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MATRIX CHARACTERIZATIONS OF
CIRCULAR-ARC GRAPHS

ALAN TUCKER

A graph G is a circular-arc graph if there is a one-to-one
correspondence between the vertices of G and a family of
arcs on a circle such that two distinct vertices are adjacent
when the corresponding arcs intersect. Circular-arc graphs
are characterized as graphs whose adjacency matrix has the
quasi-circular Γs property. Two interesting subclasses of
circular-arc graphs are also discussed proper circular-arc
graphs and graphs whose augmented adjacency matrix has
the circular Γs property.

Given a finite family S of nonempty sets, the intersection graph

G(S) has vertices corresponding to the sets of S and two distinct
vertices of G(S) are adjacent if and only if the corresponding sets of
S intersect. Suppose the graph G is isomorphic to G(S) (i.e., there
is a one-to-one correspondence between vertices which preserves
adjacency). Then S is called an intersection model for G. If S is a
family of arcs on a circle, G is called a circular-arc graph. See the
example in Figure 1. If, in addition, no arc of S contains another
arc, G is called a proper circular-arc graph (the graph in Figure la
is not a proper circular-arc graph). Interval graphs and proper
interval graphs are analogously defined. Lekkerkerker and Boland [10]
have given a structure theorem for interval graphs (in the spirit of
Kuratowski's famous characterization of planar graphs). Fulkerson
and Gross [4] characterized interval graphs as graphs whose dominant
clique-vertex incidence matrix ("dominant" means maximal) has the
consecutive Vs property for colums, that is, the rows of this matrix
can be permuted so that the Γs appear consecutively in each column.
They also gave [4] an efficient algorithm to test whether a (0,1)-
matrix has the consecutive Γs property for columns. For other
characterizations of interval graphs, see Gilmore and Hoffman [5]
and Lekkerkerker and Boland [10]. The study of interval graphs was
motivated by the central role they played in some work by Benzer
[1, 2] concering the molecular substructure of genes. More recently,
interval graphs have been applied to problems in archeology [8] and
ecology [3]. Proper interval graphs have been characterized by
Roberts [11, 12] with a structure theorem and as graphs whose
augmented adjacency matrix (defined below) has the consecutive Γs
property for columns. He showed that they were equivalent to the
indifference graphs of mathematical psychology.
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Figure la. G
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Figure lb. Circular-arc Model of G
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Figure lc. M*(G)
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The problem of characterizing circular-arc graphs was posed in
[6] and recently discussed in some detail by Klee [9]. Such graphs
may be applicable in testing for circular arrangements of genetic
molecules (see [9]). Circular-arc and proper circular-arc graphs also
are of interest to workers in coding theory because of their relation
to "circular" codes [7]. In this paper, we shall characterize circular-
arc and proper circular-arc graphs in terms of their augmented
adjacency matrices. In a forthcoming paper [14], we shall present
structure theorems for proper circular-arc graphs and for the related
unit circular-arc graphs.

We shall deal throughout with graphs in which the set of vertices
is finite and the adjacency relation is symmetric and irreflexive (no
loops). A clique is a subset of vertices in which every two (distinct)
vertices are adjacent. Associated with a graph G is an adjacency
matrix M(G) defined with entry (i, j) — 1 if vertices x{ and x3- are
adjacent, and =0 otherwise. Note that M(G) is symmetric and has
0's on the main diagonal. We define ikf*(G), the augmented adjacency
matrix, to be M*(G) = M(G) + /, i.e., M(G) with l's added on the
main diagonal. A (0, l)-matrix is said to have the circular Vs pro-
perty for columns if the rows of M can be permuted so that the l's
in each column are circular, that is, appear in a circularly consecu-
tive fashion (think of the matrix as wrapped around a cylinder; see
the example in Figure lc). The consecutive and circular 0's proper-
ties for columns are similarly defined. Note that a (0, l)-matrix has
the circular l's property for columns if and only if it has the circular
0's property for columns.

THEOREM 1. Let Mλ be a (0, l)-matrix. Form the matrix M2from
Mγ by complementing (interchanging 0?s and Vs) those columns with a
1 in the first row of Mγ. Then Mί has the circular Vs property for
columns if and only if M2 has the consecutive Vs property for columns.

Proof. If the rows of a matrix are arranged so that the l's
(and hence, the 0's) in each column are circular, then complementing
any set of columns yields a matrix with this same property. How-
ever, a matrix whose first row is all 0's clearly has the consecutive
l's property for columns if and only if it has the circular l's property
for columns.

Fulkerson and Gross [4] have described an efficient algorithm to
test whether a (0, l)-matrix has the consecutive l's property for
columns and to obtain a desired row permutation when one exists.
Using Theorem 1, their algorithm now solves the corresponding
problem for circular l's. The natural generalization of the matrix
characterizations of interval and proper interval graphs mentioned
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Figure 2b. Circular-arc Model of G
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Figure 2c. M*(G) with C/̂  s and F^s circled
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above would use the circular Γs property for columns in characterizing
circular-arc and proper circular-arc graphs. However, this approach
seems to fail; for example, the graph in Figure la has an augmented
adjacency matrix with the circular Γs property for columns, yet it
is not a proper circular-arc graph. An additional condition is needed
to characterize M*(G) when G is a proper circular-arc graph. And
a weakened form of the circular Γs property for columns will be
shown to characterize ikf*(G) when G is a circular-arc graph.

