DIRECTED GRAPHS AS UNIONS OF PARTIAL ORDERS

PETER C. FISHBURN AND JOEL H. SPENCER

The index of an irreflexive binary relation R is the smallest cardinal number $\sigma(R)$ such that R equals the union of $\sigma(R)$ partial orders. With s(n) the largest index for an R defined on n points, it is shown that $s(n)/\log_2 n \to 1$ as $n \to \infty$. The index function is examined for symmetric R's and almost transitive R's, and a characterization for $\sigma(R) \le 2$ is presented. It is shown also that

 $\inf \{n: s(n) > 3\} \le 13$,

but the exact value of $\inf\{n: s(n) > 3\}$ is presently unknown.

1. Introduction. A binary relation on a set X is a subset of ordered pairs xy in $X \times X$. A directed graph (hereafter $digraph^1$) G = (X, R) is a nonempty set X and an irreflexive $(xx \notin R)$ binary relation R on X. If $\phi \subset Y \subseteq X$ then $G \mid Y$ is the digraph obtained from G = (X, R) by deleting all points in X-Y.

A partial order P on X is an irreflexive and transitive $(xy \in P \& yz \in P \Rightarrow xz \in P)$ binary relation on X. A digraph G = (X, R) is resolved by a set of partial orders on X if and only if R equals the union of the partial orders in the set. Since $\{xy\}$ is a partial order when $xy \in R$, every G is resolved by some set of partial orders.

The $index^2$ of a digraph G=(X,R) is the smallest cardinal number $\sigma(R)$ such that R is resolved by $\sigma(R)$ partial orders on X. Clearly $\sigma(R)=1$ if and only if R is a partial order. $\sigma(\{ab,ba\})=2$, and $\sigma(R)=3$ for the cyclic triangle $R=\{ab,bc,ca\}$. The smallest X that we know of that admits an R with $\sigma(R)=4$ has 13 points. (See Figure 1.) In connection with a later characterization of $\sigma \leq 2$ we present an R with $\sigma(R)=2$ where R cannot be the union of two disjoint partial orders.

Our definition of $\sigma(R)$ is motivated by Dushnik and Miller's definition [2] of the dimension of a partial order P on X as the smallest cardinal number D(P) such that P equals the intersection of D(P) linear orders on X. A linear order L on X is a complete $(x \neq y \Rightarrow xy \in L)$ or $yx \in L$ partial order, and a chain in X is a linear

¹ We shall sometimes refer to a binary relation as a digraph, omitting explicit mention of the set on which the relation is defined.

² It is tempting to use "dimension" instead of "index," but since the former term is used for a number of other concepts in the theory of binary relations we favor the latter here. It would be proper to write $\sigma(G)$ instead of $\sigma(R)$, but since $\sigma(R) = \sigma(R')$ if R is isomorphic to R' the specific omission of X will cause no problems.

order on a subset of X. A number of facts about D(P) are summarized in [1], which gives other references.

This paper examines the index function σ for digraphs. The next section focuses on large values for $\sigma(R)$. Our first theorem, based on a theorem in Folkman [4], shows that $\sigma(R)$ can be arbitrarily large for both symmetric $(xy \in R \Rightarrow yx \in R)$ and asymmetric $(xy \in R \Rightarrow yx \notin R)$ digraphs. The second theorem examines the behavior of σ in the following way. Let

$$s(n) = \sup \{ \sigma(R) : R \text{ is an irreflexive binary relation on } n \text{ points} \}$$

the largest σ for a digraph with n points. When u is a real-valued function on $\{1, 2, \cdots\}$ and u(n) remains bounded as n gets large, we write u=0(1) according to popular convention. Theorem 2 states that

$$\log_2 n - \frac{1}{2} \log_2 \log_2 n + 0$$
 $(1) \ge s(n) \ge \log_2 n - \frac{3}{2} \log_2 \log_2 n - 0$ (1) .

This gives another proof that σ can be arbitrarily large, and shows that $s(n)/\log_2(n)$ approaches 1 as n gets large.

The rest of the paper is mostly concerned with small values of σ . Section 3 presents an (X,R) with |X|=13 and $\sigma(R)=4$. We do not presently know the smallest X that admits an R with $\sigma(R)=4$.

Symmetric digraphs (X, S) are examined in § 4, where we give a necessary and sufficient condition for $\sigma(S) \leq 2$. Suppose that P is a partial order on X and

$$S = \{xy \colon xy \in X \times X \ \& \ x \neq y \ \& \ xy \notin P \ \& \ yx \notin P\}$$
.

