GROUP RINGS SATISFYING A POLYNOMIAL IDENTITY II

D. S. PASSMAN

In an earlier paper we obtained necessary and sufficient conditions for the group ring K[G] to satisfy a polynomial identity. In this paper we obtain similar conditions for a twisted group ring $K^t[G]$ to satisfy a polynomial identity. We also consider the possibility of K[G] having a polynomial part.

1. Twisted group rings. Let K be a field and let G be a (not necessarily finite) group. We let $K^t[G]$ denote a twisted group ring of G over K. That is $K^t[G]$ is an associative K-algebra with basis $\{\bar{x} \mid x \in G\}$ and with multiplication defined by

$$\overline{x}\overline{y} = \gamma(x, y)\overline{xy}$$
, $\gamma(x, y) \in K - \{0\}$.

The associativity condition is equivalent to $\overline{x}(\overline{y}\overline{z}) = (\overline{x}\overline{y})\overline{z}$ for all $x, y, z \in G$ and this is equivalent to

$$\gamma(x, yz)\gamma(y, z) = \gamma(x, y)\gamma(xy, z)$$
.

We call the function $\gamma: G \times G \to K - \{0\}$ the factor system of $K^t[G]$. If $\gamma(x, y) = 1$ for all $x, y \in G$ then $K^t[G]$ is in fact the ordinary group ring K[G]. In this section we offer necessary and sufficient conditions for $K^t[G]$ to satisfy a polynomial identity. The proof follows the one for K[G] given in [3] and we only indicate the suitable modifications needed. The following is Lemma 1.1 of [2].

LEMMA 1.1. If
$$x \in G$$
, then in $K^{t}[G]$ we have
(i) $1 = \gamma(1, 1)^{-1} \overline{1}$
(ii) $\overline{x}^{-1} = \gamma(x, x^{-1})^{-1} \gamma(1, 1)^{-1} \overline{x^{-1}}$
 $= \gamma(x^{-1}, x)^{-1} \gamma(1, 1)^{-1} \overline{x^{-1}}$.

PROPOSITION 1.2. Suppose $K^t[G]$ satisfies a polynomial identity of degree n and set $k = (n !)^2$. Then G has a characteristic subgroup G_0 such that $[G: G_0] \leq (k + 1)!$ and such that for all $x \in G_0$

$$[G: C_G(x)] \leq k^{4^{(k+1)!}}.$$

Proof. This is the twisted analog of Corollary 3.5 of [3]. We consider § 3 of [3] and observe that each of the prerequisite results for that corollary also has a twisted analog.

First Lemma 3.1 of [3] holds for $K^{\iota}[G]$ with no change in the proof. Of course x must be replaced by \overline{x} in the formula

$$lpha_{_1} \overline{x} eta_{_1} + lpha_{_2} \overline{x} eta_{_2} + \cdots + lpha_{_t} \overline{x} eta_{_t} = \overline{x} \gamma$$
 .

Second Theorem 3.4 of [3] also holds for $K^t[G]$ with no change in its statement. The proof is modified just slightly so that the inductive result to be proved is as follows. For each $x_j, x_{j+1}, \dots, x_n \in G$, then either $f_j(\bar{x}_j, \bar{x}_{j+1}, \dots, \bar{x}_n) = 0$ or for some $\mu \in \mathcal{M}_j, \ \mu(\bar{x}_j, \bar{x}_{j+1}, \dots, \bar{x}_n) =$ $a \ \bar{y}$ for some $a \in K - \{0\}, \ y \in \mathcal{A}_k(G)$. Then replacing x's suitably by \bar{x} 's the proof carries through as before. Finally Corollary 3.5 of [3] holds for $K^t[G]$ since it is just a group theoretic consequence of Theorem 3.4 of [3].

Let $K^{i}[G]$ be a twisted group ring and let H be a subgroup of G. Then by $K^{i}[H]$ we mean that twisted group ring of H which is naturally contained in $K^{i}[G]$. Let $JK^{i}[G]$ denote the Jacobson radical of $K^{i}[G]$.

