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UNIQUELY REPRESENTABLE SEMIGROUPS ON
THE TWO-CELL

J. T BORREGO, H. COHEN, AND E. E. D E V U N

A semigroup S is said to be uniquely representable in terms
of two subsets X and Y of S if XΎ=Y- X=S, x^i =
x2y2 is a nonzero element of S implies xx — x2 and yx= y2f and
ViXi = 2/2̂ 2 is a nonzero element of S implies y^ = y2 and Xι — x2

for xlt x2eX and ylyy2eY. A semigroup S is said to be
uniquely divisible if for each s e S and every positive integer
n there exists a unique zeS such that zn = s. Theorem. If S is
a uniquely divisible semigroup on the two-cell with the set of
idempotents of S being a zero for S and an identity for S,
then S is uniquely representable in terms of X and Y where
X and Y are iseomorphic copies of the usual unit interval and
the boundary of £ equals X union Y. Corollary. If S is a
uniquely divisible semigroup on the two-cell and if S has only
two idempotents, a zero and an identity, then the nonzero
elements of S form a cancellative semigroup.

A semigroup S is said to be uniquely representable in terms
of two subsets X and Y of S if X* Y — Y>X = S, xιy1 = x2y2 is a non-
zero element of S implies xλ — x2 and y1 = y2, and yxxx — y2x2 is a non-
zero element of S implies y1 — y2 and x1 = x2 for xly x2eX and yl7yz e Y.
A semigroup S is said to be uniquely divisible if for every se S and
every positive integer n there exists a unique ze S such that zn — s.

The primary purpose of this paper is to show that if S is a uni-
quely divisible semigroup on two-cell with the set of idempotents of
S being a zero for S and an identity for S, then S is uniquely rep-
resentable in terms of X and Y where X and Y are iseomorphic copies
of the usual unit interval and the boundary of S equals X union Y.
As a corollary to this theorem we shall prove a conjecture of D. R.
Brown, that if S is a uniquely divisible semigroup on the two-cell and
if S has only two idempotents, a zero and an identity, then the non-
zero elements of S form a cancellative subsemigroup of S.

NOTATION. Throughout S will be a uniquely divisible semigroup
on the two-cell with E(S) (the set of idempotents of S) — {0,1} where
0 is the zero for S and 1 is the identity for S. It is well known that
the boundary of S is the union of two usual threads X and Y with
Xf] γ= {0,1} and S~ XΎ= Y X. Intervals containing x will repre-
sent segments of X and intervals with y shall stand for segments of
Y. For a positive integer n, s1/n will denote the unique ^th root of
s in S.
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The authors would like to thank the referee for pointing out the
following result due to J. D. Lawson and M. Friedberg and which
appears in [2].

LEMMA 1. If T is a uniquely divisible semigroup with E(T) —
{0,1}, then T has no zero divisors.

Proof. Suppose αδ = 0 for some α, 6 e Γ, aΦO. Then (ba)2 — b(ab)a
= 0, hence ba = 0. Thus 0 = ab = α1/2(α1/2δ) - (α1/2δ)α1/2 = (α1/2δ)(α1/2δ),
so α1/2δ = 0. It follows that a1/2nb = 0 for all n. Since {α1/2U} — 1,6 = 0.

Define / : X x Γ — S onto S by f(x, y) = xy. The proofs of the
following three lemmas are analogous to the proofs in [3].

LEMMA 2. If f(xu y^ = f(x2, y2) Φ 0, then either
(1) x1 = x2 and yγ = y2 or
(2) χι > x2 and y2 > y, or
(3) x2 > xt and y1 > y2.

LEMMA 3. If se S\{0}, then there exist (xly y^), (x2, y2) ef~ι(s) such
that for all (x, y) ef~~\s) we have x1 ^ x ^ x2 and y2 ^ y ^ ylm

LEMMA 4. If sθiS\{0}, then ^lί/" 1^)) is connected.

LEMMA 5. If seS\{0}, then / - 1 ( s ) ί s a n arc-

Proof. Let [xu x2] = ^1(/~1(s)), and define λ,: [a?!, OJ2] —> /^(s) by
A(α?) = (a?, y) where y is the unique y e Y (lemma 2) such that f(x, y)
= js. Now A: [#!, #2] —>/""̂ (s) is a continuous, one-to-one, onto func-
tion. Thus h: \xu x2] —* Z"1^) is a homeomorphism, and /"^s) is an
arc.

DEFINITION 6. Let J = {(x, y): (x, y) e X x Y and f~ι(f(x, y)) is not
appoint}.