Then S is a symmetric digraph. We note that when S is defined in this way, then $D(P) \leq 2$ if and only if $\sigma(S) \leq 2$, and

$$D(P) \leq n \Rightarrow \sigma(S) \leq 2(n-1)$$
.

The question of whether $\sigma(S) \leq n \Rightarrow D(P) \leq f(n)$ for some function f is presently open.

A binary relation R is almost transitive if and only if $(ab \in R \& bc \in R \& a \neq c) \Rightarrow ac \in R$. Section 5 proves that $\sigma(R) \leq 2$ when R is an almost transitive digraph.

Section 6 then gives a general characterization of $\sigma(R) \leq 2$ that is stated in terms of a partition of the subset of R whose elements

³ Harary, Norman and Cartwright [7, p. 7] call this transitivity, but we use the modifier to distinguish it from the more common use of "transitivity" in which a, b and c do not have to be distinct.

are involved in nontransitive adjacent pairs such as xy, $yz \in R$ & $xz \notin R$.

2. Digraphs with large indices.

THEOREM 1. If n is a positive integer then there are asymmetric and symmetric digraphs whose indices exceed n.

Our proof is based on a specialization of Theorem 2 in Folkman [4]. A graph (X, E) is a nonempty set X and a set E of unordered pairs $\{x, y\}$ with $x, y \in X$ and $x \neq y$. A triangle of (X, E) is a set $\{\{a, b\}, \{b, c\}, \{a, c\}\} \subseteq E$. A partition of X is a set of mutually disjoint subsets of X whose union equals X.

LEMMA 1 (Folkman). Let m be a positive integer. Then there is a graph (X, E) that includes no triangles, and every partition $\{C_1, \dots, C_k\}$ of X with $k \leq m$ contains a C_i such that $a, b \in C_i$ for some $\{a, b\} \in E$.

Proof of Theorem 1. Let (X, E) be such a graph for $m = 2^n$. Let (X, R) be any digraph for which $xy \in R$ or $yx \in R$ if and only if $\{x, y\} \in E$. Suppose that R is the union of partial orders P_1, \dots, P_n on X. Since E has no triangles, any subset of a P_i is a partial order and hence we can assume $P_i \cap P_j = \emptyset$ when $i \neq j$. Letting $A(x) = \{i : \text{ for some } y \in X, xy \in P_i\}$, partition X so that x and y are in the same element of the partition if and only if A(x) = A(y). The number of elements in the partition does not exceed 2^n . Thus, by Lemma 1, the partition contains an element Y with $x, y \in Y$ and $\{x, y\} \in E$. Then A(x) = A(y). Since $xy \in R$ or $yx \in R$, take $xy \in P_j$ for definiteness with $j \in A(x)$. Since $j \in A(y)$ also, there is a $z \in X$ such that $yz \in P_j$. Transitivity then implies that $xz \in P_j$ and hence that E includes a triangle, which contradicts our initial hypothesis. Therefore $\sigma(R) > n$. By the definition of R it can be taken to be either asymmetric or symmetric (or neither).

Henceforth in this section all logarithms are to base 2 unless indicated otherwise. $[r] = (\text{largest integer} \leq r)$ and $\{r\} = (\text{smallest integer} \geq r)$.

Theorem 2. $\log n - 1/2\log\log n + 0$ $(1) \ge s(n) \ge \log n - 3/2\log\log n - 0$ (1).

We show first the upper bound, using two preparatory lemmas.

LEMMA 2. In any digraph G = (H, R) with |H| = m there exists $D \subseteq H$ such that $|D| \ge \{\log_4 m\} = \{1/2 \log m\}$ and $\sigma(G|D) \le 2$.

Proof. We use induction on m, the lemma being obvious for small values of m. Fix $x \in H$. Split $H^* = H - \{x\}$ into four parts:

$$egin{aligned} T_1 &= \{y \in H^* \colon xy
otin R & yx
otin R \} & S_1 &= arnothing \ T_2 &= \{y \in H^* \colon xy \in R & yx
otin R \} & S_2 &= \{x\} imes D_2 \ T_3 &= \{y \in H^* \colon xy
otin R & yx
otin R \} & S_3 &= D_3 imes \{x\} \ T_4 &= \{y \in H^* \colon xy
otin R & yx
otin R & S_4 &= \{x\} imes D_4 \ , \ S_4'' &= D_4 imes \{x\} \ . \end{aligned}$$

Some $|T_i| \ge \{(m-1)/4\}$. By induction find $D_i \subseteq T_i$ with

$$|D_i| \ge \{\log_4 |T_i|\} \ge \{\log_4 \{(m-1)/4\}\} = \{\log_4 m\} - 1$$

and $G \mid D_i = P_1 \cup P_2$. Then set $D = D_i \cup \{x\}$. $G \mid D = (P_1 \cup S_i) \cup (P_2 \cup S_i)$ except for i = 4 when $G \mid D = (P_1 \cup S_4') \cup (P_2 \cup S_4'')$.

