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DIRECTED GRAPHS AS UNIONS OF PARTIAL ORDERS

PETER C. FISHBURN AND JOEL H. SPENCER

The index of an irreflexive binary relation R is the
smallest cardinal number ¢(R) such that R equals the union
of ¢(R) partial orders, With s(n) the largest index for an
R defined on 7 points, it is shown that s(n)/log:n —1 as
n— o, The index function is examined for symmetric R’s
and almost transitive R’s, and a characterization for
d(R) < 2 is presented. It is shown also that

inf {n: s(n)>3} =13,

but the exact value of inf {n:s(n) > 3} is presently unknown,

1. Introduction. A binary relation on a set X is a subset of
ordered pairs a2y in X x X. A directed graph (hereafter digranh')
G = (X, R) is a nonempty set X and an irreflexive (xx¢ R) binary
relation R on X. If g Y& X then G|Y is the digraph obtained
from G = (X, R) by deleting all points in X-Y.

A partial order P on X is an irreflexive and transitive (xyc P &
yz€ P=xz€ P) binary relation on X. A digraph G = (X, R) is
resolved by a set of partial orders on X if and only if R equals the
union of the partial orders in the set. Since {xy} is a partial order
when xzy € R, every G is resolved by some set of partial orders.

The index®* of a digraph G = (X, R) is the smallest cardinal
number o(R) such that R is resolved by o(R) partial orders on X.
Clearly o(R) =1 if and only if R is a partial order. o({ab, ba}) = 2,
and o(R) = 3 for the cyclic triangle R = {ab, be, ca}. The smallest X
that we know of that admits an R with o(R) = 4 has 13 points. (See
Figure 1.) In connection with a later characterization of ¢ < 2 we
present an R with o(R) = 2 where R cannot be the union of two
disjoint partial orders.

Our definition of o(R) is motivated by Dushnik and Miller’s de-
finition [2] of the dimension of a partial order P on X as the smal-
lest cardinal number D(P) such that P equals the intersection of D(P)
linear orders on X. A linear order L on X is a complete
(x #y=wye L or yxc L) partial order, and a chaitn in X is a linear

1 We shall sometimes refer to a binary relation as a digraph, omitting explicit
mention of the set on which the relation is defined.

2 It is tempting to use “dimension” instead of “index,” but since the former
term is used for a number of other concepts in the theory of binary relations we
favor the latter here. It would be proper to write o(G) instead of o(R), but since
o(R) = ¢(R’) if R is isomorphic to R’ the specific omission of X will cause no problems.
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order on a subset of X. A number of facts about D(P) are sum-
marized in [1], which gives other references.

This paper examines the index function ¢ for digraphs. The
next section focuses on large values for o(R). Our first theorem,
based on a theorem in Folkman [4], shows that ¢(R) can be arbitrarily
large for both symmetric (xy € R = yx € R) and asymmetric (xy€ R =
yr ¢ R) digraphs. The second theorem examines the behavior of ¢
in the following way. Let

s(n) = sup{o(R): R is an irreflexive binary relation on » points} ,

the largest o for a digraph with »n points. When u is a real-valued
function on {1, 2, ---} and u(n) remains bounded as n gets large, we
write % = 0(1) according to popular convention. Theorem 2 states
that

log,n — % log, log,n + 0(1) = s(n) = log,n — % log, log,n — 0(1) .

This gives another proof that ¢ can be arbitrarily large, and shows
that s(n)/log,(n) approaches 1 as n gets large.

The rest of the paper is mostly concerned with small values of
o. Section 3 presents an (X, R) with | X| =138 and o(R) = 4. We
do not presently know the smallest X that admits an R with
o(R) = 4.

Symmetric digraphs (X, S) are examined in § 4, where we give
a necessary and sufficient condition for ¢(S) < 2. Suppose that P is
a partial order on X and

S={oy: cye X x X &rv+y & a2y¢e P & yx¢ P} .