PROPOSITION 1.3. Suppose $K^{\iota}[G]$ satisfies a polynomial identity of degree n and suppose further that G' is finite and $K^{\iota}[G']$ is central in $K^{\iota}[G]$. Then G has a subgroup $Z \supseteq G'$ such that

 $[G: Z] \leq (n/2)^{2|G'|}$

with $K^{t}[Z]/(JK^{t}[G'] \cdot K^{t}[Z])$ commutative.

Proof. Since $K^t[G']$ is commutative, $JK^t[G']$ is the intersection of the maximal two-sided ideals of $K^t[G']$. Moreover $K^t[G']/JK^t[G']$ is a finite dimensional semisimple algebra and hence it has at most

 $\dim_{\kappa} K^{t}[G']/JK^{t}[G'] \leq |G'|$

maximal two-sided ideals. Thus we may write

$$JK^{t}[G'] = \bigcap_{i=1}^{m} I_{i}, \ m \leq |G'|$$

where I_i is a maximal two-sided ideal of $K^t[G']$.

Fix a subscript *i*. Then $K^t[G']/I_i = F_i$, some finite field extension of *K*. Now $K^t[G']$ is central in $K^t[G]$, so $I_i \cdot K^t[G]$ is an ideal in $K^t[G]$. It is now easy to see that $K^t[G]/(I_i \cdot K^t[G])$ is an F_i -algebra with a basis consisting of the images of coset representatives for *G'* in *G*. Thus clearly $K^t[G]/(I_i \cdot K^t[G])$ is isomorphic to some twisted group ring $F_{i}^{t_i}[G/G']$, and this twisted group ring inherits the polynomial identity satisfied by $K^t[G]$. Thus by Proposition 1.4 of [2], G/G' has a subgroup \overline{Z}_i with $[G/G': \overline{Z}_i] \leq (n/2)^2$ and with $F_i^{t_i}[Z_i]$ central in $F_i^{t_i}[G/G']$. Let Z_i be the complete inverse image

of \overline{Z}_i in G. Then $Z_i \supseteq G'$, $[G: Z_i] \leq (n/2)^2$ and for all α , $\beta \in K^t[Z_i]$ we have $\alpha\beta - \beta\alpha \in I_i \cdot K^t[G]$.

Set $Z = \bigcap_{i=1}^{m} Z_i$. Then

$$[G\colon Z] \leq \varPi_1^m[G\colon Z_i] \leq (n/2)^{2m} \leq (n/2)^{2|G'|}$$
 .

Moreover for all $\alpha, \beta \in K^t[Z]$ we have

$$\alpha\beta - \beta\alpha \in \bigcap_{i=1}^{m} I_{i} \cdot K^{t}[G] = JK^{t}[G'] \cdot K^{t}[G]$$

since $K^{t}[G]$ is free over $K^{t}[G']$. Hence since $K^{t}[G]$ is free over $K^{t}[Z]$ we have

$$\alpha\beta - \beta\alpha \in K^{\iota}[Z] \cap (JK^{\iota}[G'] \cdot K^{\iota}[G]) = JK^{\iota}[G'] \cdot K^{\iota}[Z]$$

and the result follows.

We now come to our main result on twisted group rings satisfying a polynomial identity.

THEOREM 1.4. Let $K^{\iota}[G]$ be a twisted group ring of G over K. Let $G \supseteq A \supseteq B$ be subgroups of G with B finite and central in A and with $K^{\iota}[A]/(JK^{\iota}[B] \cdot K^{\iota}[A])$ commutative.

(i) If $[G: A] < \infty$ then $K^t[G]$ satisfies a polynomial identity of degree $n = 2[G: A] \cdot |B|$.

(ii) If $K^{\iota}[G]$ satisfies a polynomial identity of degree n, then there exists suitable A and B with $[G: A] \cdot |B|$ bounded by some fixed function of n.

