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MULTIPLICITY TYPE AND CONGRUENCE RELATIONS
IN UNIVERSAL ALGEBRAS

T. P. WHALEY

For given multiplicity types μ and μ' we consider the
possibility of always replacing a universal algebra <A; F}
of multiplicity type μ with an algebra (A; (?> of multiplicity
type μf which has exactly the same congruence relations.

In [1] Gould considered the corresponding problem for subalgebra
structures. There he completely determined those types μ' which
could replace a given type μ. His results were very positive; e.g.,
any countable type with finitely many nonzero entries can always
be replaced by a type representing a single operation. We do not
completely determine which types can replace a given type in the
congruence ralation sense, but give necessary conditions which show
that simplifications as in the subalgebra case are impossible. We also
show that no two finite types are interchangeable with respect to
congruence relations.

In this paper we shall be concerned only with the congruence
relations of the algebras considered so we may disregard nullary
operations. Thus we alter the notion of multiplicity type as follows:

DEFINITION 1.1. By the multiplicity type of an algebra Ssf we
mean the sequence μ = <μx, μ2, , μn, —>>weω where S^ has exactly
μι operations of rank i for i = 1, 2, .

DEFINITION 1.2. We denote the set of all congruence relations
of the algebra Szf by Θ(Ssf). If α, b are elements of the algebra j&,
we denote by Θ(a, b) the smallest congruence relation of Jϊf which
contains (α, b).

DEFINITION 1.3. If μ = ζμ19 μ2, , μn, —>> and μ' = ζμ[, μ'z, ,

/C —>y are sequences of cardinal numbers, we write μ <£ μ9 provided
for any algebra S/ = <^A; Fy of multiplicity type μ there is an
algeba sf' = <A; FfSy of multiplicity type μ' such that Θ(j^f) =

2. A necessary condition for μ rg μ\ The purpose of this
section is to prove the following theorem which shows that in con-
sidering congruence relations, as contrasted with subalgebras, the
number of operations present is very crucial.

THEOREM 2.1. If μ ^ μ', then 2 χ <: ΣμU

To prove the theorem, we construct, for each cardinal m ̂  2,
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an algebra J^4 = <Aw,/€>lse^m with each fξ a unary operation and
such that Θ(J/') Φ Θ{j*fm) if j&" = ζAm, G> is of type μ' where
Σμl < m.

To construct j ^ ς , let Am = {αf: 0 ̂  f <Ξ m} U {&£: 0 <£ ξ ̂  m} where
the αjs and δ̂ s are all distinct. Let Bm — Am ~ {α0, b0}. Now if
1 ^ ί ^ m let fξ be defined by fξ(a0) = aζ,fζ(b0) = όf, and /e(a) = x if
α? e £ m . Then

LEMMA 2.2. Letting idx denote the identity relation on X we have
( i ) if x,yeBm, then θ(x, y) = idAm U {(x, y}, (y, x)},
(ii) θ(a0, bQ) = idAm U {(aξ, bξ):0^ζ£m}U {(bζ, aξ) : 0 ^ ξ ^ m}
(iii) if x e Bm, then

θ(a0, x) = idAm U [{x} U {aξ: 0 ^ ί ^ m}]2

β(60, x) = i ^ w U [{x} U {6,: 0 < ξ ^ m}]2 .

Proof. Both (i) and (ii) are clear. For (iii) we consider 0(αo, a?)
Now since (a0, x) e θ(a0, x) we have {fξ{aQ),fζ{x)) = (α?, α;) € ^(α0, x) for
each f. By transitivity we get (aξ, aη) e θ(a0, x) for each ξ,η with
1 ^ ί ^ m and 1 ^ ^ ^ m. Thus [{x} U {αe: 0 ^ ί ^ m}]2 s #(α0, ̂ )
Since ίcϊ^w U [M U {α f: 0 < ξ ^ m}]2 is a congruence relation, the proof
is completed. The claim for θ(b0, x) follows by symmetry.