Let M be a symmetric (0, l)-matrix with Γs on the main
diagonal. Let Z7< be the circular set of Γs in column ί starting at
the main diagonal and going down (and around) as far as possible,
i.e., until a 0 is encountered. Let Vi be the analogous set of 1-entries
in row i starting at the main diagonal and going right (thus entry
(ί, j) is in Vi if and only if entry (j,i) is in Ui). Then M is said
have quasi-circular Γs if the U/s and F/s contain all the Γs in M
(the matrix in Figure 2c has quasi-circular Γs but the matrix with
circular Γs in Figure lc does not).

THEOREM 2. G is a circular-arc graph if and only if its vertices
can be indexed so that M*(G) has quasi-circular Vs.

Proof. Let S, a family of arcs on a circle, be an intersection
model for the graph G. Without loss of generality, we may assume
that S is chosen so that (a) none of its arcs equals the whole circle,
(b) the arcs are closed (i.e., they contain their endpoints), and (c) no
two arcs have a common counterclockwise endpoint. Starting with
an arbitrary arc, index the arcs of S by the order in which their
counterclockwise endpoints occur as one goes clockwise around the
circle (see the example in Figure 2b). Let x{ be the vertex of G
corresponding to arc Ai9 We claim that with this indexing of the
vertices, iW*(G) now has quasi-circular Γs. Suppose Xι is adjacent to
Xj and i < j . Then arcs At and A5 intersect. Either the counter-
clockwise endpoint of Aj is in At or vice versa. In the former case,
for i < k < j , arc A< intersects Ak and so M*(G) has a circular set
of Γs in column i starting at the main diagonal and going down at
least to entry (j, i). A similar argument holds in the latter case.
This proves our claim.

Suppose the n vertices of G are indexed so that M*(G) has
quasi-circular Γs. For i — 1, 2, , n, let pt label the ΐth hour point
on an w-hour clock (see example in Figure 2). Suppose Uif the
maximal circular set of Γs starting from the main diagonal in
column i of ikf *(G), ends at entry (mt , i). Then draw arc At with
counterclockwise endpoint pi and clockwise endpoint pm. (possibly
mi = ί and arc Ai is a point; if column i is all Γs, m* = i — 1 or
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mi = n if i = 1). Suppose that arcs At and A5 (i Φ j) intersect and
that the counterclockwise endpoint of As is in At. This is equivalent
to the fact that ET* extends at least as far as entry (j, i) and thus x{

is adjacent to xo . Hence the A/s form an intersection model for G.

Observe that the proof of Theorem 2 gives a simple algorithm
for constructing a circular-arc model for G when M*(G) has quasi-
circular Γs. Unfortunately, we currently lack an algorithm to test
whether M*(G) can have quasi-circular Γs. However, there are two
important subclasses of circular-arc graphs for which we have both an
efficient test and an efficient construction of circular-arc models. These
are proper circular-arc graphs and the graphs G such that M*(G)
has the circular Γs property for columns. To show that the latter
graphs are circular-arc graphs, we first need the following lemma.

LEMMA 3. G is a circular-arc graph if Λf *(G) has the consecutive
0's property for columns.

Proof. Let the vertices of G be indexed so that the 0's occur
consecutively in each column (and, by symmetry, in each row) of
M*(G). Let d be the set of columns whose 0's are below the main
diagonal and C2 the set of columns with 0's above it (see Figure lc).
Let R1 and R2 be the corresponding sets of rows. If columns i and
j are in C1 with i < j , then the column j has all Γs above the main
diagonal and hence entry (i, j) is 1. Thus the vertices corresponding
to columns in d form a clique Kt. Similarly the vertices corres-
ponding to columns in C2 form a clique K2.

On a circle draw a set of 90° closed arcs such that (a) no two
arcs have the same endpoints, and (b) the arcs have a common point
of intersection. Identify successive rows of R2 with successive arcs
(in clockwise order). Now for each column in C19 draw an arc which
is the complement of the union of the arcs corresponding to rows in
which the column has a 0 (see the example in Figure 1). The reader
can easily check that we now have an intersection model for the
vertices in Kx and K2. Any vertex that is not in Kx or K2 corres-
ponds to a column of M*(G) that is all Γs. For any such vertex,
we draw a 180° closed arc whose clockwise endpoint is a common
intersection point of the arcs corresponding to rows of R2 (see Figure 1).

THEOREM 4. G is a circular-arc graph if M*(G) has the circular
Vs property for columns.