LEMMA 7. J/ s e / ( J ) , ί/ιen Xs = sΓ.

The proof of the above lemma is analogous to the proof of Lemma
10 of [3].

LEMMA 8. // {(x, y): 0 <: x < x0, 0 ^ y < y0} cz J, then {(x, y): 0 ^
x ^ &0, 0 ^ |/ ^ 2/o}\{(̂ o, 2/o)} c J . Moreover, for each (x\ y') e {(a?, i/): 0 ^
aĵ ίCo, 0 ^ /̂ ^ ?/o}\{̂ o, Vo)} there exists x e Xsuch that f(x, y0) = f{x', y').

Proof. Let xt e [0, x0) and fix x2 e (xί9 x0). Then for each y e [0, yQ)



UNIQUELY REPRESENTABLE SEMIGROUPS ON THE TWO-CELL 567

we have (x2, y) e /. Select an increasing sequence {zn}, with zn e [0, y0)
and zn —> 2/o Now there exist xze X and a sequence {wΛ}, with wn e Yy

such that xsx2 = &„ and Xaf(x2, zn) — f(x2, zn)wn. Now {zΛww} is an in-
creasing sequence, and hence it must converge. Let znwn —> 2/i Then
/(«i, 2/o) = / fe , 2/0 > a n ( i 0 ^ 2/1 < 2/o. Hence (xl9 y0) eJ. A similar ar-
gument shows (xQ, yL) e J for y1 e [0, yQ).

Next let (α?x, 2/1) e {(x, y) : 0 <£ a? ̂  α?0, 0 ^ a? <: 2/o}\{(#o, 2/o)} Select
(«2,2/2) € {(a?, 3/): 0 ^ a? ̂  aj0, 0 ̂  2/ < 7/0} such that /(a?2, y2) = f(xlf yd- Now
(x2j y0) e J. Fix yseJ such that ?/0ί/3 = y2 By Lemma 7 there exists
x3eX such that # 3/fe, Vo) = / fe , 2/0)2/3. Letting α4 = a;3x2 we have
/(^4,2/o) = /(»2,2/2) = f(xί9 2/1)•

COROLLARY 9 If (x, 1), (1,2/) e /, ίΛβ^ aj = 0 or 2/ = 0.

Proof. Since (a?, 1), (1, y) e J there exist xιeX,yιeY such that
«:/(«, 1) = f(x, 1)2/ and a?/(l, y) - /(1,2/)2/i Thus x,x = yyx. This is
impossible unless x = 0 or y = 0.

LEMMA 10. Lei #eX\{l}, | / e Γ . Γ/̂ β̂  2/̂  £&% δe written as xfyf

with / e l \ { l } , / e Γ.

Proof. If 2/ = 0 the result is clear. Thus we will assume y e
Y\{0}. We will divide the proof into several steps.

Step (1). Since S = Y X = X Y we know that there exist a^e
X\{1}, yλeY such that p ^ x u ^ and thus there exist x2eX\{l}, y2

e Y such that 2/1̂1 = 2̂2/2
Step (2). Let y3eY with 2/3 ̂  2/i Then there exists y4e Y such

that 2/42/8 = 2/1. Thus 2/42/3̂ i = yfo&XV Γ. Hence 2/3̂1 $ i7"-
Step (3). We claim that for y3e [yl91] and n a positive integer,

yzx[ln £ Y. For if this were not the case there would exist a positive
integer n and a 2/3 e [2/1,1] such that 2/3̂ ί/ίl = % e F. But by Lemma
2, 2/6 < 2/3- Thus there exists y7 e Y\{1} such that y7y3 — yβ. Hence
J / 8 W = 2/3^

/%(^/%)w-1 = VM'Ύ'1 = vMx\ιΎ~\ = = 2/?2/3 e F. Thus
2/3̂ ! G Y. This is a contradiction.

Step (4). Let xeX\{l}. Then for yz e [2/1,1] we claim yzx can be
represented as x8y8 with a;8el\{l}, and y8e Y. Choose n a positive
integer such that x\ln e [x, 1]). Then there exists x9e X such that x\lnx9

= a;. Thus 2/3̂  = 2/ŝ l/w 9̂ However, 2/3̂ ί/π ί Y> and hence 2/3̂  can be
written as x8y8 with a;8el\{l}, and y8e Y.

