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ON SOLVABLE 0O*GROUPS

D. P. MINASSIAN

The purpose of this paper is to prove the existence of
O*-groups of arbitrary solvable length, as well as of non-
solvable O*-groups.

By a partial order for a group G we mean a reflexive, antisym-
metric and transitive relation, <, on G such that if g and % are ele-
ments of G and g < h, then zgy < xhy for all x and y in G. If also
any two elements g and 2 of G are comparable (i.e., either g < h or
h =< g), then the partial order for G is called a total (or full, or linear)
order. The group G is an O*-group if any partial order for G is
included in some total order for G.

A group G is solvable of length n, where n is a positive integer,

if the derived chain of G reaches the unit subgroup, F, in = steps:
G:G1;G2; cee ;Gn;Gn+1___E,

where G*! is the derived group of G* (denoted below by G** = [G*, G']).

It has been shown that non-abelian free groups are not O*-groups
({11, 12], [3], [4], [6]). Further, Kargapolov [5] and Kargapolov,
Kokorin and Kopytov [6] have produced solvable groups which are not
O*-groups even though they admit a full order: these are the free
r-step solvable groups on k generators for » = 8 and k = 2. In view
of these results one may ask if there exist solvable O*-groups of
arbitrary length, and nonsolvable O*-groups. The answers are affir-
mative.

THEOREM. For every positive integer m there exists an O*-group
G that is solvable of lemgth m.

Proof. Let F be the free group on k generators for some fixed
k>2. Let F; be the i¢th term in the lower central series for F,
where F, = F, and let F’ be the ith derived group for F, where F*
= F. Consider F/F;, the free nilpotent group of class 7 with & gen-
erators. By varying 7 we shall obtain the desired groups G of the
theorem.

We first claim that F/F; is torsion-free for every positive integer
4. If not, then for some % there exists an element ae /' and a posi-
tive integer p such that a¢ F;, but a*e¢ F;. Now aelF), — F,,, for
some positive integer A < ¢ — 1. Thus a?€ F; & F4,, and so F}/F,,,
is not torsion-free. On the other hand, Witt’s theorem (see, e.g., [8,
p. 41]) states that F,/F,,, is a free abelian group (and hence torsion-
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free), a contradiction. Thus F/F; is torsion-free, as claimed.

Malcev [9] has shown that a torsion-free nilpotent group is an
O*-group. Hence F/F; is an O*-group for every positive integer <.
Now for every such ¢ the solvable length of F/F'; is finite, since F/F
is nilpotent. Thus we shall complete our proof by establishing the
following lemma.

LEMMA. For every positive integer m, there exists an integer n
such that solvable length of F/F, is m.

Proof. We first note that for every positive integer ¢, there
exists an integer j such that F; 2 F‘. This follows from the fact
that F® = E for each 7 (hence F is not solvable), together with the
theorem of Magnus (cf. [8, p. 38]) which asserts that N2, F; = E.
We next show that for each 7 and j,

@) (F/F;)' = F'F,[F;.

Indeed, it is readily seen that if A and B are subgroups of a group
G and if B is invariant under conjugation by elements of A, then
(AB/B)* = A’B/B. From this, an induction on ¢ shows that for a
normal subgroup N of a group G it is true that (G/N)' = G°N/N for
all 7, which implies the desired result.

Note that for each 7 there exists J such that for 7 = J, the solv-
able length of F/F; exceeds i. This follows from (1) and the fact
that, by our first assertion, we can choose J such that F, 2 F*. In
particular, then, the solvable length of F/F; is unbounded with in-
creasing j. Note also that the solvable length of F/F,., exceeds the
solvable length of F/F; by at most 1. For if F/F; is solvable of
length » — 1, then (F/F;)" = E. Thus, by (1) we have F"F;/F; = E,
which implies F'* < F;. On the other hand, F/F;,, has solvable length
< r since (again using (1))

(FIFi) " = [(FIFj.), (F[Fj4)]
= [FT j+1/Fj+1y FTFj+1/Fj+1] & [Fj/FjJ.-u Fi/Fj+x] = E,

where & holds since both F" and F;., are subsets of F';, and the final
equality derives from the fact that F;/F;., is abelian by Witt’s theorem
(above). The lemma follows at once from these results and the fact
that F/F, = F,/F, has solvable length 1 by Witt’s theorem.

The proof of the theorem is now complete.

COROLLARY. There exist nonsolvable O*-groups.

Proof. Kargapolov [5] and Kokorin [7] have shown that the re-
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stricted direct product of O*-groups is an O*-group. Thus the restricted
direct product, G = [[, F/F;, of the groups F/F; is an O*-group. If
G were solvable of length m, then each F/F; would have solvable
length < m; for if a subgroup H < G, then H* & G* for every k. Since
this contradicts the fact noted above that the solvable length of F/F;
is unbounded with increasing j, G is a non-solvable O*-group.

Note. The mapping @ of F into the wnrestricted (or complete)
direct product, [, F/F;, of the groups F/F; given by

?(a) = (aF,, +++,aF, --+) for every ac F

is a monomorphism by Magnus’ theorem, above. Since F is not an
O*-group (see [1], [4], or [6]), We have an immediate example of a
subdirect product of O*-groups which is not itself an O*-group. (In
[5], Kargapolov uses some of the groups F/F; to show that the class
of O*-groups is not closed under formation of unrestricted direct pro-
ducts.)
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