UNIQUELY REPRESENTABLE SEMIGROUPS ON THE TWO-CELL

J. T. Borrego, H. Cohen, and E. E. DeVun

Abstract

A semigroup S is said to be uniquely representable in terms of two subsets X and Y of S if $X \cdot Y=Y \cdot X=S, x_{1} y_{1}=$ $x_{2} y_{2}$ is a nonzero element of S implies $x_{1}=x_{2}$ and $y_{1}=y_{2}$, and $y_{1} x_{1}=y_{2} x_{2}$ is a nonzero element of S implies $y_{1}=y_{2}$ and $x_{1}=x_{2}$ for $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$. A semigroup S is said to be uniquely divisible if for each $s \in S$ and every positive integer n there exists a unique $z \in S$ such that $z^{n}=s$. Theorem. If S is a uniquely divisible semigroup on the two-cell with the set of idempotents of S being a zero for S and an identity for S, then S is uniquely representable in terms of X and Y where X and Y are iseomorphic copies of the usual unit interval and the boundary of S equals X union Y. Corollary. If S is a uniquely divisible semigroup on the two-cell and if S has only two idempotents, a zero and an identity, then the nonzero elements of S form a cancellative semigroup.

A semigroup S is said to be uniquely representable in terms of two subsets X and Y of S if $X \cdot Y=Y \cdot X=S, x_{1} y_{1}=x_{2} y_{2}$ is a nonzero element of S implies $x_{1}=x_{2}$ and $y_{1}=y_{2}$, and $y_{1} x_{1}=y_{2} x_{2}$ is a nonzero element of S implies $y_{1}=y_{2}$ and $x_{1}=x_{2}$ for $x_{1}, x_{2} \in X$ and $y_{1}, y_{2} \in Y$. A semigroup S is said to be uniquely divisible if for every $s \in S$ and every positive integer n there exists a unique $z \in S$ such that $z^{n}=s$.

The primary purpose of this paper is to show that if S is a uniquely divisible semigroup on two-cell with the set of idempotents of S being a zero for S and an identity for S, then S is uniquely representable in terms of X and Y where X and Y are iseomorphic copies of the usual unit interval and the boundary of S equals X union Y. As a corollary to this theorem we shall prove a conjecture of D. R. Brown, that if S is a uniquely divisible semigroup on the two-cell and if S has only two idempotents, a zero and an identity, then the nonzero elements of S form a cancellative subsemigroup of S.

Notation. Throughout S will be a uniquely divisible semigroup on the two-cell with $E(S)$ (the set of idempotents of S) $=\{0,1\}$ where 0 is the zero for S and 1 is the identity for S. It is well known that the boundary of S is the union of two usual threads X and Y with $X \cap Y=\{0,1\}$ and $S=X \cdot Y=Y \cdot X$. Intervals containing x will represent segments of X and intervals with y shall stand for segments of Y. For a positive integer $n, \mathrm{~s}^{1 / n}$ will denote the unique nth root of s in S.

The authors would like to thank the referee for pointing out the following result due to J. D. Lawson and M. Friedberg and which appears in [2].

Lemma 1. If T is a uniquely divisible semigroup with $E(T)=$ $\{0,1\}$, then T has no zero divisors.

Proof. Suppose $a b=0$ for some $a, b \in T, a \neq 0$. Then $(b a)^{2}=b(a b) a$ $=0$, hence $b a=0$. Thus $0=a b=a^{1 / 2}\left(a^{1 / 2} b\right)=\left(a^{1 / 2} b\right) a^{1 / 2}=\left(a^{1 / 2} b\right)\left(a^{1 / 2} b\right)$, so $a^{1 / 2} b=0$. It follows that $a^{1 / 2^{n}} b=0$ for all n. Since $\left\{a^{\left.1 / 2^{n}\right\}} \rightarrow 1, b=0\right.$.

Define $f: X \times Y \rightarrow S$ onto S by $f(x, y)=x y$. The proofs of the following three lemmas are analogous to the proofs in [3].

