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A GELFAND REPRESENTATION THEORY FOR
C*-ALGEBRAS

CHARLES A. AKEMANN

Recent work by the author which was independently
duplicated in part by Giles and Eummer has made it possible
to generalize the Gelfand representation theorem for abelian
C-*algebras to the non-abelian case. Let A be a C-algebra
with unit. If A is abelian, it can be identified with the
algebra of all continuous complex-valued functions on its
maximal ideal space (with the hull-kernel topology). A less
precise way of looking at this result would be to say that
an abelian A is completely recoverable from the set of
maximal ideals and a certain structure thereon (in this case,
a topology). If we use the latter description as the basis for
a theory applicable to non-abelian A, we find immediately
that two changes are necessary. The set of maximal ideals
is replaced by the set of maximal left ideals, and secondly,
the structure defined thereon will not be a topology, though
it will have many similar properties when viewed correctly.
This paper shows how the C*-algebra is recovered from
the maximal left ideals (with structure).

I* Preliminaries. Consider the W*-algebra A**, the second
Banach space dual of A [9, p. 236]. There exists a central projection
zeA** which is the supremum of all the minimal projections in A**
[3, p. 278]. Set M^zA**. The minimal projections of M are in
one to one correspondence with the maximal left ideals of A [3, p. 280
and 9, p. 48], so that we can define a structure on this set of minimal
projections instead of directly on the maximal left ideals. Naturally
the first thing we "build" is the algebra M. We then single out a
class L of projections in M as the g-open projections as follows.
First note that we can consider AczM since AczA** and A—*zA is
a ^-isomorphism [9, p. 39]. (Also we can view M as the direct sum
of irreducible representations of A, one from each equivalence class.)
A projection p in M is g-open if there exists a closed left ideal I of
A such that the weak* closure I of I in M is of the form Mp. The
g-open projections are analogous to the open sets of a topology.

If A were abelian, M would be the algebra of all bounded com-
plex function on its maximal ideal space K. The g-open projections
would be characteristic functions of open sets of K for the hull-
kernel topology. A self-adjoint operator b in M actually lies in
4 ( c l ) if and only if the spectral projections of b corresponding to
open sets of real numbers are g-open projections in the above sense.
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This is a restatement of Gelfand's theorem since a function is con-
tinuous if and only if its inverse images of open sets are open.

We may now state an identical theorem for the non-abelian case.
The proof follows immediately from the addendum to [4] and
Theorem 11.17 of [3].

THEOREM L I . A self-adjoint operator beM lies in 4 ( c l ) if
and only if each spectral projection of b which corresponds to an
open subset of the real numbers is also a q-open projection.

This theorem says that we may reconstruct A from its set of
maximal left ideals together with the above defined structure. As a
corollary we note that if two algebras Aι and A2 have "isomorphic
structures" then they are isomorphic.

COROLLARY 1.2. Let A, and A2 be C""-algebras with Mi =
and Li the q-open projections in Mi (i = 1, 2). If there exists a *-iso-
morphism φ: M1—>M2 which maps Lγ onto L2y then φ\A1 is an iso-
morphism of Aγ onto A2

This paper extends these results to C*-algebras without unit
with appropriate modifications suggested by the abelian case. A
number of other " topological" results are proved, and counter-exam-
ples are given to close off several tempting avenues of approach.

To complete our terminology, we shall assume from now on that
A is a C*-algebra which may not have a unit. The above discussion
still applies to get zeA** and we set ikf=2A**. Identify A and
zAczM and call M the pure state g-space of A. (The terminology
is lifted from [11].) We have already defined g-open projections in
M, and their complements (in M) are called g-closed. A will denote
the algebra A with unit adjoined as in [9, p. 7]. Note that A is a
closed two-sided ideal in A of co-dimension one. Thus A* = A*0{λ/co},
where /«, is the unique pure state of A which vanishes on A. Also
the pure state g-space M of A is: M = j | f 0 {λloo}, with /oo(l~) =
1. In view of Theorem 11.17 of [3] all the properties of open or closed
projections in A** (as considered in [3 and 4]) carry over immediately
to corresponding properties of g-open or g-closed projections in M.