Then S is a symmetric digraph. We note that when S is defined in
this way, then D(P) <2 if and only if ¢(S) < 2, and

DPP)<n—a(S)<2m —1).

The question of whether ¢(S) < n= D(P) < f(n) for some function
f is presently open.

A binary relation R is almost transitive® if and only if (abe R
& bce R & a + ¢) =ace R. Section 5 proves that o(R) < 2 when R
is an almost transitive digraph.

Section 6 then gives a general characterization of ¢(R) <2 that
is stated in terms of a partition of the subset of B whose elements

8 Harary, Norman and Cartwright [7, p. 7] call this transitivity, but we use the
modifier to distinguish it from the more common use of ‘‘transitivity’ in which a, b
and ¢ do not have to be distinct.



DIRECTED GRAPHS AS UNIONS OF PARTIAL ORDERS 151

are involved in nontransitive adjacent pairs such as zy, yze R &
rz¢ R.

2. Digraphs with large indices.

THEOREM 1. If m is a positive integer then there are asymmetric
and symmetric digraphs whose indices exceed m.

Our proof is based on a specialization of Theorem 2 in Folkman
[4]. A graph (X, E) is a nonempty set X and a set E of unordered
pairs {x, ¥} with z,ye X and == y. A triangle of (X, E) is a set
{{a, b}, {b, ¢}, {a, ¢}} & E. A partition of X is a set of mutually dis-
joint subsets of X whose union equals X.

LEmMA 1 (Folkman). Let m be a positive integer. Then there is
a graph (X, E) that includes mo triangles, and every partition
{C, ---,C} of X with k <m contains a C; such that a,be C; for
some {a, b} € E.

Proof of Theorem 1. Let (X, E) be such a graph for m = 2". Let
(X, R) be any digraph for which zy € R or yx € R if and only if {x, y} € .
Suppose that R is the union of partial orders P, ---, P, on X. Since
E has no triangles, any subset of a P; is a partial order and hence
we can assume P;,NP; = @ when ¢ # j. Letting A(x) = {¢: for some
ye X, xy € P;}, partition X so that x and y are in the same element
of the partition if and only if A(x) = A(y). The number of elements
in the partition does not exceed 2". Thus, by Lemma 1, the partition
contains an element Y with 2,ye Y and {z,y}eE. Then A(x) =
A(y). Since zy € R or yx € R, take xy € P; for definiteness with j ¢ A(x).
Since je A(y) also, there is a ze X such that yze P;,. Transitivity
then implies that xzze P; and hence that E includes a triangle,
which contradicts our initial hypothesis. Therefore o¢(R) > n. By
the definition of R it ecan be taken to be either asymmetric or sym-
metric (or neither).

Henceforth in this section all logarithms are to base 2 unless
indicated otherwise. [r] = (largest integer < ») and {r} = (smallest
integer = 7).

THEOREM 2. logn — 1/2loglogn + 0(1) = s(n) =logn — 3/2log log n
—0(1).

We show first the upper bound, using two preparatory lemmas.
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LeMMA 2. In any digraph G = (H, R) with | H| = m there exists
D & H such that | D| = {log,m} = {1/2logm) and o(G|D) < 2.

Proof. We use induction on m, the lemma being obvious for
small values of m. Fix xe H. Split H* = H — {x} into four parts:

T,={yeH*: 2y¢ R & yxr¢ R} S,=v
T,.={yeH*: 2yc R & yr¢ R} S, = {z} x D,
T,={yeH*: 2y¢ R & yxc R} S, = D, X {x}
T,={yecH*:2yc R & yrec R} S:={z} x D,,
Y= D, x {x} .

Some |T;|= {(m—1)/4}. By induction find D, & T; with

|D;| = {log, | T; |} = {log, {(m—1)/4}} = {log,m} — 1
and G|D; = P,UP, Thenset D= D;U{z}. G|D = (P.US)U(P,US,)
except for 1 =4 when G|D = (P,US) U (P,USY).