Lemma 2. If $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right) \neq 0$, then either
(1) $x_{1}=x_{2}$ and $y_{1}=y_{2}$ or
(2) $x_{1}>x_{2}$ and $y_{2}>y_{1}$ or
(3) $x_{2}>x_{1}$ and $y_{1}>y_{2}$.

Lemma 3. If $s \in S \backslash\{0\}$, then there exist $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in f^{-1}(s)$ such that for all $(x, y) \in f^{-1}(s)$ we have $x_{1} \geqq x \geqq x_{2}$ and $y_{2} \geqq y \geqq y_{1}$.

Lemma 4. If $\mathrm{s} \in S \backslash\{0\}$, then $\pi_{1}\left(f^{-1}(s)\right)$ is connected.
Lemma 5. If $s \in S \backslash\{0\}$, then $f^{-1}(s)$ is an arc.
Proof. Let $\left[x_{1}, x_{2}\right]=\pi_{1}\left(f^{-1}(s)\right)$, and define $h:\left[x_{1}, x_{2}\right] \rightarrow f^{-1}(s)$ by $h(x)=(x, y)$ where y is the unique $y \in Y$ (lemma 2) such that $f(x, y)$ $=s$. Now $h:\left[x_{1}, x_{2}\right] \rightarrow f^{-1}(s)$ is a continuous, one-to-one, onto function. Thus $h:\left[x_{1}, x_{2}\right] \rightarrow f^{-1}(s)$ is a homeomorphism, and $f^{-1}(s)$ is an arc.

Definition 6. Let $J=\left\{(x, y):(x, y) \in X \times Y\right.$ and $f^{-1}(f(x, y))$ is not a_{\perp}^{∇} point $\}$.

Lemma 7. If $s \in f(J)$, then $X s=s Y$.
The proof of the above lemma is analogous to the proof of Lemma 10 of [3].

Lemma 8. If $\left\{(x, y): 0 \leqq x<x_{0}, 0 \leqq y<y_{0}\right\} \subset J$, then $\{(x, y): 0 \leqq$ $\left.x \leqq x_{0}, 0 \leqq y \leqq y_{0}\right\rangle \backslash\left\{\left(x_{0}, y_{0}\right)\right\} \subset J$. Moreover, for each $\left(x^{\prime}, y^{\prime}\right) \in\{(x, y): 0 \leqq$ $\left.\left.x \leqq x_{0}, 0 \leqq y \leqq y_{0}\right\rangle \backslash\left\{x_{0}, y_{0}\right)\right\}$ there exists $\bar{x} \in X$ such that $f\left(\bar{x}, y_{0}\right)=f\left(x^{\prime}, y^{\prime}\right)$.

Proof. Let $x_{1} \in\left[0, x_{0}\right)$ and fix $x_{2} \in\left(x_{1}, x_{0}\right)$. Then for each $y \in\left[0, y_{0}\right)$
we have $\left(x_{2}, y\right) \in J$. Select an increasing sequence $\left\{z_{n}\right\}$, with $z_{n} \in\left[0, y_{0}\right)$ and $z_{n} \rightarrow y_{0}$. Now there exist $x_{3} \in X$ and a sequence $\left\{w_{n}\right\}$, with $w_{n} \in Y$, such that $x_{3} x_{2}=x_{1}$, and $x_{3} f\left(x_{2}, z_{n}\right)=f\left(x_{2}, z_{n}\right) w_{n}$. Now $\left\{z_{n} w_{n}\right\}$ is an increasing sequence, and hence it must converge. Let $z_{n} w_{n} \rightarrow y_{1}$. Then $f\left(x_{1}, y_{0}\right)=f\left(x_{2}, y_{1}\right)$, and $0 \leqq y_{1}<y_{0}$. Hence $\left(x_{1}, y_{0}\right) \in J$. A similar argument shows $\left(x_{0}, y_{1}\right) \in J$ for $y^{1} \in\left[0, y_{0}\right)$.