LEMMA 2.3. Let f be a unary operation on Am which preserves
the congruence relations of <s$fm (i.e. adding / as an operation would
not affect the congruence relations). Then f\ Bm — idBm or f\Bm is
constant.

Proof. Let us assume that f\BmΦidBm. Then there is some
x e Bm such that f(x) = y Φ x. Suppose y e Bm. Let z e Bm, z & {x, y}.
Then (f(z), (f(x)) = (/(«), ?/) e 0(α, «). By Lemma 2.2. part (i) we get
f(z) = y. Also we have (f(x),f(z)) = (f(z),f(y)) = (y,f(y)) e θ(x, y) ΓΊ
θ(z, y). Thus f(y) = 2/ and f\Bm is constant.

Now if y & Bm, we have for any zeBm that (f(x),f(z)) = (y,f(z)) e
θ(x, z) so f{z) — y and f\Bm is constant.

LEMMA 2.4. Lei f be a unary operation on Am which preserves
the congruence relations of j ^ m . Then if f \ Bm is constant, f is
constant.

Proof. Suppose first that f\Bm = b for some b e Bm. Without
loss of generality we may assume that f\Bm = a2. Then (f(aL),f(b0)) =
(a>2>f(bo)) e e{ax, b0) so by Lemma 2.3. (iii) we have f(bo) = a2. Also,
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(/(<)>/(α2)) = (f(a0), a2) e θ(a0, α2) so/(α0) e {aξ | 0 ^ ξ ^ m). Furthermore
(/(αo),/(6o)) = (/(α0), α2) e 0(αo, 60) giving f(a0) = α2.

Now assume that /1 Bm == α0 (the case //J?m = δ0 follows by sym-
metry). Then (/(αj,/(α0)) = (α0,/(α0)) e tffo, α0) so f(a0) e {aζ\0^ξ<, m}.
Also we have (f(b1),f(bo)) = (ao,f(bo))eθ(b1,bo) so f(bo) = ao. Finally
(fφo),f(<h)) = (ao,f(ao)) e θ(b0, a0) so /(α0) = α0.

LEMMA 2.5. If f is a unary operation on Am which preserves the
congruence relations of J^m, then f = idAm, f is constant, or f = fξ

for some ξ, 1 ^ <? ̂  m.

Proof. Assume that / is not constant. By Lemmas 2.3 and 2.4
we know that f\Bm = idBm. Thus (f(bί),f(b0)) = (b1,f(b0))eθ(b1,b0)
so /(δ0) e {δ̂  I 0 ^ f ^ m}. Similarly f(a0) e {aζ \ 0 £ ξ ^ m}. Since

e 6>(α0, 60)> we know t h a t for some £, 0 ^ f ^ m, we have

NOTATION. Suppose g is an w-ary operation on t h e set X. If
1 ^ k ^ n9 if c19 , c%_fc e X, if {1, , n) = {ix, , v_fc} U OΊ, , i*},
then we denote by ^ [ ^ , • ••, v^jCx, * , c n _ J the fc-ary operation on
X defined by

where

_ (cβ if i = i 8
i/j 1 . /.

^Λ5 11 J — Js

More informally f̂̂ , , ift_Λ; cx, , c^^] is obtained by holding each
cά fixed in the î  coordinate of g.

REMARK. An operation preserves the congruence relations of an
algebra if and only if each of its unary translations preserves the
congruence relations of the algebra. Thus if g is an operation on Am

which preserves the congruence relations of J*fm, then a given unary
translation of g must be the identity map, a constant map or else
one of the fξ. It is the purpose of the next lemma to show that only
one fξ can be so obtained from a given operation g.