LEMMA 3. In any digraph G = (X, R) with |X| = n there is a partition $\{D_1, \dots, D_t\}$ of X such that $t < 3n/\log n$ and $\sigma(G \mid D_i) \leq 2$ for each i.

Proof. Given G, by Lemma 2 find D_1 such that

$$|D_1| = x_1 \ge \{\log_4 n\}$$
.

By induction find D_i such that

$$|D_i| = x_i \ge \left\{\log_4\left(n - \sum_{i=1}^{i-1} x_i\right)\right\}$$
 .

From elementary calculus we can show $\sum_{i=1}^{t} x_i \geq n$ for

$$t \leq (2+\varepsilon)n/\log n$$
.

We now show the upper bound for Theorem 2. Let G=(X,R) with |X|=n. Take D_1, \dots, D_t as in Lemma 3. Let $\{A_i^*, B_i^*\}$ be a partition of $\{1, \dots, t\}$ for $i=1, \dots, s$ such that for all $1 \leq j \neq k \leq t$ there exists $i, 1 \leq i \leq s$, such that $j \in A_i^*$ & $k \in B_i^*$. By Spencer [12] we may take

$$s = \log t + 1/2 \log \log t + 0(1) \le \log n - 1/2 \log \log n + 0(1)$$
.

 $\{A_i^*, B_i^*\}$ induces a partition $\{A_i, B_i\}$ of X with

$$A_i = igcup_{j \in A_i^*} D_j \;, \qquad B_i = igcup_{j \in B_i^*} D_j \;.$$

Then set

$$P_i = \{xy : x \in A_i \& y \in B_i \& xy \in R\} \text{ for } i = 1, \dots, s.$$

Since $\sigma(G \mid D_i) \leq 2$, $G \mid D_i = P_i' \cup P_i''$. Set

$$P' = \bigcup_{i=1}^{s} P'_{i}, \ P'' = \bigcup_{i=1}^{s} P''_{i}.$$

Then $R = P' \cup P'' \cup P_1 \cup \cdots \cup P_s$, giving the upper bound of Theorem 2.

We turn to the lower bound of the theorem, again using two preliminary lemmas. A complete asymmetric digraph is a tournament. We shall show that a "random" tournament T=(X,R) with |X|=n has $\sigma(T) \geq \log n - 3/2 \log \log n - 0(1)$. Intuitively speaking, we show that all $P \subseteq T$ are essentially bipartite.

Let T^n be the set of tournaments with $X=\{1,\,2,\,\cdots,\,n\}$. We say that $T=(X,\,R)\in T^n$ has property α if and only if there are A, $B\subseteq X$ with $|A|=|B|\geq 3$ log n and $A\times B\subseteq R$. T has property β if and only if there is an $A\subseteq X$ and a linear order L on A such that $|A|\geq (\log n)^2$ and

(*)
$$|R \cap L| \leq \frac{1}{3} \left(\frac{|A|}{2} \right).$$

LEMMA 4. For n sufficiently large there exists $T \in T^n$ satisfying neither property α nor property β .

Proof. If $T \in T^n$ has property α , there are $A, B \subseteq X$ with $|A| = |B| = [3 \log n]$ and $A \times B \subseteq R$. Set $t = [3 \log n]$. For fixed A and B, 2^{-t^2} is the proportion of $T \in T^n$ that satisfy this condition. There are less than n^{2t} choices of A and B, so less than $n^{2t}2^{-t^2}$ of the $T \in T^n$ satisfy α . $n^{2t}2^{-t^2} \to 0$ as $n \to \infty$.