Next let $\left(x_{1}, y_{1}\right) \in\left\{(x, y): 0 \leqq x \leqq x_{0}, 0 \leqq x \leqq y_{0}\right\} \backslash\left\{\left(x_{0}, y_{0}\right)\right\}$. Select $\left(x_{2}, y_{2}\right) \in\left\{(x, y): 0 \leqq x \leqq x_{0}, 0 \leqq y<y_{0}\right\}$ such that $f\left(x_{2}, y_{2}\right)=f\left(x_{1}, y_{1}\right)$. Now $\left(x_{2}, y_{0}\right) \in J$. Fix $y_{3} \in J$ such that $y_{0} y_{3}=y_{2}$ By Lemma 7 there exists $x_{3} \in X$ such that $x_{3} f\left(x_{2}, y_{0}\right)=f\left(x_{2}, y_{0}\right) y_{3}$. Letting $x_{4}=x_{3} x_{2}$ we have $f\left(x_{4}, y_{0}\right)=f\left(x_{2}, y_{2}\right)=f\left(x_{1}, y_{1}\right)$.

Corollary 9. If $(x, 1),(1, y) \in J$, then $x=0$ or $y=0$.
Proof. Since $(x, 1),(1, y) \in J$ there exist $x_{1} \in X, y_{1} \in Y$ such that $x_{1} f(x, 1)=f(x, 1) y$ and $x f(1, y)=f(1, y) y_{1}$. Thus $x_{1} x=y y_{1}$. This is impossible unless $x=0$ or $y=0$.

Lemma 10. Let $x \in X \backslash\{1\}, y \in Y$. Then $y x$ can be written as $x^{\prime} y^{\prime}$ with $x^{\prime} \in X \backslash\{1\}, y^{\prime} \in Y$.

Proof. If $y=0$ the result is clear. Thus we will assume $y \in$ $Y \backslash\{0\}$. We will divide the proof into several steps.

Step (1). Since $S=Y \cdot X=X \cdot Y$ we know that there exist $x_{1} \in$ $X \backslash\{1\}, y_{1} \in Y$ such that $y_{1} x_{1} \notin X \cup Y$, and thus there exist $x_{2} \in X \backslash\{1\}, y_{2}$ $\in Y$ such that $y_{1} x_{1}=x_{2} y_{2}$.

Step (2). Let $y_{3} \in Y$ with $y_{3} \geqq y_{1}$. Then there exists $y_{4} \in Y$ such that $y_{4} y_{3}=y_{1}$. Thus $y_{4} y_{3} x_{1}=y_{1} x_{1} \notin X \cup Y$. Hence $y_{3} x_{1} \notin Y$.

Step (3). We claim that for $y_{3} \in\left[y_{1}, 1\right]$ and n a positive integer, $y_{3} x_{1}^{1 / n} \notin Y$. For if this were not the case there would exist a positive integer n and a $y_{3} \in\left[y_{1}, 1\right]$ such that $y_{3} x_{1}^{1 / n}=y_{6} \in Y$. But by Lemma 2, $y_{6}<y_{3}$. Thus there exists $y_{7} \in Y \backslash\{1\}$ such that $y_{7} y_{3}=y_{6}$. Hence $y_{3}\left(x_{1}^{1 / n}\right)^{n}=y_{3} x_{1}^{1 / n}\left(x_{1}^{1 / n}\right)^{n-1}=y_{6}\left(x_{1}^{1 / n}\right)^{n-1}=y_{7} y_{3}\left(x_{1}^{1 / n}\right)^{n-1}=\cdots=y_{7}^{n} y_{3} \in Y$. Thus $y_{3} x_{1} \in Y$. This is a contradiction.

Step (4). Let $x \in X \backslash\{1\}$. Then for $y_{3} \in\left[y_{1}, 1\right]$ we claim $y_{3} x$ can be represented as $x_{8} y_{8}$ with $x_{8} \in X \backslash\{1\}$, and $y_{8} \in Y$. Choose n a positive integer such that $\left.x_{1}^{1 / n} \in[x, 1]\right)$. Then there exists $x_{9} \in X$ such that $x_{1}^{1 / n} x_{9}$ $=x$. Thus $y_{3} x=y_{3} x_{1}^{1 / n} x_{9}$. However, $y_{3} x_{1}^{1 / n} \notin Y$, and hence $y_{3} x$ can be written as $x_{8} y_{8}$ with $x_{8} \in X \backslash\{1\}$, and $y_{8} \in Y$.