LEMMA 2.6. Let g be an n-ary operation of Am which preserves
the congruence relations of s^m. If g[i19 , ΐn_j c19 , cw_J = fξ for
some i19 , v ^ ; c19 , cw_1? ξ where 1 <̂  iά ^ n, c3- e Am, α^d 1 ^ f ^ m,
ίfee^ g[i19 , in_!; d^ , dn^] — fξ for each dl9 , dn^ e Am.
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Proof. The proof is by induction on n. The first case to consider
is n = 2. Without loss of generality we assume that g[l, c] = fx and
show that g[l, d] = f for each de Am. We consider the cases c = aί9

c = α0, and c = α2. The case c = αy with j > 2 would be handled just
as c = α2, and c = δ; would be symmetric to c = a{.

Case 1. c = αx: We are assuming now that g(a19 x) — fι{x) for
all x e Am. Since (g(b19 α0), g(aίy α0)) = (g(b19 α0), αx) e #(δx, aj, we have
0(δi> O = <h °Y Φι<> <h) = &i If #(δx, α0) = b19 then #[1, δj = bx. But
this would give (g(b19 a2), g(aί9 a2) = (b19 a2)) e θ(bί9 a^, a contradiction.
Thus #(δx, α0) = Oi From this we see that g[l, bL] = f1 or g[l, δj = aL.
However, if g[l, 6J = αx, then (^(ό^ α2), fif(αu α2)) = (αx, α2) e 5(6i, αx), a
contradiction. Therefore, g[l, δj = fL.

Now since (^(α0, δ0), g{a^ bo)) = (g(ao, δ0), δx) G θ(a0, a,) gives ^(α0, 6O) = 61,
we have #[1, α0] = b, or ^[1, α0] = f,. Noting that (g(a0, α0), g{ax, α0)) =
(̂ (cto» αo)> «i) € θ(a0, α j we see that g(a0, a0) e {aζ \ 0 ^ f ^ m}. Thus
#[1, α0] ^ δ: so g[l, a0] = / l β By symmetry we get #[1, δ0] = /x.

For 2 ^ ί ^ m we have (g(aξ9 δ0), ̂ (α^ δ0)) = (g(aξ, δ0), δ2) e θ(aξ, a,)
so g(aζ,b0) = δx. Thus ^[1, αf] Ξ ^ or flf[l, α j = / x . Now (flf(αe, α j ,
^(α1? Oi)) = (^(α ,̂ αx), O e ^(α f, α j so g(aξ, a,) Φ \. Thus g[l, aξ] = / l f

and by symmetry #[1, δ j = /x.

Case 2. c = a0: We are assuming that g(a0, x) = /^a?) for each
a? 6 Aw. Thus we have (g(al9 δ0), g(α0, δ0)) = (g(au δ0), δj 6 0(αlf α0). Hence
flf(αχ, δ0) = b, so g[l, αj = δx or gr[l, αj = /L. If flf[l, αj = δ1? then
(^(^i, α2), flr(α0, α2)) = (δ:, α2) e ^(αx, α0), a contradiction. Thus g[l, αj = f19

and we have Case 1.

Case 3. c = α2: Now we are assuming that g(a2, x) = fι(x) for
each x e Am. Here we have (g(a0, δ0), g(a2, δ0)) = (g(aQ, δ0), δj e ^(α0, α2)
so ^r(α0, δ0) = δlβ Thus ^[1, α0] = 6X or gr[l, α0] == / l β If g[l, α0] = δx,
then (sr(α0, α2), ̂ (α2, α2)) = (δx, a2) e (9(α0, α2), a contradiction. Therefore,
#[1, α o ] = / i , Q-nd we have Case 2. This completes the step n = 2
in the induction argument.