II* The problem of compactness• Although the notion of com-
pactness is vaguely introduced in [3], it is clear that a theory which
claims to generalize locally compact Hausdorff spaces should general-
ize the notion of a compact set.

DEFINITION Π.l. A projection p e M is q-compact if p is g-closed
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and there exists be A+ (= {a e A: a ^ 0}) with bp = p.

There are a number of conditions equivalent to compactness for
a set in a locally compact Hausdorff space. It would be desirable to
show that many of them can be extended to equivalent conditions
for g-compactness. The most desirable such condition would be:

Conjecture Π.2. A regular [10, p. 408] projection peM is com-
pact if for every family {pa} of g-closed projections such that the
family {paΛp} has the finite intersection property, then p f\ AaPa^O.

We shall prove this for certain p in Theorem II.6. The con-
jecture is false without the assumption of regularity (see Example
IV.5).

LEMMA Π.3. Suppose B is a C*-algebra, beB+, peB** a pro-
jection and {aa} c B an increasing net of positive elements with
|| &i/2 _ bll2aa\\-^0. Ifb^ p (considering BczB**),then\\p - aap\\^0.

Proof. S i n c e || δ 1 ' 2 - b1J2aa || r 0, c l e a r l y \\ (1 - aa) b(l- aa) || -- 0 .
S i n c e (1 - aa) b (1 - aa) ^ (1 - aa) p (1 - α α ) , w e g e t

||(1 - aa)p(l - O H = ||(1 - aa)pψ = \\p~ aap\\* >0.

LEMMA IL4. // p is q-closed for A and we consider A and M
us above with Ma M (hence pe M) and there exists be A+ with b^>p,
then p is q-closed in M.

Proof. Let K = (p A* p)+. Then K is σ(A*,A) closed by [3,
II.2]. If K is not σ(Ά*, A) closed, then there is a net {fa}cK with
\\fa\\aK with H/JI = 1 and fa-?f, σ(Ά*,Ά), for some /eA* with
11/11 = /(I) = 1. Since 1* = A* © {λ/J, we get / = /0 + λ/eo where
/o G A*+ and λ :> 0. For any c e A with c ^ p,

fo(c) - f(c) = lim/α(c) ^ ϊmί/β(p) - 1
a a

since each /α e K.
Now if l e i , then A* is σ(A*, A) closed in A*, so the conclusion

of this lemma is immediate. If 1 & A, let {ar} c A+ be an increasing
approximate unit. Then, by Lemma II.3, {ar} is an approximate unit
for p also. Thus given ε > 0 there exists c e A with c ^ p and
|| c || ^ 1 + e by Theorem 1.2 of [2] Hence /0(c) ^ 1 by the above.
Since ε > 0 was arbitrary, | |/ 0 | | = 1, so λ = 0, since

11/11 = ||/0|| + | λ | = i .
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Thus fe A*. Since {fa} c iΓ, K is α (A*, A) closed, and fa-?f in the
σ(Ά*,Ά) topology, we see that feK, so K is σ(A*, A) closed.

THEOREM II.5. If p is q-dosed and there exists be A with b^p,
then p is q-compact.

Proof. Since p is g-closed for A by Lemma II.4, there exist
{ba} c i , ba = aa + λαl with α f f G i , 1 Ξ> δα ̂  p and ba\ p in M [5,
proof of Prop. 1]. Thus each ba (and hence aa) commutes with p.
Since /«,(&«) -^ 0, there exists tf0 with U{ba) < 1/2. Thus λαo < 1/2
since foo(aaQ) = 0. Let #(£) be a continuous function which has g(t) = 1
for ί ^ 1/2, 0(0) = 0, 0 ^ flr(ί) ^ 1 for all t. Then <?(ααo) ̂  p. (Since
ααo, δαo and p all commute, we may view them as functions on a
common locally compact space; this makes the assertion clear.) Since
g{aa) e A, the theorem follows.