Step (5). Finally, let $x \in X \backslash\{1\}$ and $y \in Y$. If $y=1$, then $y x=$ $x y$ and $x \in X \backslash\{1\}$ and $y \in Y$. If $y \in Y \backslash\{0,1\}$, then there exist a positive integer m and $y_{3} \in\left[y_{1}, 1\right)$ such that $y=\left(y_{3}\right)^{m}$. Now $y x=\left(y_{3}{ }^{m} x=x^{\prime} y^{\prime}\right.$ with $x^{\prime} \in X \backslash\{1\}$, and $y^{\prime} \in Y$.

The same argument can be used to show that if $x \in X$ and $y \in$ $Y \backslash\{1\}$, then $x y$ can be written as $y^{\prime} x^{\prime}$ with $x^{\prime} \in X$ and $y^{\prime} \in Y \backslash\{1\}$.

Theorem 11. If $s \in S \backslash\{0\}$, then there exist unique $x \in X, y \in Y$ such that $x y=s$.

Proof. Suppose this is not the case. Then there exist $x_{1} \in X \backslash\{0,1\}$, $y_{1} \in Y \backslash\{0,1\}$ such that $\left(x_{1}, y_{1}\right) \in J$. From corollary 9 we can assume $\{(1, y): y \in Y \backslash\{0\}\} \cap J=\phi$. Let $x_{2}=\sup \left\{x:\left(x, y_{1}\right) \in J\right\}$. Now $x_{2} \in(0,1)$ and $\left\{(x, y): 0 \leqq x \leqq x_{2}, 0 \leqq y \leqq y_{1}\right\} \backslash\left\{\left(x_{2}, y_{1}\right)\right\} \subset J$.

Next take $x_{3} \in\left(x_{2}, 1\right)$. Then there exist $x_{4} \in X \backslash\{0,1\}, y_{4} \in Y$ such that $y_{1} x_{3}=x_{4} y_{4}$. If $x_{4} \in\left(0, x_{2}\right]$, fix $x_{5} \in\left(x_{2}, x_{3}\right)$. If $x_{4} \in\left(x_{2}, 1\right)$, fix $x_{5} \in\left(x_{2}\right.$, $\min \left\{x_{3}, x_{2} / x_{4}\right\}$ where x_{2} / x_{4} represents the unique element p of X such that $p x_{4}=x_{2}$. Take $y_{2} \in\left(y_{1}, 1\right)$. Then there exist $x_{6} \in X, y_{6} \in Y \backslash\{0,1\}$ such that $y_{2} x_{2}=x_{6} y_{6}$. If $y_{6} \in\left(0, y_{1}\right]$ fix $y_{7} \in\left(y_{1}, y_{2}\right)$. If $y_{6} \in\left(y_{1}, 1\right)$, fix y_{7} $\in\left(y_{1}, \min \left\{y_{2}, y_{1} / y_{6}\right\}\right)$.

For each $x \in\left[x_{2}, x_{5}\right]$ we have $\left(x y_{1}\right)^{2}=x^{\prime} y^{\prime}$ with $x^{\prime} \in\left(0, x_{2}\right]$ and $y^{\prime} \in$ $\left(0, y_{1}\right]$. By lemma 8 there exists a unique $\bar{x} \in\left(0, x_{2}\right]$ such that $\left(x y_{1}\right)^{2}=$ $x^{\prime} y^{\prime}=\bar{x} y_{1}$. Hence we can define a function $x \rightarrow \bar{x}$ from $\left[x_{2}, x_{5}\right]$ into $\left(0, x_{2}\right.$]. The function $x \rightarrow \bar{x}$ defined above is continuous and monotone and thus maps $\left[x_{2}, x_{5}\right]$ onto an interval $\left[\bar{x}_{2}, \bar{x}_{5}\right]$.