Let us assume that the lemma holds for n = k and that g is
(& + l)ary with g[i^ i2, , ik; c19 , c&] = / e . Without loss of general-
ity we take #[1, 2, , k; c19 , ek] = / 6. Thus flr(d, , ck, x) = /f(a?)
for all x e i , Applying the induction hypothesis to the fc-ary operation
#[1, cj we get g(c19 d2, dB, , dk, x) = /e(a?) for all d̂  e Am and all x e Am.
Now we apply the case n = 2 to the binary operation #[2, 3, •••,&; d2, ώ3,
• , dk] to get ^(di, d2, , dk, x) = /f(a;) for arbitrary elements eẐ  , dk.

COROLLARY 2.7. Let g be an n-ary operation on Am which
preserves the congruence relations of Safm. Then all nonconstant,
nonidentity unary translations of g are equal.
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Proof. Suppose g[i19 , in-.x; clf , cn_J = fζ. By Lemma 2.6 any
unary translation of g obtained by fixing these same coordinates is
equal to fξ. Let {1, , n) = {i19 , in_19 j}. Then for any x19 ,
xn e Am we have

where ^ = #ίjfc for k = 1, , w — 1.
Now consider a unary translation of g obtained by fixing another

set of n — 1 coordinates; say g[jί9 , iw_x; dί9 , dn_J where j" — j k

for some fc, 1 <£ & ̂  ^ — 1. Then for any x e Am

where

ίdβ if i = i β

(a? if i ί t/x, •• ,in-1} .

Thus ^r[iL, , i%_ :; d lf , ^ _ J is constant.

Proof of Theorem 2.1. Suppose μ and μ' are sequences with Σμ\ <
j ^ . = m . Clearly μ ^ εm = <(m, 0, 0, •>. Since Ξ> is transitive, it
is enough to show that μf ^t εm. Now sfm is an algebra of type εm.
Suppose J^ = ζAm; G> is an algebra of type μf such that Θ(^f) = Θ(j^m).
Then θ(j^m) = θ{3&) where 3*f = <^4m; G> with G consisting of the
unary translations of G. Now by Lemma 2.5 each element of G is
the identity, a constant, or one of the //s. By Lemma 2.6 at most
Σμl of the /£s can be so obtained. Let ^ be such that fη $ G. Then
(dηj bη) £ θ(aQ, 60) in j ^ . This contradiction shows that μf ^t εm and
completes the proof of Theorem 2.1.

3* Finite Types*

DEFINITION 3.1. A sequence μ is said to be finite if Σμ. is finite.

NOTATION. For a finite sequence μ, we let l(μ) — n if ^ is the
largest interger such that μn Φ 0.

LEMMA 3.2. If £& — ζD; Fy is an algebra of finite multiplicity
type μ and if C — {c19 , cn} is a finite subset of D, then the number
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of translations of the operations of F which can be obtained by fixing
only elements from C is at most

where

fi\ il
k) kl(i - k)\

Proof. Suppose 1 ^ j < k ^ l(μ) and fe F is λ -ary. By fixing
j elements from C in j of the coordinates of / we obtain a (k — i)-ary

translation of /. There are ί \ ways to choose the j coordinates and

nj ways to choose the constants. Thus for fixed j and k we get
J translations in this way. For a fixed j we then obtain

ίk\
translations from F by fixing exactly j elements from C.

Now summing on j we obtain the desired number of translations.
For a fixed sequence μ and a fixed nonnegative integer k we now

construct an algebra £& = <7); Fy of multiplicity type μ whose con-
gruence relations can not be realized by operations of type μf if P(μ', k) <
P(μ, k). Let m = P(μ, k), and recall from §2 that j ^ ς = <Am;/e>1<e<m.
Let C — {c19 , ck} be such that c s are distinct and C Π Am = φ.
Now we take D = C U Am. If ^ is an operation on D, by a C
translation of g we mean a translation of # obtained by fixing some
of the coordinates of g with elements from C. Now any application
of g to elements of D may be regarded in a unique way as either an
application of g to elements of C or else as an application of a C
translation of g to elements of Am (including as a C-translation g
itself). We thus define F by telling what the elements of F do to
elements of C and telling what the C-translations of elements of
F do to elements of Am. If fe F and F has rank I, then we shall
have f(cix, , cit) = ciχ if each cf e C. Now by Lemma 3.2 there will
be at most m C-translations of elements of F. Let us denote these
C-translations by {gξ \ 1 ^ ζ ^ m}. Now if #£ is i-ary and xs e Am for
1 ^ s ^ i, then we take ^ ( ^ , •••,#,•) = /*(#,)•

The following lemma is clear from the construction of ϋ^.