The construction in the proof of last theorem will not work for
all projections p in M having only the property that p ^ b e A, even
though it easily works whenever p is central.

THEOREM II.6. Suppose 1 e A and A is separable. Then Con-
jecture II. 2 holds for central projections pe M.

Proof. Suppose p satisfies the intersection condition of Con-
jecture Π.2. We need only show p is g-closed since l e i . If it is
not g-closed, let p be its closure [3, II. 11] and let q ^ p — p be a
minimal projection. As in [1] there exists a strictly positive element
α0 in {a e A: aq = qa = 0} = I, so we let pn be the spectral projection
of a0 corresponding to the interval [0, 1/n]. Since AnPnAp = 0,
there is some n0 with pnQ p = 0 by hypothesis. Since p is central, the
spectral projection x of aQ corresponding to [l/n0, &o) is g-closed and
x £> p. This contradicts xq = 0 and q <£ p.

THEOREM II.7. // p is q-compact, then p satisfies the intersection
condition of Conjecture Π.2.

Proof. Since p is also g-closed in M by Lemma II.4, the theorem
follows from [3, 11.10] for if {pa} are g-closed in M, then their q-
closures {pa} in M have no larger M component. (Recall that M =
I ® {λloo} with looM = {0}.) Thus if p f\ AaeJp Φ 0 for all finite sets

J, P Λ AaPa =£ 0, SO £ Λ AαPα ^ 0, SinCβ ^ Λ Pa = P A Pa-

Next we move in a different direction for a characterization of
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M. If A were an abelian C*-algebra of functions containing the
constants and separating the points of the topological space Ω, then
A consists of all continuous functions on Ω if and only if Ω is com-
pact. Following [11] we define a g-space to be an atomic TF*-algebra.
If M1 is a g-space and AaMίf is a weak* dense C*-subalgebra with
1 e A, we can define a g-open projection in Mι as a sup of range pro-
jections of elements of A. Naturally g-closed projections are com-
plements of g-open projections. If M1 = M, the two definitions coin-
cide.

THEOREM Π.8. // A is separable and Ad M1 as above, then there
is an A-preserving ^-isomorphism between M1 and M if and only if
the q-closed projections of Mt satisfy the intersection condition of
Conjecture IL2.

Proof. If Mx is *-isomorphic to M under an ^.-preserving map
the verification is routine. Now suppose the g-closed projections of
M1 satisfy the intersection condition. If every pure state of A ex-
tends to a normal state of M19 there is a nutural isomorphism be-
tween M1 and M which preserves A because of the definition of M as
a subset of A**. Thus let / be a pure state of A with no normal
extension to Afx. Let {a,j} c A be an increasing positive abelian [1]
approximate unit for {aeA: f(a*a + αα*) = 0}. Then let pjn be the
spectral projection of aa corresponding to the interval (1/n, °o).
Cleary V3 ,nPjn = 1 in M19 for if not, then (1 — Vi,ΛJ would be
one-dimensional, hence / could be extended to a normal functional on
M1 with support (1 — Vί\*Pi*) But {(1 — pjn}} is a decreasing net of
closed projections in Mι with Ai,n(l — V Pjn) = 0. Thus (1 — pjn) = 0
for some j and n* Hence a$ is invertible, so / = 0, a contradiction.

Ill* The Gelfand representation*

LEMMA III . l . If p is q-closed, pλ is q -compact, and pγp = 0,
then there exists ae A+ with \\a\\ = 1, ap = 0, and apγ = px.