If $T \in T^n$ has property β , there exists $A \subseteq X$ and L on A such that $|A| = [(\log n)^2]$ and (*) holds. There are less than $n^{(\log n)^2}$ choices of A and then $[(\log n)^2]!$ choices of L. Given A and L, the proportion of $T \in T^n$ satisfying (*) is the probability of at most $\binom{t}{2}/3$ heads in $\binom{t}{2}$ flips of a fair coin where $t = |A| \sim (\log n)^2$. This probability is approximately $p^{-\binom{t}{2}}$ where $p = 3^{1/3}$ $(3/2)^{2/3} > 1$. Thus the proportion of $T \in T^n$ satisfying β is less than

$$n^{(\log n)^2}[(\log n)^2]! p^{-\binom{t}{2}}, \text{ which } \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Thus for n sufficiently large some $T \in T^n$ can satisfy neither α nor β .

 $^{^4}$ See Moon [9] for extensive discussion of tournaments. See also [3, 10, 11] for resulted to the present paper.

LEMMA 5. If $T_1, \dots, T_n \subseteq \{1, \dots, s\}$ then there are $n/\binom{s}{s/2}$ T_i which are mutually comparable.

Proof. We use a technique due to Lubell [8]. There are s! maximal chains of subsets of $\{1, \dots, s\}$ under the ordering of \subset . If $|T_i| = a$ then T_i is in a! $(s-a)! \ge (s/2)!^2 = s!/\binom{s}{s/2}$ maximal chains. Thus some maximal chain must contain $n[s!/\binom{s}{s/2}]/s!$ T_i .

In the following proof of the lower bound of Theorem 2 we use the fact that $1/\binom{s}{s/2} \sim \sqrt{\pi/2} \sqrt{s} 2^{-s}$.

Let G = (X, R) be a tournament that satisfies neither α nor β (Lemma 4). Suppose that $R = P_1 \cup \cdots \cup P_s$. Define

$$egin{align} W_i &= \{x \in X \colon |\{y \in X \colon xy \in P_i\}| > 3 \ \log n\} \ L_i &= \{x \in X \colon |\{y \in X \colon yx \in P_i\}| > 3 \ \log n\} \ R_i &= X - W_i - L_i \ \end{pmatrix}$$

for $1 \le i \le s$. (We split X into winners, losers, and the rest.) By Lemma 4, $W_i \cap L_i = \varnothing$. For $x \in X$ set

$$T_x = \{i: x \in W_i \cup R_i\} \subseteq \{1, \dots, s\}$$
.

By Lemma 5 find $V \subseteq X$ such that $|V| \ge n \sqrt{\pi/2} \sqrt{s} \ 2^{-s}$ and $T_x \subseteq T_y$ or $T_y \subseteq T_x$ whenever $x, y \in V$. Induce a linear order L on V by setting $xy \in L$ if $T_x \subset T_y$: when $T_x = T_y$, L is defined in any fixed manner.

Now assume $s < \log n - 3/2 \log \log n - 7$. Then $|V| \ge 2^7 \sqrt{\pi/2} (\log n)^2$. Set

$$Z_i = L \cap P_i$$
 $1 \leq i \leq s$.

Given $xy \in Z_i$, $T_x \subseteq T_y$ so that we cannot have $x \in W_i$ & $y \in L_i$. And since $W_i \cap L_i = \emptyset$ we cannot have $x \in L_i$ & $y \in W_i$. Therefore

$$Z_i = \{xy \in Z_i \colon x \text{ or } y \in R_i\} \cup \{xy \in Z_i \colon x, y \in W_i\} \cup \{xy \in Z_i \colon x, y \in L_i\}$$
.

There are at most $6 \log n \mid V \mid$, $3 \log n \mid V \mid$ and $3 \log n \mid V \mid$ ordered pairs in the first, second and third parts respectively of this decomposition of Z_i . Thus $|Z_i| \leq 12 \log n \mid V \mid$. Since G does not have property β it follows that

$$rac{1}{3}ig(egin{array}{c} \mid V \mid \ 2 \end{pmatrix} \leqq \mid R \cap L \mid \leqq \sum\limits_{i=1}^{n} \mid Z_{i} \mid \leqq 12 \ (\log \, n)^{\scriptscriptstyle 2} \mid V \mid$$

and hence that $|V| \le 72 (\log n)^2 + 1$. Since this contradicts $|V| \ge 2^7 \sqrt{\pi/2} (\log n)^2$ it must be true that $s \ge \log n - 3/2 \log \log n - 0(1)$.

⁵ T_i and T_j are mutually comparable if and only if $T_i \subseteq T_j$ or $T_j \subseteq T_i$.

This completes the proof of Theorem 2.