Proof. Let the vertices of G be indexed so that the Γs in each
column of ikf*(G) are circular. If ikf*(G) now has quasi-circular Γs,
we are finished by Theorem 2. If M *(G) does not have quasi-circular
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Γs, let entry (j, k) be a 1-entry not contained in the sets Uk or V3

(see the definition of quasi-circular l's). By a cyclic permutation of
rows and columns, if necessary, we can assume that this entry is in
the last row (i.e., row j is the last row) and further that entry (1, k)

column
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row j
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Figure 3: See text

is in V, (see Figure 3). Note that entry (1, k) must be a 1-entry
since the l's in column k are circular, yet entry (j, k) is not in Uk.
Since the O's are circular in each row (and column) of M*(G), the
O's in row j (the last row) must all be to the left of entry (j, k) and
the O's (if any) in row 1 must all be to the right of entry (1, &).
Hence no column of M*(G) has O's in both the first and last rows.
Thus M*(G) has consecutive O's in each column and this theorem
follows from Lemma 3.

Using the Fulkerson-Gross algorithm and Theorem 1, we can test
for an arrangement of M*(<?) with circular l's. If such an arrange-
ment exists, we can construct a circular-arc model for G by the
method in Theorem 2 or Lemma 3. The matrix in Figure 2c does
not have the circular l's property for columns and hence the converse
of Theorem 4 is false.

A symmetric (0, l)-matrix is said to have circularly compatible
l 's if the l's in each column are circular and if, after inverting and/or
cyclicly permuting the order of the rows and (corresponding) columns,
the last 1 (in cyclicly descending order) of the circular set in the second
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column is always at least as low as the last 1 of the circular set in
the first column unless one of these columns is all l's or all O's
(inversion and cyclic permutation do not affect the circularity of the
Γs). See the example in Figure 5c.

LEMMA 5. Suppose the n vertices of G are indexed so that the
Vs in each column of M*(G) are circular. If this arrangement of
M*(G) does not have circularly compatible Vs, then M*(G) has the
consecutive O's property for columns and the vertices of G partition
into two cliques.

Proof. Assume no row (or column) is all l's, for after cyclicly
permuting to make such a row first, the O's in each column are
consecutive, and a vertex corresponding to such a row can be added
to either of two cliques shown above to partition the other vertices.
Suppose this arrangement of M*(G) does not have circularly com-
patible l's. After inverting and/or cyclicly permuting the rows and
columns of this arrangement, we can assume that if entries (k, 1)
and (j, 2) are the last 1-entries of the circular set of l's in the first
and second columns, respectively, then j < k (see Figure 4). Assume
entry (k, 2) is 0 (that is, the O's in column 2 start in entry (j + 1, 2)
and extend down at least to entry (k, 2)), for otherwise columns 1
and 2 have O's in different rows and cyclicly permuting column 2 to

row j

row k

Figure 4. See text.
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column 1 (and similarly with rows) yields consecutive O's in each row
and column, as desired. Then the O's in row k occur between the
first column and the main diagonal. Let entry (£, n) be the last 1 in
the circular set of l's in the last column. Assume i < k or else
cyclicly permute the last column (with a crresponding row permuta-
tion) to become the first column and repeat the permutation until
i < k (if i ^ k, then after such a permutation, the last 1 of the
circular set in column 1 is at least one entry lower; but no column
is all l's; and so eventually i < k). Since the O's in row k are (still)
to the left of the main diagonal, entry (k, n) is 1. Since i < k, the
last column has all l's from row k down. Then no row has O's in
both the first and last column. The vertices of G partition into two
cliques by the argument in Lemma 3.

THEOREM 6. G is a proper circular-arc graph if and only if
there is an arrangement of M*{G) with circularly compatible l's.

Proof. Suppose S, a family of arcs on a circle such that no arc
of S contains another, is an intersection model for G. Index the
arcs of S as in the necessity proof in Theorem 2. This induces the
desired arrangement of M*(G). If M *(G) is arranged with circularly
compatible l's, then construct a circular-arc model as prescribed in
Theorem 4. In the resulting model, one arc can contain another only
if they have a common endpoint. In such cases we slightly extend
the shorter arc or shorten the longer arc. Details are left to the
reader (see example in Figure 5).

We test for circularly compatible l's as follows. First test G
to see if there are two cliques which partition the vertices of G (this
is equivalent to testing whether the complement of G is bipartite).
If not, then it is sufficient by Lemma 5 to test for the circular l's
property for columns, and any arrangement of M*(G) with circular
l's must have circularly compatible l's by Lemma 5. Suppose now
that two such cliques exist. If an arrangement of M*(G) has circular
l's and the first and last rows correspond to vertices in different
cliques, then the O's must be consecutive in each column, i.e., M*(G)
has the consecutive O's property for columns. Now ikf*(G) has an
arrangement with circularly compatible l's if and only if M% the
complement of M*(G) (obtained by interchanging O's and l's), has
a corresponding arrangement with circularly compatible l's and in
addition, Mc has the consecutive l's property for columns. A modifica-
tion in the last step of the Fulkerson-Gross algorithm yields a test for
the existence of an arrangement of Mc with both consecutive l's and
circularly compatible l's (see the end of Chapter Two in [13]).
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Figure 5b. "Proper" Circular-arc Model of G
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