LEMMA 3.3. 1/ # e θ ( j ^ ς ) , then θ I) idceθ(^r). Conversely, if

LEMMA 3.4. If g is an n-ary operation on D which preserves
the congruence relations of 2$ and if g(xlf •••,»„) = ceC for some



MULTIPLICITY TYPE AND CONGRUENCE RELATIONS 267

x19 , xn G Am, then g(yl9 , yn) = c for all y19 , yn e Am.

Proof. The pair (g(x19 •••,&»), 0(1/1, , yn)) is in the congruence
relation of &r generated by {(x19 yj, , (xn9 2/n)}. But by Lemma 3.3
this congruence relation is contained in (Am)2 U idc

LEMMA 3.5. Let g be an n-ary operation on D which preserves
the congruence relations of 3f. If h is a unary translation of g, then
h\Am — idAm, h\ Am is constant, or h\ Am = f€ for some ζ, 1 ̂  ξ <̂  m.

Proof. By Lemma 3.4 if h\Am is not constant, then (h\Am):
Am —* Am and thus h | Am preserves the congruence relations of j ^ ς .
The conclusion now follows from Lemma 2.5.

LEMMA 3.6. Let g be an n-ary operation on D which preserves
the congruence relations of 2$. Then there is at most one ζ such
that fς is a unary translation of g \ (Am)n.

Proof. This follows from Lemma 3.3 and Lemma 2.6.

THEOREM 3.7. If μ and μf are finite sequences such that μ < μ',
then P{μ, k) ^ P(μ', k) for each nonnegative integer k.

Proof. Suppose P(μf

9 k) < P(μ9 k). The algebra £2ί is of multi-
plicity type μ. Suppose <3ίf = <D; ff} is of multiplicity type μf and
that Θ(£%r) = θ{^ff). Let G be the set of all C-translations of elements
of G (again including the elements of G). Then θ(&) = θ{&")
where &" = ζD; G>. Now in Sf we have

0 ( θ o , δ 0 ) = idD U {ai9 b i ) \ l < i ^ m f .

Thus for each i, 1 <̂  i ^ m, we must have g eG such that some
unary translation of g is /*. However, by Lemma 3.6, there is at
most one i for a given geG. Furthermore, by Lemma 3.2, the
number of elements in G is P(μ, k) < P(μ9 k) = m. This contradiction
shows that such a G does not exist and thus concludes the proof.

REMARK. For a fixed finite sequence μ, P(μ, n) is a polynomial
in n of degree l{μ) — 1 having positive coefficients. The coefficient of

ί i\nk in P(μ, n) is Σi-2+i( i )/**• Hence the following corollaries follow
\f€/

easily from Theorem 3.7.

COROLLARY 3.8. If μ and μr are finite sequences such that μ ^ μf

then l(μ) ̂  l{μ').
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COROLLARY 3.9. If μ and μr are finite sequences such that μ < μr

and if n is the largest integer for which μn Φ μ'n, then μn < μr

n.

COROLLARY 3.10. If μ and μ' are finite sequences, then μ ^ μ',
μf ^ μ, or μ = μ'. Thus among finite types, ^ is a partial ordering.

REMARK. While a complete characterization of the relation <ί
such as that given by Gould for the case of subalgebras would be of
interest, it seems that the results given here indicate that such a
result would not be as easily applied as is the subalgebra result.
For example, in general we can not reduce the number of operations
even by increasing rank.
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