If a sufficiently good bound could be placed on

$$\{xy\in P_i\colon \ x\ \text{ or }\ y\in R_i\ \text{ or }\ x,\,y\in W_i\ \text{ or }\ x,\,y\in L_i\}$$

then one could prove $s(n) = \log n - 1/2 \log \log n + o(\log \log n)$. One might even show that $s(n) = \log n - 1/2 \log \log n + o(1)$.

3. A digraph with $\sigma=4$ and |X|=13. Although the theorems of the preceding section show that there are digraphs with large indices, they are of little use in attempting to discover the smallest X that admits an R for which $\sigma(R)=n$. Figure 1 shows the smallest X that we know of for which $\sigma(R)=4$.

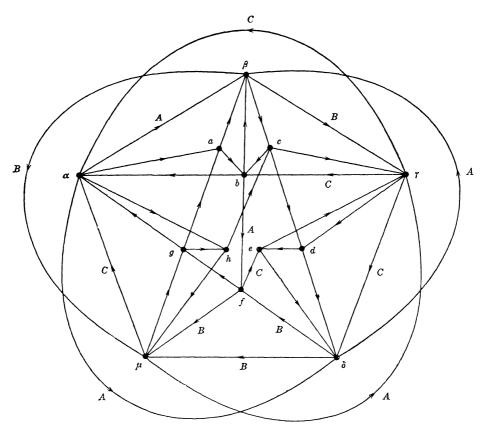


FIGURE 1

Assume that $\sigma(R)=3$ for Figure 1, with A, B and C three partial orders whose union equals R. Then one of A, B and C must contain exactly one of $\alpha\beta$, $\beta\gamma$, $\gamma\delta$, $\delta\mu$ and $\mu\alpha$ and the other two must each contain exactly two of these ordered pairs in alternating fashion.

Suppose for example that $\alpha\beta \in A$, $\beta\gamma \in B$, $\gamma\delta \in C$, $\delta\mu \in B$, $\mu\alpha \in C$. Then $\gamma\alpha$, $\delta\beta$, $\mu\gamma$, $\alpha\delta$, and $\beta\mu$ must be respectively in C, A, A, and B. Then $\gamma b \in C$ and δf , $f \mu \in B$. Since $\gamma b \in C$ and $f \mu \in B$, $bf \in A$. Since $bf \in A$ and $\delta f \in B$, $f \in C$. By the cyclic triangle $\{fe, e\delta, \delta f\}$, $e\delta$ must be in A. But since $\delta\beta \in A$ this implies $e\beta \in A$, which is false. A similar contradiction to $\sigma = 3$ is obtained when any alternative assignment is made for $\alpha\beta$, $\beta\gamma$, ..., $\mu\alpha$.

4. Indices of symmetric digraphs. In this section we consider symmetric $(xy \in S \Rightarrow yx \in S)$ digraphs (X, S). For any binary relation $R, R^* = \{xy: yx \in R\}$, the converse or dual of R.

A graph (X, E) is a comparability graph if and only if there is a partial order P on X such that $\{x, y\} \in E$ if and only if $xy \in P \cup P^*$. Ghouila-Houri [5] and Gilmore and Hoffman [6] provide characterizations of comparability graphs. When (X, S) is a symmetric digraph, (X, E(S)) will denote the graph in which $\{x, y\} \in E(S)$ if and only if $xy \in S$.

THEOREM 3. Suppose that (X, S) is a symmetric digraph. Then $\sigma(S) \leq 2$ if and only if (X, E(S)) is a comparability graph.

Proof. If (X, E(S)) is a comparability graph then $S = P \cup P^*$ for a partial order P, and thus $\sigma(S) \leq 2$. Conversely, if $S = P_1 \cup P_2$ with P_1 and P_2 partial orders, then $P_2 = P_1^*$.

In [1] it is shown that if (X,P) is a transitive digraph (so that P is a partial order) and if $S=\{xy\colon x\neq y\ \&\ xy\notin P\cup P^*\}$ then $D(P)\leq 2$ if and only if (X,E(S)) is a comparability graph. Hence, as a corollary to Theorem 3 we have $D(P)\leq 2$ if and only if $\sigma(S)\leq 2$. Our next theorem extends this in one direction.

Theorem 4. Suppose that P on X is a partial order and let $S=\{xy\colon x\neq y\ \&\ xy\not\in P\cup P^*\}$. Then $D(P)\leqq n\Rightarrow \sigma(S)\leqq 2(n-1)$ for n>1.

Proof. The theorem is true for n=2. Using induction, assume it's true for all n < m and suppose D(P) = m with $P = \bigcap_{i=1}^{m} L_i$ where each L_i is a linear order. Let $P' = \bigcap_{i=1}^{m} L_i$ and

$$S' = \{xy : x \neq y \& xy \notin P' \cup (P')^*\}$$
.