Also for $y \in\left[y_{1}, y_{7}\right]$ we have $\left(x_{2} y\right)^{2}=\tilde{x} \tilde{y}$ with $\tilde{x} \in\left(0, x_{2}\right]$ and $\tilde{y} \in$ $\left(0, y_{1}\right]$. Again by lemma 8 there exists a unique $x(y) \in\left(0, x_{2}\right]$ such that $\left(x_{2} y\right)^{2}=\tilde{x} \tilde{y}=x(y) y_{1}$. Thus we can define a function $y \rightarrow x(y)$ from [y_{1}, y_{7}] into ($0, x_{2}$] which is continuous and monotone and hence maps [y_{1}, y_{7}] onto an interval $\left[x\left(y_{1}\right), x\left(y_{7}\right)\right.$].

Now $\left(x_{2} y_{1}\right)^{2}=\bar{x}_{2} y_{1}$ and $\left(x_{2} y_{1}\right)^{2}=x\left(y_{1}\right) y_{1}$. Hence $\bar{x}_{2}=x\left(y_{1}\right)$, so the intervals $\left(\bar{x}_{2}, \bar{x}_{5}\right.$] and $\left(x\left(y_{1}\right), x\left(y_{6}\right)\right.$] intersect. Thus there exist $x \in\left(x_{2}, x_{5}\right]$ and $y \in\left(y_{1}, y_{7}\right]$ such that $\left(x y_{1}\right)^{2}=\left(x_{2} y\right)^{2}$. However, $\left(x, y_{1}\right) \notin J$, thus $x y_{1}$ $\neq x_{2} y$. This is a contradiction.

In the same manner we can show that each element $s \in S \backslash\{0\}$ can be written uniquely as $y x$ with $y \in Y$ and $x \in X$.

Lemma 12. Let T be a semigroup without zero divisors, $E(T)=$ $\{0,1\}$, and which is uniquely representable in terms of two usual threads X and Y. Then $T \backslash\{0\}$ is cancellative.

Proof. Let $s, s_{1}, s_{2} \in T \backslash\{0\}$ with $s=x y, s_{1}=x_{1} y_{1}, s_{2}=x_{2} y_{2}$ with $x, x_{1}, x_{2} \in X, y, y_{1}, y_{2} \in Y$, and suppose $s s_{1}=s s_{2}$. Then $x y x_{1} y_{1}=x y x_{2} y_{2}$. Now let $y x_{1}=\bar{x}_{1} \bar{y}_{1}$ and $y x_{2}=\bar{x}_{2} \bar{y}_{2}$. Thus $x \bar{x}_{1} \bar{y}_{1} y_{1}=x \bar{x}_{2} \bar{y}_{2} y_{2}$. Since T is uniquely representable we get that $\bar{x}_{1}=\bar{x}_{2}$ and thus $x_{1}=x_{2}$. This implies $\bar{y}_{1}=\bar{y}_{2}$ and hence $y_{1}=y_{2}$. Hence $s_{1}=s_{2}$. In the same manner we can show that if $s, s_{1}, s_{2} \in T \backslash\{0\}$ with $s_{1} s=s_{2} s$, then $s_{1}=s_{2}$. Thus
$T \backslash\{0\}$ is cancellative.
Corollary 13. If S is a uniquely divisible semigroup on the twocell with $E(S)=\{0,1\}$, then $S \backslash\{0\}$ is a cancellative semigroup.

References

1. D. R. Brown, Topological semilattices on the two-cell, Pacific J. Math., 15 (1965), 35-46.
2. D. R. Brown, and M. Friedberg, Linear Representations of certain compact semigroups, to appear.
3. E. E. DeVun, Special semigroups on the two-cell, Pacific J. Math., 34 (1970), 639-645.
4. Hildebrant, J. S., On uniquely divisible semigroups on the two-cell, Pacific J. Math., 23 (1967), 91-95.
5. Anne Lester Hudson, Some semigroups on the two-cell, Proc. Amer. Math. Soc., 10 (1959), 648-655.

Received December 10, 1969.
Wichita State University

