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GENERATORS OF THE MAXIMAL IDEALS OF Aφ)

N I L S ΘVRELID

Let A = Aφ) be the sup norm algebra of functions con-
tinuous in D and holomorphic in D, where D is a bounded,
strictly pseudoconvex domain in O. This paper gives neces-
sary and sufficient local conditions that a subfamily of A
generates the maximal ideal ^ w (D) of f unctionsjn A vanishing
at we D. In particular, it shows that ^£^w (D) is generated
by Zt — wl9 , zn — wn when WeD.

In [3], Gleason shows that if m is an (algebraically) finitely
generated maximal ideal of a commutative Banach algebra A, the
maximal ideal space ^fA can be given an analytic structure near m,
in terms of which the Gelfand transforms of the elements of A are
holomorphic functions.

In a sense, the results of this paper go in the opposite direction.
We consider a bounded domain D in Cn, with C2 strictly pseudoconvex
boundary, and study the algebra A = Aφ) of functions continuous
on D and holomorphic in D. By a recent result, Henkin [4], Kerzman
[7], Lieb [9], A equals the closure in Cφ) of the algebra Oφ) of
functions holomorphic in some neighbourhood of D, from which it
follows that ^ C ̂  D.

We first fix the notation. If weD, ^ w denotes the maximal
ideal of the ring Ow of germs of holomorphic functions at w, while
^fwφ) is the maximal ideal in A of functions vanishing at w. If /
is a function on some neighbourhood of w, fw denotes the germ of /
at w.

THEOREM 1. Let we D, and fu - ,fNe A. Then fu , fN gener-

ate ^fwφ) if and only if

(1) flw, •• ,Λrw generate ^ C and

(2) w is the only common zero of fu * *yfN in D.

COROLLARY. If W e D, ZX — wly , sΛ — wn generate

Below we give the more general theorem 2, which also gives a
similar characterization of generators of ̂ fwφ) when w e 3D. When
n = 2, Kerzman and Nagel [8] have shown that zι — w1 and z2 — w2

generate ^wφ) when we D, as well as similar results for algebras
with Holder norms. I want to thank Dr. Kerzman for sending me a
copy of his thesis [7], where these results are stated.

The main tool in the proof is the following result, which is proved
in [11]:
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LEMMA 1. Suppose ue C?o,q)(D) is bounded, with du = 0, q ^ 1.
Then there exists a v e CZ,g-i)(D) with dv = u, such that v has a con-
tinuous extension to D.

A closely related result is given in Lieb [10], while a stronger
result for (0, l)-forms, involving Holder estimates, is given in Kerzman

[7].
It is convenient to prove first a more general result. If U is

open in D, let H(U) denote functions in C(U) that are holomorphic
in Df]U. When weD, we define Hw = \imH(U), so Hw is the

UBW _

space of germs at w of continuous functions on D that are holomor-
phic in D. It is easy to see that H is the sheaf of A-holomorphic
functions in the sense of [2].

PROPOSITION 1. Let D be as above, weD, and suppose fu * ,fN

have w as their only common zero. We let I denote the ideal in A

generated by fl9 •••,/#, and Iw the ideal in Hw generated by flw, •••,

fNw- If feA and fw e Iw, then f el.

Proof. By assumption, we may write / = Σ£=i0* /* o n a neigh-
bourhood U of w in D, with gu , gNe H{U). We want to write
/ = *ΣJ?=I hi fi, with hu * ,hNeA, and shall first solve the problem
differentiably. As the sets iV, = {zeD\{w}:fi(z) = 0}, i = 1, , N,
are closed in Cn\{w}, it is well known how to construct ψu , φN with
Φi = 0 on a neighbourhood of Ni9 i = 1, , N, that form a C°° parti-
tion of unity on Cn\{w). Choose φQ e C~{Uf), where Uf Π D = U, with
φ0 = 1 on a neighbourhood t/i of w, and define φt = (1 — φo) Φi, i =
1,...,ΛΓ.

If we define

9'i = <Po-9i + ^τ~, clearly Σ 9rfi = f on D.

The g'iSeC~(D) Π C(S), and are holomorphic in U, Π D.
We want to use Lemma 1 to modify the gls to get h^s in A. To

handle the combinatorial difficulties, we apply the homological argu-
ment of [6].

NOTATION. Lr = {u e C~,r)(Z?)> u a n d ^u have bounded coefficients},
while Ls

r = Lr (g)c A
s ^ , 0 ^ r, s.

If we choose a basis el9 •••, e^ in C^, the elements in L' may be
written uniquely as Σm= s ^/ ® β7^ where % e Lr, e1 = e^ Λ Λ eίβ,
and we sum over strictly increasing sequences / = (ilf , is). We
define 3 on L' by d(u ® ω) = (3%) ® ω and linearity. Clearly
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dLs

r c Ls

r+1, and lemma 1 gives:

LEMMA Γ. If ke Ls

r and dk = 0, r ^ 1, ί/^ere e#ίs£s α &' e
such that 9&' = k, and kf has a continuous extension to D.

The product determined by (u 0 ω) (uf 0 ω') = (uΛ v!)
is clearly a bilinear map Ls

r x L*' —* L + ',.
Let ef, , e# be the reciprocal basis to el9 , eN, so <e*, ^ )> =

δi3 . We define P/: L^ — Ls~ι by

P/ίd 0 ω) = Σ (/ί w) <g) (βf J ω), and linearity.