LEemMMA 3. In any digraph G = (X, R) with |X| = n there is a
partition {D,, +++, D,} of X such that t < 3nflogn and o(G|D;) <2
for each 1.

Proof. Given G, by Lemma 2 find D, such that
|D,| = %, = {log,n} .
By induction find D, such that
1D:| = a2 {log,(n — S0, )} -
From elementary calculus we can show >}_ xz; = n for
t< 2+¢e)n/logn .

We now show the upper bound for Theorem 2. Let G = (X, R)
with | X | =n. Take D, ---, D, as in Lemma 3. Let {A}, B}} be a
partition of {1, -+, ¢t} for 4 =1, .-+, s such that forall 1<j=+k=<t¢
there exists 4,1 < ¢ < s, such that je Af & ke Bf. By Spencer [12]
we may take

s=logt+ 1/2loglogt + 0(1) < logn — 1/2loglogn + 0(1) .
{A}, B}} induces a partition {4;, B;} of X with
A;= U Dy, B,= U D;.

Lk Lk
jed; jeB;
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Then set
P,={xy:xcA; & yeB; & vye R} fori=1,+-+,s.

Since (G| D;) £2, G|D; = P;U P;. Set
p'=yP, P"=UP/.

Then R= P JUP"UPU---UP, giving the upper bound of Theorem
2.

We turn to the lower bound of the theorem, again using two
preliminary lemmas. A complete asymmetric digraph is a tournament.*
We shall show that a “random” tournament 7' = (X, R) with | X | =n
has o(T) = log » — 3/2log log n — 0(1). Intuitively speaking, we show
that all P < T are essentially bipartite.

Let T be the set of tournaments with X =1{1,2, .-+, n}. We
say that T = (X, R) e T" has property « if and only if there are A,
B X with |A]|=|B|=3 logn and A x B R. T has property
if and only if there is an A< X and a linear order L on A such
that |A| = (log »)* and

*) anngé(";“).

LeEMMA 4. For n sufficiently large there exists T e T™ satisfying
neither property « wor property B.

Proof. If TeT" has property «, there are A, B X with
|A|=|B|=[3logn] and A x B R. Set t= [3logn]. For fixed
A and B, 2% is the proportion of T'e T* that satisfy this condition.
There are less than »* choices of A and B, so less than #n*2* of
the Te T satisfy a. %*2°%—0 as n— co.

If TeT" has property B, there exists A& X and L on A such
that | A| = [(log »)?] and (*) holds. There are less than n'°¢"* choices
of A and then [(log n)’]! choices of L. Given A and L, the propor-
tion of T e T" satisfying (*) is the probability of at most (%)/3 heads
in () flips of a fair coin where ¢t = |A| ~ (log n)’. This probability is
approximately p~% where p = 8% (3/2)*® > 1. Thus the proportion
of Te T satisfying g is less than

niee»? [(log n)?] ! p~%, which—— 0 as n— oo .

Thus for » sufficiently large some T e T" can satisfy neither «
nor g.

¢ See Moon [9] for extensive discussion of tournaments. See also [3, 10, 11] for
resulted to the present paper.
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LEmmA 5. If T, -+, T, = 1{1, ¢+, s} then there are mn/(S) T
which are mutually comparable.®

Proof. We use a technique due to Lubell [8]. There are s!
maximal chains of subsets of {1, ..-, s} under the ordering of <.
If |T;|=a then T; is in a! (s—a)! = (s/2)!* = s!/(;) maximal
chains. Thus some maximal chain must contain = [s!/(;},)]/s! T..

In the following proof of the lower bound of Theorem 2 we use
the fact that 1/(5) ~ V7/2 Vs 2.

Let G = (X, R) be a tournament that satisfies neither « nor g
(Lemma 4). Suppose that R = P, U---U P,. Define

W,={weX: |[ycX: xyc P}| > 3 logn}
L, ={weX: [{ye X:yxe P}| > 3 logn}
Ri = X— W.,,—Li

for 1 <7< s. (We split X into winners, losers, and the rest.) By
Lemma 4, W, N L, = @. For xe X set

Tz: {i:xe W,LUR,L}_Q_{I, "‘,S}.

