1 - (f, y) \ge 2 - ||x + y|| > 0$.

Now suppose that the second condition of the theorem is satisfied and that X is not strictly convex. Then, there exist $x, y \in S_1(x \neq y)$ such that ||x + y|| = 2. Let z = (x + y)/2 and $h \in J(z)$. Since ||h|| = 1 = ||x|| = ||y|| and (h, x + y) = 2, (h, x) = 1, a contradiction, since $z \neq x$.

Theorem (Petryshyn [6]). A Banach space X is strictly convex if and only if the duality map J of X into X^* is strictly monotonein the sense that if $x \neq y$, $f \in J(x)$, and $g \in J(y)$, then (f - g, x - y) > 0.

Proof. Suppose that X is strictly convex. Let $x, y \in X, f \in J(x)$, and $g \in J(y)$. Then, $||f|| ||y|| - (f, y) \ge ||f|| (||x|| + ||y|| - ||x + y||)$ and $||g|| ||x|| - (g, x) \ge ||g|| (||x|| + ||y|| - ||x + y||)$ and by the use of equation (#) of [6], we have

$$egin{aligned} (f-g,x-y) &\geq (||x||-||y||)^2 \ &+ (||x||+||y||)(||x||+||y||-||x+y||) \ . \end{aligned}$$

If $x \neq y$ and ||x|| = ||y||, then ||x|| > 0 and ||x|| + ||y|| - ||x + y|| = ||x|| (2 - ||x/||x|| + y/||x|| ||), which is positive by the strict convexity of X. Consequently, J is strictly monotone.

Now, suppose that J is strictly monotone and that X is not strictly convex. Then by the previous theorem, there exist $x, y \in S_1$ $(x \neq y)$ and an $f \in J(x)$ such that 1 - (f, y) = 0. As before, $1 - (f, y) \ge 2 - ||x + y||$, so ||x + y|| = 2. If z = (x + y)/2 and $h \in J(z)$, then (h, x + y) = 2 and ||h|| = 1 = ||x|| = ||y||, so (h, x) = 1. Consequently, (h - f, z - x) = 1 - (h, x) + 1 - (f, z) = 0, which contradicts the fact that $z \neq x$.

References

1. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414.

2. M. M. Day, Uniform convexity in factor and conjugate spaces, Annals of Math., 45 (1944), 375-385.

3. M. M. Day, Normed Linear Spaces, Springer-Verlag, New York, 1962.

4. D. C. Kay, A parallelogram law for certain L_p spaces, Amer. Math. Monthly, 74 (1967), 140-147.

5. J. Lindenstrauss, On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J., **10** (1963), 241-252.

6. W. V. Petryshyn, A characterization of strict convexity of Banach spaces and other uses of duality mappings, J. Functional Analysis, 6 (1970), 282-291.

7. A. F. Ruston, A note on convexity in Banach spaces, Proc. Cambridge Philos. Soc., 45 (1949), 157-159.

8. E. Torrance, Strictly convex spaces Via semi-inner-product orthogonality, Proc. Amer. Math. Soc., **26** (1970), 108-110.

9. A. Wilansky, Functional Analysis, Blaisdell Publ. Co., New York, 1964.

Received January 7, 1971.

College of William and Mary