Step (5). Finally, let xeX\{l} and yeY. lί y = 1, then 2/̂  =
xy and a? 6 -3Γ\{1} and yeY. If ye Y\{0,1}, then there exist a positive
integer m and 2/3e [yu 1) such that 2/ = (2/3)™- Now 2/̂  = (y™% — x'v'
with a?'6JΓ\{l}, and y'e Y.
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The same argument can be used to show that if x e X and y G
Y\{1}, then xy can be written as y'x' with a j ' e l a n d y'e Y\{1}.

THEOREM 11. If s e S\{0}, then there exist unique xeX,yeY such
that xy = s.

Proof. Suppose this is not the case. Then there exist xλ e X\{0,1},
yx e F\{0,1} such that (xl9 yλ) e J. From corollary 9 we can assume
{(1, y):ye Y\{0}} n / = φ. Let x2 = sup {x: (x, yλ) e J}. Now x2 G (0,1)
and {(x, y): 0 ^ x ^ a?2, 0 ^ y ^ ΐ/JVfe, y,)} c J .

Next take x3e (x2,1). Then there exist x4eX\{0,1}, I / 4 G 7 such
t h a t yλx3 = x4y4. If x4 G (0, a?J, fix x5 e (x2, x3). If x4 e (x2,1), fix xδ e (x2,

min {#3, x2/x4}) where x2/x4 represents the unique element p of X such
that px4 = a?2. Take τ/2 G (y^ 1). Then there exist x6 eX, y6e Y\{0,1}
such that y2x2 = x6y6. If y6 e (0, y,] fix i/7 G (T/!, ί/2). If yβ G (ylf 1), fix τ/7

e(yu min {y2yyJyQ}).
For each a? e [#2, ̂ 5] we have (xy^2 = x'y' with xf e (0, α;2] and #' G

(0,2/J. By lemma 8 there exists a unique xe (0, x2] such that {xy^ =
O 'T/' = £C2/1# Hence we can define a function cc —> x from [a;2, ίc5] into
(0, x2]. The function a;—>x defined above is continuous and monotone
and thus maps [x2, xδ] onto an interval [x2, xδ].

Also for y G [yl9 y7] we have (x2y)2 = x^ with 2 e (0, x2] and ĝ  e
(0,2/J. Again by lemma 8 there exists a unique x(y) e (0, #2] such that
(x2y)2 = xy = x(y)yί. Thus we can define a function y —• #(?/) from
[Vit Vτ\ into (0, α;2] which is continuous and monotone and hence maps
[Vι, VΊ\ onto an interval [x(yd, x(yτ)]

Now (x2yy = x2yx and {x2ytf = xivdVi Hence ^2 = αd/^, so the
intervals (x2, xδ] and (α?d/,), α?(yβ)] intersect. Thus there exist x e (x2, xδ]
and y e (ylf y7] such that (xy^2 = (x2?/)2. However, (», yt) g J, thus a?^
=£α?2!/. This is a contradiction.

In the same manner we can show that each element s e S\{0} can
be written uniquely as yx with ye Y and xeX.

LEMMA 12. Let T be a semigroup without zero divisors, E{T) =
{0,1}, and which is uniquely representable in terms of two usual
threads X and Y. Then T\{0} is cancellative.

Proof. Let s, su s2 e T\{0} with s = xy, sλ = xλyu s2 = x2y2 with
a?, ajlf α;2 G X, ?/, ί/i, τ/2 G Γ, and suppose s^ = ss2. Then α T/a?̂  = xyx2y2.
Now let 2/&J. = x1y1 and /̂x2 = ^ 2 Thus xx^j^ — xx2y2y2. Since T is
uniquely representable we get that xι = x2 and thus â  = a?2. This
implies y1 = ^2 and hence ^ = /̂2. Hence sL = s2 In the same manner
we can show that if s, sl9 s2 e T\{0} with sts — s2sf then st = s2. Thus
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JΓ\{0} is cancellative.

COROLLARY 13 If S is a uniquely divisible semigroup on the two-
cell with E(S) = {0,1}, then S\{0} is a cancellative semigroup.

REFERENCES

1. D. R. Brown, Topological semilattices on the two-cell, Pacific J. Math., 15 (1965),
35-46.
2. D. R. Brown, and M. Friedberg, Linear Representations of certain compact semi-
groups, to appear.
3. E. E. DeVun, Special semigroups on the two-cell, Pacific J. Math., 34 (1970), 639-645.
4. Hildebrant, J. S., On uniquely divisible semigroups on the two-cell, Pacific J. Math.,
2 3 (1967), 91-95.
5. Anne Lester Hudson, Some semigroups on the two-cell, Proc. Amer. Math. Soc, 10
(1959), 648-655.

Received December 10, 1969.

WICHITA STATE UNIVERSITY