Proof. The proof of (i) is identical to the proof of Theorem 1.3 (i) of [3]. Observe that $JK^{i}[B] \cdot K^{i}[A] = K^{i}[A] \cdot JK^{i}[B]$ is an ideal of $K^{i}[A]$ by Lemma 1.2 of [1].

We now consider part (ii). Let $K^{t}[G]$ satisfy a polynomial identity of degree n. Set

$$a = a(n) = (n !)^2, \qquad b = b(n) = a^{4^{(a+1)!}}.$$

Then by Proposition 1.2 G has a subgroup G_0 with

$$[G: G_0] \leq (a+1)!, \quad G_0 = \varDelta_b(G_0)$$

where Δ_k is defined in [3].

 \mathbf{Set}

$$c = c(n) = (b^4)^{b^4}$$
, $d = d(n) = (n/2)^{2c}$.

Then by Theorem 4.4 of [3], $|G'_0| \leq c$. Let $G_1 = C_{G_0}(G'_0)$. Then $G'_1 \subseteq G'_0$ so G'_1 is a finite central subgroup of G_1 . Moreover

$$|G_1'| \leq c, \qquad [G_0:G_1] \leq c!$$

427

D. S. PASSMAN

Let $x \in G_1$. Then conjugation by \overline{x} induces an automorphism of $K^t[G_1]$. Moreover since G_1' is central in G_1 we have

$$ar{x}^{-1}ar{y}ar{x} = \lambda_x(y)ar{y}$$

for all $y \in G'_1$. It follows easily that λ_x is a linear character of G'_1 into K, that is $\lambda_x \in \text{Hom}(G'_1, K - \{0\})$. In addition, it follows easily that the map $x \to \lambda_x$ is in fact a group homomorphism

$$G_1 \longrightarrow \operatorname{Hom} (G'_1, K - \{0\})$$
.

Let G_2 denote the kernel of this homomorphism. Then

$$[G_1:G_2] \leq |\operatorname{Hom} \left(G_1', K-\{0\}\right)| \leq |G_1'| \leq c$$
.

Set $B = G'_2$. Then $B \subseteq G'_1$ so $|B| \leq c$ and $K^t[B]$ is central in $K^t[G_2]$. By Proposition 1.3, G_2 has a subgroup $A \supseteq B$ with

$$[G_2:A] \leqq (n/2)^{2|B|} \leqq d$$

and with $K^t[A]/(JK^t[B] \cdot K^t[A])$ commutative. Since $|B| \leq c$ and since

$$[G: A] = [G: G_0] [G_0: G_1] [G_1: G_2] [G_2: A] \leq (a+1)! \cdot c \cdot c \cdot d$$

the result follows.

It is interesting to interpret this result for various fields. If K has characteristic 0 and if B is a finite group, then $K^t[B]$ is semisimple by Proposition 1.5 of [1]. Thus

COROLLARY 1.5. Let $K^{t}[G]$ be a twisted group ring of G over K and let K have characteristic 0. Let A be an abelian subgroup of G with $K^{t}[A]$ commutative.

(i) If $[G:A] < \infty$ then $K^{t}[G]$ satisfies a polynomial identity of degree n = 2 [G:A].

(ii) If $K^t[G]$ satisfies a polynomial identity of degree n, then there exists such a group A with [G: A] bounded by some fixed function of n.

COROLLARY 1.6. Let $K^{i}[G]$ be a twisted group ring of G over K and let K have characteristic p > 0. Let $G \supseteq A \supseteq P$ be subgroups of G with P a finite p-group central in A and with $K^{i}[A]/(JK^{i}[P] \cdot K^{i}[A])$ commutative.

(i) If $[G:A] < \infty$ then $K^t[G]$ satisfies a polynomial identity of degree $n = 2[G:A] \cdot |P|$.