Proof. Set At = {aeA: ap = pa = 0}. Consider A1dΆ. By
Lemma IL4, pγ is g-closed for Ά. Thus the unit ball of p1A^p1 = pxA?pL

•=• piΆ*p1 is compact for the σ(Ά*, Ά) topology, hence also for the weaker
0 (A1*,A1). Thus PιΆ*pι is σ(Άf,Ά) closed, so px is g-closed for Ά1

[3, II.2]. Now by [4, I.I] there exists aeΆt with | | α | | = l , ap.^p^
and ap2 = 0, where p2 is the one dimensional projection in Mι which
supports the pure state /«, which vanishes on AL. Since ap, = 0, a e A19

so ap — 0.
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This last Lemma generalizes Urysohn's Lemma. We now define
an analog for a continuous function.

DEFINITION III.2. A self-adjoint operator be M is q-contίnuous
if each spectral projection of b corresponding to an open subset of
the spectrum of b is also g-open.

Now we can state our best Gelfand representation theorem.

THEOREM III.3. The self-adjoint elements of A are exactly those
q-continuous elements b of M such that the spectral projections of b
corresponding to closed subsets of the spectrum of b which don't con-
tain 0 are q-compact (i.e., b "vanishes at °o ").

Proof. Consider A c A, Mc M. If be A, then be A, since be M.
But if p is the spectral projection of b corresponding to an open
subset U of the spectrum of 6, we consider two cases. First if
0 $ Uj then pe M, hence p is g-open since it is g-open for A by
hypothesis. Secondly if 0 e U, then the complement of U is closed
and doesn't contain 0, thus the spectral projection corresponding to
it is g-compact for A, hence g-closed for A by Lemma Π.4. Thus b is
g-continuous for A and Theorem I.I applies.

For the abelian case it is well-known that if B is a C*-algebra
of continuous bounded functiohs on a locally compact Hausdorff space
Ω such that the smallest topology on Ω making all be B continuous
agrees with the given topology, then B contains all continuous func-
tions vanishing at cχ> on Ω. A similar result is true in general.

THEOREM IIL4. Let Aλ be a C*-sv,balgebra of M such that the
q-open projections for Aγ in M are the same as the q-open projections
for A. Then Aγ Z) A and Aγ = A if 1 e A.

Proof. Let A2 = A Π Aγ. If p is g-open for A, then p = VaPa
where pa is g-open with g-compact closure. For each a, pa is also
Ax open, so there exists a net {ar

a} c Ax with 0 ̂  ar

a ] pa. By hypo-
1

thesis each ae Aλ is g-continuous, and since pa has compact closure,
Theorem III.3 applies to give {ar

a} a A, hence in A2. Thus p is A2

open. We now apply Theorem III.3 of [3] and get A2 = A. (Theorem
III.3 of [3] is stated for algebras with unit, but considering A2 and
A we get the result.)

Now if 1 G A, Theorem I.I gives that Ax c A, so A1 = A.
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Recall that one way of constructing the double centralizer ikf (A)
of A is to let M(A) be the idealizer of A in A**, i.e.,

ikf(A) = {be A**: bA+ Aba A} .

We first prove a lemma bringing M(A) into ikf.

LEMMA III.5. The mapping b-+bz is a ^-isomorphism of M(A)
into ikf.

Proof. Suppose b ̂  0 in ikf (A) and zb = 0. Then let a e A with
0 < a ̂  b. Then za = 0 since zα <̂  zδ = 0. This means a = 0, a
contradiction.

From now on consider M(A) as a subalgebra of ikf. A tempting
conjecture would be;

Conjecture III.6. The self-adjoint elements of M(A) are exactly
the g-continuous elements of ikf.

Our next result is one half of the conjecture.

THEOREM III.7. Every self-adjoint element of M{A) is q-
continuous.

Proof. Let {aa} c A be a positive increasing approximate unit
for A. Let b e ikf (A) be self-adjoint and let U be an open subset of
the spectrum of b with p the spectral projection of b corresponding to
U. Let {bn} be a sequence of continuous functions of b with 0 ̂  bn j p.
Then {bψajbi2) is a net in A which is ^ #> and converges to p. Thus
2> is g-open for A.