Since $D(P') \leq m-1$, the induction hypothesis gives $\sigma(S') \leq 2(m-2)$. Clearly $S' \subseteq S$ and $S-S' = (P' \cap L_1^*) \cup ((P')^* \cap L_1)$. Since $P' \cap L_1^*$ is a partial order (the intersection of two partial orders) and $(P')^* \cap L_1$ is a partial order, $\sigma(S) \leq \sigma(S') + 2 \leq 2(m-2) + 2 = 2(m-1)$.

5. Almost transitive digraphs. The proof of the next theorem has several similarities to Szpilrajn's proof [13] of the theorem that any partial order P on X can be extended to a linear order L with $P \subseteq L$. We recall that R is almost transitive if and only if $(ab \in R \& bc \in R \& a \neq c) \Rightarrow ac \in R$.

THEOREM 5. $\sigma(R) \leq 2$ if (X, R) is an almost transitive digraph.

Proof. Assume that (X, R) is an almost transitive digraph. Let $A = \{ab \colon ab \in R \& ba \notin R\}$, the asymmetric part of R. Let $A^+ = \{ab \colon ab \in A \text{ or } \{aa_1, a_1a_2, \cdots, a_nb\} \subseteq A \text{ for distinct } a_1, \cdots, a_n \text{ in } X \text{ that are different from } a \text{ and } b\}$, the almost transitive closure of A. Clearly $A^+ \subseteq R$ and A^+ is almost transitive.

To show that A^+ is a partial order it suffices to show that it is asymmetric. To the contrary suppose that $xy \in A^+$ and $yx \in A^+$. Then from the definition of A^+ and almost transitivity for R it follows easily that there is a $c \in X$ for which $cx \in A$ and $xc \in R$, which contradicts the definition of A. Hence A^+ is a partial order.

Let $\mathscr{S} = \{P \colon P \text{ is a partial order on } X \& A^+ \subseteq P \subseteq R\}$. It follows easily from Zorn's lemma that there is a $P^* \in \mathscr{S}$ such that $P^* \subset P$ for no $P \in \mathscr{S}$. Letting P^* be maximal in this sense we now prove that

$$ab, ba \in R \Longrightarrow ab \in P^* \text{ or } ba \in P^*$$
.

To the contrary suppose that each of ab and ba is in R and neither is in P^* . Then let

$$W = \{xy : x \neq y \& (xa \in P^* \text{ or } x = a) \& (by \in P^* \text{ or } y = b)\}$$
,

and let $V = P^* \cup W$, so that $P^* \subset V$. We show that V is a partial order (clearly $A^+ \subseteq V \subseteq R$), thus contradicting the maximality of P^* . V is irreflexive since P^* and W are irreflexive. For transitivity take $xy, yz \in V$. If both xy and yz are in P^* then $xz \in P^*$ by the transitivity of P^* .

Suppose next that $xy \in P^*$ and $yz \in W$. The latter gives $(ya \in P^*$ or y = a), from which $xa \in P^*$ follows, and it gives also $(bz \in P^*$ or z = b), from which $xz \in V$ follows unless x = z. But if x = z we have $xa \in P^*$ and $(bx \in P^*$ or x = b), which give $ba \in P^*$, contradicting the hypothesis that $ba \notin P^*$. Hence $xy \in P^*$ & $yz \in W \Rightarrow xz \in V$. Similarly, $xy \in W$ & $yz \in P^* \Rightarrow xz \in V$.

The final case for transitivity is xy, $yz \in W$. Then $(xa \in P^* \text{ or } x = a)$ and $(bz \in P^* \text{ or } z = b)$ so that $xz \in W$ unless x = z. But if x = z then $[(xa \in P^* \text{ or } x = a) \& (bx \in P^* \text{ or } x = b)] \rightarrow (ba \in P^* \text{ or } b = a)$, which is false. Hence V is a partial order, a contradiction to the

maximality of P^* , and therefore

$$ab, ba \in R \Longrightarrow ab \in P^* \text{ or } ba \in P^*$$
.

Finally, let $Q=R-P^*$ so that $R=P^*\cup Q$. Q is irreflexive since R is irreflexive. Suppose that $xy,\,yz\in Q$. Then, since both xy and yz are in R but not $A,\,yx$ and zy are in R and must be in P^* by the preceding analysis. Therefore $zx\in P^*$ and $z\neq x$. Then, by almost transitivity of $R,\,xz\in R$ and thus $xz\in Q$ since P^* is asymmetric.