By Lemma 5 find V< X such that |V |=nv7/21 s 2 and T.& T,
or T,= T, whenever z,yc V. Induce a linear order L on V by set-
ting ayeL if T,c T, when T,= T,, L is defined in any fixed
manner.

Now assume s < logn — 3/2loglogn — 7. Then |V|=2"V7/2
(log n)®. Set

Given xye Z;,, T,< T, so that we cannot have x¢ W, & yec L;,. And
since W, N L, = @ we cannot have xe L, & ye W,. Therefore

Z,={xyeZ:xoryeR}U{eyeZ: :x,ye WU {rye Z;: x,yec L;} .

There are at most 6 logn | V|, 83 logn | V] and 3 logn | V| ordered
pairs in the first, second and third parts respectively of this decom-
position of Z;. Thus |Z;|<12 logn |V|. Since G does not have
property g it follows that

1/(V] - .
§< : )§|RmL|§;|ZJ§12(logn)IVI

and hence that | V| < 72 (log n)* + 1. Since this contradicts |V | = 27
1V'7/2 (log n) it must be true that s = logn — 3/2log logn — 0(1).

5 T; and T; are mutually comparable if and only if T:<7Tj or T;<T:.
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This completes the proof of Theorem 2.
If a sufficiently good bound could be placed on

{xye Pi: @ or ye R, or 2, ye W, or x,ye L}

then one could prove s(n) = logn — 1/21og log % + o (log log ). One
might even show that s(n) = log n — 1/2]og log n + 0(1).

3. A digraph with 6 =4 and |X|= 13, Although the
theorems of the preceding section show that there are digraphs with
large indices, they are of little use in attempting to discover the
smallest X that admits an R for which o(R) = n. Figure 1 shows
the smallest X that we know of for which o(R) = 4.

c

FIGURE 1

Assume that o(R) = 3 for Figure 1, with 4, B and C three partial
orders whose union equals R. Then one of A, B and C must contain
exactly one of aB, gv, v, op and pa and the other two must each
contain exactly two of these ordered pairs in alternating fashion.
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Suppose for example that age A, gve B, v0€C, pe B, pae C. Then
Ya, 08, (v, @, and B must be respectively in C, A, A, A, and B.
Then vbeC and 6f, fre B. Since vbeC and freB, bf € A. Since
bfeA and 6feB, fecC. By the cyclic triangle {fe, ed, 6f}, ed
must be in A. But since @€ A this implies ege A, which is false.
A similar contradiction to ¢ = 3 is obtained when any alternative
assignment is made for ap, Bv, ---, ta.

4. Indices of symmetric digraphs. In this section we consider
symmetric (xy € S = yx € S) digraphs (X, S). For any binary relation
R, R* = {zy: yx € R}, the converse or dual of R.

A graph (X, E) is a comparability graph if and only if there is
a partial order P on X such that {x, y} ¢ £ if and only if zye P U P*.
Ghouila-Houri [5] and Gilmore and Hoffman [6] provide characteriza-
tions of comparability graphs. When (X, S) is a symmetric digraph,
(X, E(S)) will denote the graph in which {x, y} e E(S) if and only if
xy € S.

THEOREM 3. Suppose that (X, S) is a symmetric digraph. Then
o(S) £ 2 if and only if (X, E(S)) is a comparability graph.

Proof. If (X, E(S)) is a comparability graph then S= P U P* for
a partial order P, and thus ¢(S) < 2. Conversely, if S= P UDP,
with P, and P, partial orders, then P, = P}.

In [1] it is shown that if (X, P) is a transitive digraph (so that
P is a partial order) and if S ={rvy:2x+y & zy¢ PUP*} then
D(P) < 2 if and only if (X, E(S)) is a comparability graph. Hence,
as a corollary to Theorem 3 we have D(P) <2 if and only if ¢(S) < 2.
Our next theorem extends this in one direction.