(For the definition of J, se [12] Ch. 1.)

Pf: LI —• L^ maps Σ f = i % 0 e i to Σ£=i/ ^»; i n particular, P ^ ' = / , when

A simple computation gives P} = 0, while the derivation property
of J gives

( i ) Pf{k-k') = {Pfk)-kr + ( - l)sk-Pfk'

when ke Ls

r.
Let Ml = {keLl:k\πi = 0}.

LEMMA 2. The complex 0 *— M°r —̂  M\ - i . . . -4 Mi +- 0 is exact.

Proof. Let φ e C°°(CN) be zero near w and one outside f7L. We
put fc^ΣL^ ^ ) / / ^ ^ Clearly kQeLι

Q, and PfkQeLQ

Q is identi-
cally one in I^ETΊ. If keMs

r and Pfk = 0, ko-keMs

r

+ί, and by (i),
P ίh U1Λ — CP k \ k — k

As fu * ,/Λ. are holomorphic in Z), P y and 9 commute.

LEMMA 3. If ke Ms

r and Pfk = dk = 0,
D.&' = fe α π d 9A:' = 0.

This is trivially true when r > n, and the proof goes by down-
ward induction on r. Suppose the lemma is valid for r + 1. By
Lemma 2, there exists a i ^ e M'S1 with P ^ = fe. Clearly dMs

r

+1 c Λf ίJ,
while P/9&! = SP/fei — 0. Using the induction hypothesis, we can find
k2 e Lltl with Pfk2 = dkx and dk2 = 0. By Lemma 1', k2 = 9fc3, with fe3

G L^+2. If we put kf = kι- Pfkz, we get k' e Ll+1, with 9&' = dk, -
Pfdk3 = 0, and P/&' = P / ^ — P}k3 = k. This completes the induction
step.
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Proof of Proposition 1. As the gls are holomorphic in Uι Π D,
dg' e M\. Applying Lemma 1' and Lemma 3, we find a ke L\, with
dPfk = Pfdk = dg', such that k is continuous on D. If h = g' — Pfk,
dh = 0. Writ ing h = Σ i ^ i ^ i ® e^ this means t h a t hγ, •••, hNe A, and

V ^ h f — f

THEOREM 2. Le£ weD, and let Mw denote the unique maximal
ideal of Hw. The family (fi)ieI in A generates ^^fw{D) if and only if

(1) (fijiei generates Mw, and
(2) w is the only common zero of functions f4 in D

Proof. I. The sufficiency of (1) and (2): If / e ^ C ( 5 ) , we have
fweMw, and by (1) fw belongs to some ideal [fh,w, • ,/<Jlf,J As
fe — Wj)*,, •••, f(zn — wn)w belong to Mw, the functions zt — wc> i =
1, " ,n, may be expressed as linear combinations of functions / ί j f + 1 ,
'",fip in the family on some open neighbourhood V of w in D. Then

/•'jffi» "m>fip have w as their only common zero in V. By condition
(2) and the compactness of D\V, there exist /</>+1, * ,fiN in the family
with no common zeroes outside V. Now proposition 1 implies that /

II. The necessity of (1) and (2): If (/<)<€/ generate ^
condition (2) follows from the fact that A separates points in D. Con-
dition (1) follows from

PROPOSITION 2. The germs at w of elements in ^ / w ( ΰ ) generate
Mw.

The following proof of Proposition 2 was kindly communicated to
me by Dr. R. M. Range, and replaces a more complicated argument
of my own:

When w e D, zγ - wu , zn — wn generate ^ C = Mw. Thus we
may assume we 3D, and consider an f e H(U Π D) with f(w) = 0,
where U is some neighbourhood of w in Cn. We choose φeC~(U)
such that φ = 1 on a smaller neighbourhood V of w. As D is strictly
pseudoconvex, we may extend it inside 7 to a strictly pseudoconvex
domain Ώ' containing w. As d(φ f) vanishes on V Π D, it may be
extended by zero to a smooth, bounded, 3-closed (0, l)-form ω on D'.
By Lemma 1, the equation dg = ω has a solution in C°°(D') Π C{Df),
and we may assume g(w) — 0. As g is holomorphic in Df Π F, we
may write it near w as g = Σ t i ^ f e — w<), with grx, •••, gn holomor-
phic. Thus / w = (?>./ - g)w + Σii=i9iw(*i ~ w j . , and 9> / - f l r f e e
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When we D and / is finite, Theorem 2 reduces to theorem 1. If
we 3D, it follows from Gleason's result that ^C(jD) is not finitely
generated. If Mw were finitely generated, it would by Proposition 2
be generated by finitely many elements of A, which implies by the
argument of I that ^C(5) must be finitely generated. Thus Mw is
not finitely generated when w e 3D. (This may also be proved in a
more direct fashion).

Note. The Corollary to Theorem 1 has also been proved by
G. M. Henkin in Bull. Acad. Polon. Sci., 24 (1971) 37-42, and by
I. Lieb in Math. Ann., 190 (1970-71) 6-44, which contains a detailed
version of [10].
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