Thus $R = P^* \cup Q$, the union of two partial orders.

6. A partition characterization for $\sigma \leq 2$. Given a digraph (X, R) let K be the set of all ordered pairs of pairs in R that deny transitivity, so that

xyKyz if and only if $xy \in R$ & $yz \in R$ & $xz \notin R$,

and let V be the subset of R involved in these intransitivities so that

$$V = \{xy: xyKyz \text{ or } zxKxy \text{ for some } z \in X\}$$
.

Suppose that $\sigma(R) \leq 2$. If xyKyz then xy and yz must be in different resolving partial orders, so that the digraph (V, K) must be bipartite or 2-colorable. Moreover, if xy and yz are in V and in the same resolving partial order and if $xz \in V$ also, then transitivity requires that xz be in this partial order. These two necessary conditions for $\sigma(R) \leq 2$ are reflected in A1 and A2 of Theorem 6. Their insufficiency for $\sigma(R) \leq 2$ is noted later. (Note that $\sigma(R) = 1$ if and only if $V = \emptyset$.)

THEOREM 6. Suppose that (X, R) is a digraph and $V \neq \emptyset$. Then $\sigma(R) = 2$ if and only if V can be partitioned into V_1 and V_2 so that

A1. $xyKyz \Rightarrow xy$ and yz are in different V_i ,

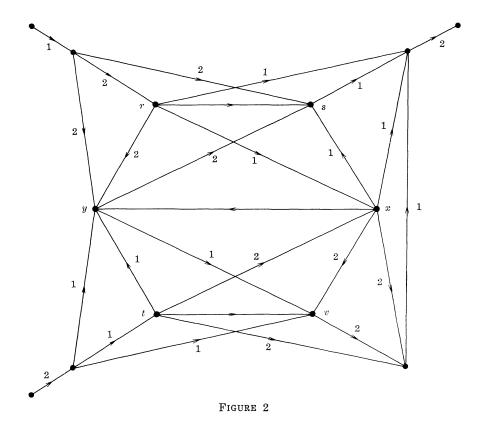
A2. $xy, yz \in V_i \& xz \in V \Rightarrow xz \in V_i$,

A3. $xy \in R - V \Rightarrow (1)$ and (2) do not hold simultaneously:

- (1) $(yz \in V_2 \& xz \in V_1)$ or $(zx \in V_2 \& zy \in V_1)$, for some $z \in X$,
- (2) $(yw \in V_1 \& xw \in V_2)$ or $(wx \in V_1 \& wy \in V_2)$, for some $w \in X$.

If $R = P_1 \cup P_2$ then $V_i = P_i \cap V$ for i = 1, 2 are easily seen to satisfy A1 through A3, and $V_1 \cap V_2 = \emptyset$.

Before proving sufficiency we show that A1 and A2 are not sufficient for $\sigma = 2$. All directed edges in the 13-point asymmetric



digraph of Figure 2 are in V except for xy, rs and tv, and A1 and A2 hold. Labels 1 and 2 for P_1 and P_2 are assigned to the edges in V in the only way consistent with A1 and A2, beginning with P_1 in the upper left corner. For $\sigma(R)=2$ we require rs and tv in both P_1 and P_2 , but xy violates A3 and cannot be assigned either

$$P_1$$
 [$rx \in P_1$ & $ry \notin P_1$] or P_2 [$tx \in P_2$ & $ty \notin P_2$].

By deleting the edge xy from Figure 2 we obtain an R with $\sigma(R) = 2$ where R is not the union of two *disjoint* partial orders.

Sufficiency Proof for Theorem 6. With $V \neq \emptyset$ let A1, A2 and A3 hold. For i=1,2 let

$$S_i = \{xy \colon xy \in R - V \& (i) \text{ holds} \}$$
 .

Let
$$R^{\scriptscriptstyle 0}=R-V-S_{\scriptscriptstyle 1}-S_{\scriptscriptstyle 2}$$
 and for $i=1,2$ define $P_{\scriptscriptstyle i}$ by

$$P_i = V_i \cup S_i \cup R^{\scriptscriptstyle 0}$$
 .

Since $P_i \subseteq R$, it is irreflexive. We now prove that P_1 is transitive. The proof for P_2 is similar.