THEOREM 4. Suppose that P on X is a partial order and let
S={xy:x+y & xyg PU P*}. Then D(P)<n=o0(S) < 2(n—1) for
n > 1.

Proof. The theorem is true for » = 2. Using induction, assume
it’s true for all » < m and suppose D(P) = m with P = ("L, where
each L; is a linear order. Let P’ = L; and

S'={xy:xc=y & xyeg P'U(P)*}.

Since D(P’) < m — 1, the induction hypothesis gives d(S’) < 2(m—2).
Clearly S'< S and S—S'=(P'NL})U{(P)* N L) Since P'N Ly
is a partial order (the intersection of two partial orders) and (P)*N L,
is a partial order, o(S) < o(S’) + 2 £ 2(m—2) + 2 = 2(m—1).
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5. Almost transitive digraphs. The proof of the next theorem
has several similarities to Szpilrajn’s proof [13] of the theorem that
any partial order P on X can be extended to a linear order L with
P< L. We recall that R is almost transitive if and only if (abe R
& bceR & a #« ¢)=ace R.

THEOREM 5. o(R) <2 if (X, R) is an almost transitive digraph.

Proof. Assume that (X, R) is an almost transitive digraph. Let
A = {ab: abe R & ba¢ R}, the asymmetric part of R. Let A* =
{ab: abe A or {aa,, a,a,, +++, a,b} = A for distinct a,, --+, a, in X that
are different from o and b}, the almost transitive closure of A.
Clearly A* < R and A" is almost transitive.

To show that A* is a partial order it suffices to show that it is
asymmetric. To the contrary suppose that xzyc A* and yxe A*.
Then from the definition of A* and almost transitivity for R it fol-
lows easily that there is a ¢€ X for which c¢xe A and xce€ R, which
contradicts the definition of A. Hence A™ is a partial order.

Let & = {P: P is a partial order on X & A*= P< R}. It fol-
lows easily from Zorn’s lemma that there is a P*e &” such that
P*c P for no Pe &”. Letting P* be maximal in this sense we now
prove that

ab, ba € R=abe P* or bac P*.

To the contrary suppose that each of ab and ba is in R and neither
is in P*. Then let

W={zy:xo+y & (®ac P* or v = a) & (bye P* or y = b)},

and let V= P* U W, so that P*C V. We show that V is a partial order
(clearly AT < V & R), thus contradicting the maximality of P*. V
is irreflexive since P* and W are irreflexive. For transitivity take
axy,yze V. If both zy and yz are in P* then xz¢ P* by the transi-
tivity of P*.

Suppose next that xye P* and yze W. The latter gives (yac P*
or ¥y = a), from which za e P* follows, and it gives also (bze P* or
2 == b), from which xze V follows unless x = 2. But if * = z we have
xa € P* and (bx € P* or x = b), which give ba e P*, contradicting the
hypothesis that ba ¢ P*. Hence xyec P* & yze W = xz¢ V. Similarly,
xye W & yze P*=2z¢c V.

The final case for transitivity is ay, yze W. Then (xaec P* or
x=a) and (bze P* or z =0b) so that xze W unless z = z. But if
x =z then [(xac P*orx = a) & (bx € P* or £ = b)] = (bac P* or b= q),
which is false. Hence V is a partial order, a contradiction to the
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maximality of P*, and therefore

ab, bac R = abe P* or bac P*.

Finally, let Q = R — P* so that R = P*U Q. @ is irreflexive
since R is irreflexive. Suppose that 2y, yze Q. Then, since both zy
and yz are in R but not 4, yx and zy are in R and must be in P*
by the preceding analysis. Therefore zx e P* and 2z # . Then, by
almost transitivity of R, xze R and thus zzec @ since P* is asym-
metric.

Thus R = P* U Q, the union of two partial orders.