In [7] Dixmier introduces the ideal center of a C*-algebra which
is a C *-subalgebra of ikf (A) containing A. Dixmier constructs it in
A** but Lemma III.5 assures us the idea carries over to M as well.
We can characterize it in the obvious way.

COROLLARY III.8. The ideal center of A consists of exactly those
central elements of ikf which are q-continuous.

Proof. We need to show that if d is central in ikf and p-con-
tinuous and a e A, then da e A. Clearly we need only consider
d, a ̂  0 and \\d\\ — \\a\\ = 1. For λ > 0, the spectral projection p of
(da) corresponding to the interval [λ, oo) is less than or equal to the
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spectral projection of a corresponding to [λ, oo) which is g-compact
since ae A. By III.3 we need only show ad is g-continuous.

To show that (ad) is g-continuous, let (a, 0) be an open interval
and consider a and d as real functions on σ(ad) (the spectrum of ad).
Then let toe K = {t: a(t)d(t) e (a, β)}. For sufficiently small ε and d
we have U f] VaK, where U = {t: a(to) — ε < t < a(to) + s} and V =
{t; d(to) — δ < t < d(£0) + <5}. Since i£* is a union of open sets of the
form U f] Vy the spectral projection p of ad in Λf corresponding to
K is a union of projections corresponding to sets of the form U Π V.
But for any U and V as above, the spectral projections of (ad) cor-
responding to U and V are both g-open and they commute. Hence
their intersection corresponds to U Π V and it is g-open [3, II.7]. Thus
p is a union of g-open projections, hence it is g-open [3, II.5].

IV* Assorted results and examples* One interesting question
is: What are all the different C*-algebras which have a factor for
their pure state p-space? If M is countably decomposable, then the
question was answered in [13] where it was shown that the C*-
algebra must consist of exactly the compact operators in M (i.e.,
the C*-algebra generated by the minimal projections). We can slightly
extend this result.

THEOREM I V.I. Suppose M is a factor. Then A consists of
exactly the compact operators in M if any q-open projection p is
countably decomposable.

Proof. Let Ao = {a e A: ap = pa =a}. Then the pure state g-space
Mo of Ao is pMp. By [13] AQ consists of the compact operators in
pMp. Thus A contains all the compact operators in M by [9, p.85].
But if A is strictly larger than the compact operators, then they
form an ideal in A, so A has at least two inequivalent irreducible
representations. This contradicts the assumption that M is a factor.

Next is a theorem of the Stone-Weierstrass type.

THEOREM IV.2. Let BczA be a C*-suhalgebra which separates
the pure states of A and 0. // pBp is norm closed in M for each g-
closed projection p for A, then B = A.

Proof. By [3, III.2] M is also the pure state g-space for B. Let
pγ be the 5-closure of p in M (i.e., the smallest projection ^ p which
is g-closed for B). If pγ > p, then there is a minimal projection p2

in M with p2 ^ px - p. Let {ba} c B with 1 :> ba [ p2 in M. Then
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IIPAPIH = 1 for all a, but \\pbap\\-^0 since p is g-closed. By [3,
11.12] the map B-^pίBp1 has closed range, and by hypothesis the
map pJ5pγ ^ pBp has closed range also. But since p1 is the g-closure
of p for B, the map φ is 1 — 1. Thus φ~ι is continuous by the
closed graph theorem, and this contradicts UPAPIH = 1, \\pbap\\-^0.

The most difficult aspect of the g-theory is the existence of non-
regular projections, even in the best of circumstances [4, 1.2]. The
next result shows that some interesting projections are regular.

PROPOSITION IV.3. If pf is finite-dimensional, then p is regular.