(ii) If $K^{t}[G]$ satisfies a polynomial identity of degree n, then there exists suitable A and P with $[G: A] \cdot |P|$ bounded by some fixed function of n.

GROUP RINGS SATISFYING A POLYNOMIAL IDENTITY II

Proof. Let B be given as in Theorem 1.4 and let P be its normal Sylow p-subgroup. Then P is also central in A. Moreover by Proposition 1.5 of [1] $JK^t[B] = JK^t[P] \cdot K^t[B]$ so the result clearly follows.

Finally in the above if K is a perfect field of characteristic p, then by Lemma 2.1 of [1], $K^t[P] \cong K[P]$ so $K^t[P]/JK^t[P] = K$. It then follows easily that

$$K^t[A]/(JK^t[P] \cdot K^t[A]) \cong K^{t'}[A/P]$$

is in fact some twisted group ring of A/P.

2. Generalized polynomial identities. Let E be an algebra A generalized polynomial over E is, roughly speaking, a over K. polynomial in the indeterminates $\zeta_1, \zeta_2, \dots, \zeta_n$ in which elements of E are allowed to appear both as coefficients and between the indeterminates. We say that E satisfies a generalized polynomial identity if there exists a nonzero generalized polynomial $f(\zeta_1, \zeta_2, \dots, \zeta_n)$ such that $f(\alpha_1, \alpha_2, \dots, \alpha_n) = 0$ for all $\alpha_1, \alpha_2, \dots, \alpha_n \in E$. The problem here is precisely what does it mean for f to be nonzero. For example, suppose that the center of E is bigger than K and let α be a central element not in K. Then E satisfies the identity $f(\zeta_1) = \alpha \zeta_1 - \zeta_1 \alpha$ but surely this must be considered trivial. Again, suppose that E is not prime. Then we can choose nonzero $\alpha, \beta \in E$ such that E satisfies the identity $f(\zeta_1) = \alpha \zeta_1 \beta$ and this must also be considered trivial. We avoid these difficulties by restricting the allowable form of the polynomials.

We say that f is a multilinear generalized polynomial of degree n if

$$f(\zeta_1, \zeta_2, \cdots, \zeta_n) = \sum_{\sigma \in S_n} f^{\sigma}(\zeta_1, \zeta_2, \cdots, \zeta_n)$$

and

$$f^{\sigma}(\zeta_1, \zeta_2, \cdots, \zeta_n) = \sum_{j=1}^{a_{\sigma}} \alpha_{0 \sigma j} \zeta_{\sigma(1)} \alpha_{1 \sigma, j} \zeta_{\sigma(2)} \cdots \alpha_{n-1 \sigma, j} \zeta_{\sigma(n)} \alpha_{n, \sigma, j}$$

where $\alpha_{i \sigma, j} \in E$ and a_{σ} is some positive integer. This form is of course motivated by Lemma 3.2 of [3]. The above f is said to be nondegenerate if for some $\sigma \in S_n$, f^{σ} is not a polynomial identity satisfied by E. Otherwise f is degenerate.

In this section we will study group rings K[G] which satisfy nondegenerate multilinear generalized polynomial identities. Let $\Delta = \Delta(G)$ denote the F. C. subgroup of G and let $\theta: K[G] \to K[\Delta(G)]$ denote the natural projection.

D. S. PASSMAN

LEMMA 2.1. Suppose K[G] satisfies a nondegenerate multilinear generalized polynomial of degree n. Then K[G] satisfies a polynomial identity as given above with

$$\sum\limits_{j=1}^{a_1} heta(lpha_{\scriptscriptstyle 0,1,j}) \, heta\left(lpha_{\scriptscriptstyle 1,1,j}
ight) \, \cdots \, heta(lpha_{\scriptscriptstyle n,1,j})
eq 0 \; .$$