6. A partition characterization for ¢ < 2, Given a digraph
(X, R) let K be the set of all ordered pairs of pairs in R that deny
transitivity, so that

ayKyz if and only if zyec R & yzc R & 22¢ R,

and let V be the subset of R involved in these intransitivities so
that

V = {xy: xzyKyz or zxKxy for some ze¢ X} .

Suppose that o(R) < 2. If xyKyz then 2y and yz must be in different
resolving partial orders, so that the digraph (V, K) must be bipartite
or 2-colorable. Moreover, if zy and yz are in V and in the same
resolving partial order and if xze V also, then transitivity requires
that 2z be in this partial order. These two necessary conditions for
o(R) < 2 are reflected in Al and A2 of Theorem 6. Their insufficiency
for o(R) <2 is noted later. (Note that o(R) =1 if and only if

V=g.)

THEOREM 6. Suppose that (X, R) is a digraph and V #= @. Then
o(R) = 2 if and only if V can be partitioned into V, and V, so that

Al. xyKyz = xy and yz are in different V,,

A2. xy,yzeV, & 2ze V=2azecV,,

A3. xye R — V=(1) and (2) do not hold simultaneously:

@) (yze V, & axzec V) or eV, & 2zyc V), for some ze€¢ X,
2) (ywe V. &xweV,) or (wexeV,&wyeV,), for some we X.

If R=P,UP, then V; = P,NV for =1, 2 are easily seen to
satisfy Al through A3, and VNV, = O&.

Before proving sufficiency we show that Al and A2 are not suf-
ficient for 0 = 2. All directed edges in the 13-point asymmetric
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FIGURE 2

digraph of Figure 2 are in V except for xy, »s and tv, and Al and
A2 hold. Labels 1 and 2 for P, and P, are assigned to the edges in
V in the only way consistent with Al and A2, beginning with P, in
the upper left corner. For ¢(R) = 2 we require »s and ¢v in both P,
and P,, but xy violates A3 and cannot be assigned either

P reeP, & ry¢ P] or P,ftxc P, & ty¢ P,] .

By deleting the edge xzy from Figure 2 we obtain an R with
0(R) = 2 where R is not the union of two disjoint partial orders.

Suffictency Proof for Theorem 6. With V = @ let Al, A2 and
A3 hold. For i =1,2 let

S;={xy: xye R — V & (i) holds} .
Let R*"=R—-V — S, — 8, and for 7 = 1, 2 define P; by
P,,;: ViUSiURO-

Since P; < R, it is irreflexive. We now prove that P, is transitive.
The proof for P, is similar.
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Assume that 2y, yze P,. Then xze R, for if both xy and yz are
in V, then 2ze R by Al, and if one of 2y and %z is in S, U R° then
2z € R by the definitions. Thus zze P, unless zz€ V,U S,. 2z€ V, is
contradicted in all cases:

1. zy,yzeV,=u2¢ V,, by A2;

2. ayeV, & yze S, = x2z¢ V,, by A3;

3. ayeV, & yze R"=uxz2¢ V,, by A3;

4. 2y, yze S, U R°. Then arcR—aycR=o0azecR and
2za€e R—yaec R—2xac R. Hence neither axKzz nor zzKza can hold.
It remains to show that 2z¢ S,. Assume xz€ S, to the contrary and
for definiteness take zwe V, and zwe V, (Figure 3). We note first

S, R-V

Vz
FIGURE 3

that ywe V,, for ywe V,=yze S,. Moreover, ywe¢ V,, for ywe V,
& xye V, contradict A2, and yweV, & a2ye S,UR°’ contradict the
definition of S, along with A3. Hence yweR — V. Now if
are V, then aye R and hence (since ywe R—V) awe R; and if
wa € V, then zae R and hence (since xzze€ R— V) xac R. Since swe V,
requires either axKaxw with ax eV, or swKwa with wae V,, and
since awx € V, contradicts axzKxw (since aw € R) and wa € V, contradicts
xwKwa (since xa € R), the proof is complete.
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