Proof. Let p1 be the g-closure of p. Then p[ is finite dimen-
sional, so p[ is g-closed [3, II.8]. Hence p1 is g-open and g-closed, so
p[e A by [3,11.18]. By considering PiApίf we can assume pt = 1.
Let be A with | | 6 | | = 1 and suppose \\bp\\ < 1. This would be the
case if p were not regular. Since | | δ * δ | | = 1 and | | δ * δ p | | < l , we
can assume b > 0. Let p2 be the spectral projection of b correspond-
ing to the open interval (5, ©o), where || bp || < δ < 1. Then p2 is g-
open and p2 Φ 0, so p2 A p Φ 0 as follows. If p2 Λ p = 0, then
p[ V p' = 1. Since p' is finite dimensional, this implies that p2 is
finite dimensional. But then p2 e A, so we can get a minimal projec-
tion p3e A with p3 ^ p \ This contradicts p = 1. Now if # is a
pure state of A with #(p2 Λp) = 1, then

= g(p2bp2) ^

This contradicts the definition of δ.

The next proposition and example show how badly behaved non-
regular projections can be and how reasonable regular projections
are.

PROPOSITION IV.4. If pe M is regular, f a pure state of A,
be A with 6 Ξ> p and f(b) = 0, then f(p) = 0 (p — closure of p).

Proof. Let {aa} be an increasing positive approximate unit for
{aeA: /(α*α + aa*) — 0}. By Lemma II.3 and by [2, L2] we can
get {6J c A with bn ^ p, \\ bn\\ rg 1 + 1/n, f{bn) = 0. Let p, be the
support projection of /. If f(p) Φ 0, then there exists a pure state
g of A with g(p) = 1 and ^(^) ^ 0. By regularity and [10, 6.1]
there exists a net {gr} of states of A with gr—>g, σ(A*,A), and
0r(p) = 1 for all 7. Let 60 be a limit point of {δj for the weak*
topology of M, clearly | | 6 0 | | ^ 1. Since gr(bn) ^ gr(p) = 1 for all 7
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and all n, then g(bn) ^ 1 for all n. Hence g(b0) ^ 1. But ||δ0 + Pill = 1
since bnpι = 0 for all n implies 60£>i = 0 (and similarly pJ>0 = 0).
Hence g(bQ + pj >̂ 1 + g(pj > 1, contradicting the asssumption that

EXAMPLE IV.5. Let us work in the direct sum ΣϊU ®B(Hn) of
matrix algebras where dimension Hn = 2 for all w. Set

./l/nfl\ - / I 0\ - / 1 - 7 . (7,-τy1 '*

where {Ύn}n-i is an enumeration of the rationale between 0 and 1
which contains each rational an infinite number of times. Set
b = p + q and let A be the C*-algebra generated by a and b. Let
p1 be the range projection of a in M.

Conclusions from the example. (1) b Ξ> pι but there is no d e A+

with dp1 = pγ (c./., [12] page 11, line 11). (2) If / is the pure
state at oo for A, then f(b) = 0 but / ( P O ̂  0, so ^ is nonregular
by Proposition IV.4. (3) Let p2 be the support projection of / .
Then px + p2 satisfies the intersection condition of Conjecture II.2,
but p1 + p2 is not ^-closed.

If φ: Aγ —> A2 is a *-homomorphism of Ax onto ^42, we may easily
extend it to a normal *-homomorphism of M1 onto M2. However if
φ is not onto, this extension may not be possible. The natural re-
presentation of the continuous function on the interval [0,1] into the
algebra of all bounded operators on U [0,1] by φ{f)h — fh has no
such extension (the proof was communicated to me by R. Giles). In
order to place g-theory into a category theory setting, one must
restrict the class of allowable "morphisms" between two C*-algebras.
The following restriction is empty in the abelian case.

PROPOSITION IV.6. A *-homomorphism φ taking the C*-algebra
A1 into the C*-algebra A2 has a normal extension φ: M1—>M2 (neces-
sarily unique) if and only if φ is continuous for the topologies genera-
ted by the seminorms \\a\\f — f{a*a) for all pure states f of A1 (or
A2 for the topology on A2).

Proof. It ψ exists, the continuity is automatic for φ, hence for
φ. The converse follows immediately from [14, p. 3 of appendix].
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