Proof. Let K[G] satisfy f as above. Since f is nondegenerate, by reordering the ζ 's if necessary, we may assume that $f^1(\zeta_1, \zeta_2, \dots, \zeta_n)$ is not an identity for K[G]. Thus since f^1 is multilinear there exists $x_1, x_2, \dots, x_n \in G$ with

$$0 \neq f^{1}(x_{1}, x_{2}, \dots, x_{n})$$

= $\sum_{j=1}^{a_{1}} \alpha_{0,1,j} x_{1} \alpha_{1,1,j} x_{2} \cdots \alpha_{n-1,1,j} x_{n} \alpha_{n,1,j}$

If we replace ζ_i in f by $x_i\zeta_i$ we see clearly that K[G] satisfies a suitable f with

(*)
$$0 \neq \sum_{j=1}^{a_1} \alpha_{0,1,j} \alpha_{1,1,j} \cdots \alpha_{n,1,j}$$

For each i, j write

$$lpha_{i,i,j} = \sum_k eta_{ijk} y_k$$

where $\beta_{ijk} \in K[\Delta]$ and $\{y_k\}$ is a finite set of coset representatives for Δ in G. We substitute this into (*) above. It then follows easily that for some k_0, k_1, \dots, k_n we have

$$0
eq \sum_{j=1}^{a_1}eta_{0jk_0}y_{k_0}eta_{1jk_1}y_{k_1}\cdotseta_{njk_n}y_{k_n}$$
 .

Thus if z_i is defined by $z_i = y_{k_0}y_{k_1}\cdots y_{k_{i-1}}$ and $z_0 = 1$ then

$$0 \neq \sum_{j=1}^{a_1} \beta_{0jk_0}^{z_0^{-1}} \beta_{1jk_1}^{z_1^{-1}} \cdots \beta_{njk_n}^{z_n^{-1}}$$
.

Now $\beta_{ijk_i} = \theta(\alpha_{i,1,j}y_{k_i}^{-1})$ so

-1

$$eta_{ijk_i}^{z_i^+} = heta \left(z_i lpha_{i,1,j} y_{k_i}^{-1} z_i^{-1}
ight) = heta \left(z_i lpha_{i,1,j} z_{i+1}^{-1}
ight) \, .$$

It therefore follows that if we replace ζ_i in f by $z_{i+1}^{-1}\zeta_i z_{i+1}$ and if, in addition, we multiply f on the left by z_0 and on the right by z_{n+1}^{-1} , then this new multilinear generalized polynomial identity obtained has the required property.

LEMMA 2.2. Let $\alpha_1, \alpha_2, \dots, \alpha_u, \beta_1, \beta_2, \dots, \beta_u \in K[G]$. Suppose that for some integers k and t

$$|igcup \operatorname{Supp} lpha_i| = r, \ |igcup \operatorname{Supp} eta_i| = s$$

and

$$(\bigcup_{i} \operatorname{Supp} \alpha_{i}) \cap \varDelta_{k}(G) \subseteq \varDelta_{t}(G)$$

with $k \ge rst^r$. Let T be a subset of G and suppose that for all $x \in G$ -T we have

$$\alpha_1 x \beta_1 + \alpha_2 x \beta_2 + \cdots + \alpha_u x \beta_u = 0$$
.

Then either [G:T] < (k+2)! or

$$\theta_k(\alpha_1)\beta_1 + \theta_k(\alpha_2)\beta_2 + \cdots + \theta_k(\alpha_u)\beta_u = 0$$
.

Proof. Let $A = \bigcup_i \operatorname{Supp} \alpha_i$, $B = \bigcup_i \operatorname{Supp} \beta_i$ and write

$$egin{array}{lll} A' &= A \cap arDelta_k = \{g_1, \, g_2, \, \cdots, \, g_n\} \ A'' &= A - arDelta_k = \{y_1, \, y_2, \, \cdots, \, y_m\} \ B &= \{z_1, \, z_2, \, \cdots, \, z_s\} \;. \end{array}$$

Here of course m + n = r. Set $W = \bigcap_{i=1}^{n} C_{G}(g_{i})$. Since by assumption $A' \subseteq \Delta_{t}(G)$ we have clearly $[G: W] \leq t^{r}$. Observe that for all $x \in W$, x centralizes $\theta_{k}(\alpha_{i})$.