Assume that xy, $yz \in P_1$. Then $xz \in R$, for if both xy and yz are in V_1 then $xz \in R$ by A1, and if one of xy and yz is in $S_1 \cup R^0$ then $xz \in R$ by the definitions. Thus $xz \in P_1$ unless $xz \in V_2 \cup S_2$. $xz \in V_2$ is contradicted in all cases:

- 1. $xy, yz \in V_1 \Rightarrow xz \notin V_2$, by A2;
- 2. $xy \in V_1 \& yz \in S_1 \implies xz \notin V_2$, by A3;
- 3. $xy \in V_1 \& yz \in R^0 \Rightarrow xz \notin V_2$, by A3;
- 4. xy, $yz \in S_1 \cup R^{\circ}$. Then $ax \in R \Rightarrow ay \in R \Rightarrow az \in R$ and $za \in R \Rightarrow ya \in R \Rightarrow xa \in R$. Hence neither axKxz nor xzKza can hold. It remains to show that $xz \notin S_2$. Assume $xz \in S_2$ to the contrary and for definiteness take $zw \in V_1$ and $xw \in V_2$ (Figure 3). We note first

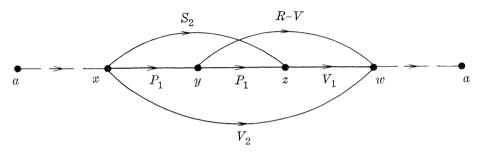


FIGURE 3

that $yw \notin V_2$, for $yw \in V_2 \Rightarrow yz \in S_2$. Moreover, $yw \notin V_1$, for $yw \in V_1$ & $xy \in V_1$ contradict A2, and $yw \in V_1$ & $xy \in S_1 \cup R^0$ contradict the definition of S_2 along with A3. Hence $yw \in R - V$. Now if $ax \in V_1$ then $ay \in R$ and hence (since $yw \in R - V$) $aw \in R$; and if $wa \in V_1$ then $za \in R$ and hence (since $xz \in R - V$) $xa \in R$. Since $xw \in V_2$ requires either axKxw with $ax \in V_1$ or xwKwa with $wa \in V_1$, and since $ax \in V_1$ contradicts axKxw (since $aw \in R$) and $wa \in V_1$ contradicts xwKwa (since $xa \in R$), the proof is complete.

REFERENCES

- 1. K. A. Baker, P. C. Fishburn, and F. S. Roberts, *Partial Orders of Dimension* 2, *Interval Orders*, and *Interval Graphs*, RAND Paper P-4376, The RAND Corporation, 1970.
- 2. B. Dushnik and E. W. Miller, Partially Ordered Sets, Amer. J. Math., 63 (1941), 600-610.
- 3. P. Erdös and L. Moser, On the Representation of Directed Graphs as Unions of Orderings, Math. Inst. Hung. Acad. Sci., 9 (1964), 125-132.
- 4. J. Folkman, Graphs with Monochromatic Complete Subgraphs in Every Edge Coloring, SIAM J. Appl. Math., 18 (1970), 19-24.
- 5. A. Ghouila-Houri, Caractérisation des graphes nonorientés dont on peut orienter les arêtes de manière à obtenir le graphe d'une relation d'ordre, C. R. Acad. Sci. Paris **254** (1962), 1370-1371.

- 6. P. C. Gilmore and A. J. Hoffman, A Characterization of Comparability Graphs and of Interval Graphs, Canad. J. Math., 16 (1964), 539-548.
- 7. F. Harary, R. Z. Norman, and D. Cartwright, Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, New York, 1965.
- 8. D. Lubell, A Short Proof of Sperner's Lemma, J. Combinatorial Theory, 1 (1966), 299.
- 9. J. W. Moon, Topics on Tournaments, Holt, New York, 1969.
- 10. K. B. Reid and E. T. Parker, Disproof of a conjecture of Erdös and Moser on tournaments, J. Combinatorial Theory, 9 (1970), 225-238..
- 11. J. Spencer, Notes on Combinatorial Mathematics: Transitive Subtournaments, RAND Memorandum RM-6156-PR, The RAND Corporation, 1969.
- 12. ——, Minimal Completely Separating Systems, J. Combinatorial Theory, 8 (1970), 446-447.
- 13. E. Szpilrajn, Sur extension de l'ordre partiel. Fundamenta Math., 16 (1930), 386-389.

Received July 22, 1970 and in revised form October 12, 1970.

THE INSTITUTE FOR ADVANCED STUDY AND THE RESEARCH ANALYSIS CORPORATION AND

THE RAND CORPORATION, SANTA MONICA