Suppose that

$$\gamma = \theta_k(\alpha_1)\beta_1 + \theta_k(\alpha_2)\beta_2 + \cdots + \theta_k(\alpha_u)\beta_u \neq 0$$

and let $v \in \text{Supp } \gamma$. If y_i is conjugate to vz_j^{-1} in G for some i, j choose $h_{ij} \in G$ with $h_{ij}^{-1}y_ih_{ij} = vz_j^{-1}$.

Write $\alpha_i = \theta_k(\alpha_i) + \alpha_i^{\prime}$ and then write

$$lpha_i^{''} = \sum a_{ij} y_j, \; eta_i = \sum b_{ij} z_j \; .$$

Let $x \in W$ -T. Then we must have

$$egin{aligned} \mathbf{0} &= x^{-1}lpha_1xeta_1 + x^{-1}lpha_2xeta_2 + \cdots + x^{-1}lpha_uxeta_u \ &= \left[heta_k(lpha_1)eta_1 + heta_k(lpha_2)eta_2 + \cdots + heta_k(lpha_u)eta_u
ight] \ &+ \left[lpha_1^{''x}eta_1 + lpha_2^{''x}eta_2 + \cdots + lpha_u^{''x}eta_u
ight] \,. \end{aligned}$$

Since v occurs in the support of the first term it must also occur in the second and hence there exists y_i, z_j with $v = y_i^z z_j$ or

$$x^{-_1}y_{\,i}x = vz_{\,j}^{-_1} = h_{\,i\,j}^{-_1}y_{\,i}h_{\,i\,j}$$
 .

Thus $x \in C_G(y_i)h_{ij}$. We have therefore shown that

$$W \subseteq T \cup \bigcup_{ij} C_{\scriptscriptstyle G}(y_i) h_{ij}$$
 .

Let w_1, w_2, \dots, w_d be a complete set of coset representatives for W in G. Then $d = [G: W] \leq t^r$ and the above yields

$$G = Tw_1 \cup Tw_2 \cup \cdots \cup Tw_d \cup S$$

where

$$S = igcup_{i,j,\mathfrak{c}} C_{\scriptscriptstyle G}(y_i) h_{ij} w_{\scriptscriptstyle c}$$
 .

Now the number of cosets in the above union for S is at most

 $\mathit{rsd} \leq \mathit{rst^r} \leq k$

by assumption on k. Moreover $y_i \notin A_k$ so $[G: C_G(y_i)] > k$ for all *i*. Thus by Lemma 2.3 of [3] $S \neq G$ and then Lemma 2.1 of [3] yields

$$[G: \widetilde{T}] \leq (k+1)!$$

where

$$\widetilde{T} = \bigcup_{c} T w_{c}$$
.

Thus

 $[G: T] \leq (k+1)! \ d \leq (k+1)! \ (k+2)$

and the result follows.

We will need the following group theoretic lemma.

LEMMA 2.3. Let G be a group. The following are equivalent

(i) $[G: \varDelta(G)] < \infty$ and $|\varDelta(G)'| < \infty$.

(ii) There exists an integer k with $[G: \Delta_k(G)] < \infty$.

Proof. Suppose that G satisfies (i) and set $n = [G:\Delta], m = |\Delta'|$. If $x \in \Delta$, then by Theorem 4.4 (i) of [3], $[\Delta: C_{\Delta}(x)] \leq m$ and hence $[G: C_{G}(x)] \leq nm$. Thus (ii) follows with k = mn.

Now suppose that (ii) holds. Since $\Delta(G) \supseteq \Delta_k(G)$ and $[G: \Delta_k] < \infty$ we conclude that $[G: \Delta] < \infty$. Now $\Delta(G)$ is a subgroup of G so every right translate of Δ_k in G is either entirely contained in Δ or is disjoint from Δ . This implies that $[\Delta: \Delta_k] < \infty$ and say

$$\varDelta = \varDelta_k y_1 \cup \varDelta_k y_2 \cup \cdots \cup \varDelta_k y_r$$
.

Since each $y_i \in \Delta$ we can set $n = \max_i [G: C(y_i)] < \infty$. If $x \in \Delta$ then $x \in \Delta_k y_i$ for some *i* and this implies easily that $[G: C(x)] \leq nk$. Thus $[\Delta: C_4(x)] \leq nk$ and by Theorem 4.4 (ii) of [3], $|\Delta'| < \infty$.

We now come to the main result of this section

THEOREM 2.4. Let K[G] be a group ring of G over K and sup-

432

pose that K[G] satisfies a nondegegerate multilinear polynomial identity. Then $[G: \Delta(G)] < \infty$ and $|\Delta(G)'| < \infty$.

Proof. By Lemma 2.1. we may assume that K[G] satisfies

$$f(\zeta_1, \zeta_2, \cdots, \zeta_n) = \sum_{\sigma \in S_n} \sum_{j=1}^{a_\sigma} a_{0,\sigma,j} \zeta_{\sigma(1)} \alpha_{1\sigma,j} \zeta_{\sigma(2)} \cdots \alpha_{n-1\sigma,j} \zeta_{\sigma(n)} \alpha_{n,\sigma,j}$$

with

$$\sum_{j=1}^{a_1} \theta(\alpha_{0,1,j}) \ \theta(\alpha_{n,1,j}) \ \cdots \ \theta(\alpha_{n,1,j}) \neq 0$$

We first define a number of numerical parameters associated with f. Set

$$a = \sum_{\sigma \in S_n} \sum_{i=0}^n \sum_{j=1}^{a_\sigma} |\operatorname{Supp} \alpha_{i,\sigma j}|$$

and

$$r_{\scriptscriptstyle 0} = s_{\scriptscriptstyle 0} = a^{n+1}$$
 .

Now consider

$$U = \bigcup_{\sigma \in S_n} \bigcup_{j=1}^{a_\sigma} \bigcup_{i=0}^n \operatorname{Supp} \theta(\alpha_{i,\sigma,j})$$
.

Then U is a finite subset of $\Delta(G)$ so there exists an integer b with $U \subseteq \Delta_b(G)$. Set

$$t = b^{n+1}$$
 and $k = r_0 s_0 t^{r_0}$.

We assume now that $[G: \mathcal{A}_k] = \infty$ and derive a contradiction.

For $i = 0, 1, \dots, n$ define $S^i \subseteq S_n$ by

$${
m S}^{\,i}=\,\{\sigma\,{
m \in}\, S_{n}\,|\,\,\sigma(1)\,{=}\,1,\,\,\sigma(2)\,{=}\,2,\,\cdots,\,\sigma(i)\,{=}\,i\}$$
 .

Then $S^{\circ} = S_n$, $S^n = \langle 1 \rangle$ and S^i is just an embedding of S_{n-i} in S_n . We define the multilinear generalized polynomial f_i of degree n-i by

$$f_{i}(\zeta_{i+1}, \zeta_{i+2}, \cdots, \zeta_{n}) = \sum_{\sigma \in S^{i}} \sum_{j=1}^{a_{\sigma}} \theta(\alpha_{\sigma,j}) \theta(\alpha_{1,\sigma,j}) \cdots \theta(\alpha_{i-1,\sigma,j}) \alpha_{i,\sigma,j} \zeta_{\sigma(i+1)} \cdots \alpha_{n-1,\sigma,j} \zeta_{\sigma(n)} \alpha_{n,\sigma,j} .$$

Thus $f_0 = f$ and

$$f_n = \sum_{j=1}^{a_1} \theta(\alpha_{0,1\cdot j}) \theta(\alpha_{1,1\cdot j}) \cdots \theta(\alpha_{n-1,1,j}) \alpha_{n-1,j}$$

is a nonzero element of K[G] since

$$heta(f_n) = \sum_{j=1}^{a_1} \theta(lpha_{0,1,j}) \theta(lpha_{1,1,j}) \cdots \theta(lpha_{n-1,1,j}) \theta(lpha_{n,1,j}) \neq 0$$
.

Let \mathscr{M} be the set of monomial polynomials obtained as follows. For each σ , j we start with

$$\alpha_{0,\sigma,j}\zeta_{\sigma(1)}\alpha_{1,\sigma,j}\zeta_{\sigma(2)}\cdots\alpha_{n-1,\sigma,j}\zeta_{\sigma(n)}\alpha_{n,\sigma,j}$$

and we modify it by (1) deleting some but not all of the ζ_i ; (2) replacing some of the $\alpha_{i,\sigma,j}$ by $\theta(\alpha_{i,\sigma,j})$; and (3) replacing some of the $\alpha_{i,\sigma,j}$ by 1. Then \mathscr{M} consists of all such monomials obtained for all σ , j and clearly \mathscr{M} is a finite set. Note that \mathscr{M} may contain the zero monomial but it contains no nonzero constant monomial since in (1) we do not allow all the ζ_i to be deleted.

For $i = 0, 1, \dots, n$ define $\mathcal{M}_i \subseteq \mathcal{M}$ by $\mu \in \mathcal{M}_i$ if and only if $\zeta_1, \zeta_2, \dots, \zeta_i$ do not occur as variables in μ . Thus $\mathcal{M}_n \subseteq \{0\}$ where 0 is the zero monomial.

Under the assumption that $[G: \Delta_k] = \infty$ we prove by induction on $i = 0, 1, \dots, n$ that for all $x_{i+1}, x_{i+2}, \dots, x_n \in G$ either

$$f_i(x_{i+1}, x_{i+2}, \cdots, x_n) = 0$$

or there exists $\mu \in \mathscr{M}_i$ with $\operatorname{Supp} \mu(x_{i+1}, x_{i+2}, \dots, x_n) \cap \mathcal{A}_k \neq \emptyset$. Since $f_0 = f$ is an identity satisfied by K[G] the result for i = 0 is clear.

Suppose the inductive result holds for some i-1 < n. Fix $x_{i+1}, x_{i+2}, \dots, x_n \in G$ and let $x \in G$ play the role of the *i*th variable. Let $\mu \in \mathscr{M}_i$. If $\operatorname{Supp} \mu(x_{i+1}, \dots, x_n) \cap \mathscr{L}_k \neq \emptyset$ we are done. Thus we may assume that $\operatorname{Supp} \mu(x_{i+1}, \dots, x_n) \cap \mathscr{L}_k = \emptyset$ for all $\mu \in \mathscr{M}_i$. Set $\mathscr{M}_{i-1} - \mathscr{M}_i = \mathscr{N}_{i-1}$.

Now let $\mu \in \mathcal{N}_{i-1}$ so that μ involves the variable ζ_i . Write $\mu = \mu' \zeta_i \mu''$ where μ' and μ'' are monomials in the variables $\zeta_{i+1}, \dots, \zeta_n$. Then Supp $\mu(x, x_{i+1}, \dots, x_n) \cap \mathcal{A}_k \neq \emptyset$ implies that

$$x \in h^{\prime-1} \varDelta_k h^{\prime \prime-1} = \varDelta_k h^{\prime-1} h^{\prime \prime-1}$$

where $h' \in \text{Supp } \mu'(x_{i+1}, \dots, x_n)$ and $h'' \in \text{Supp } \mu''(x_{i+1}, \dots, x_n)$. Thus it follows that for all $x \in G - T$ where

$$T = \bigcup_{\mu \in N_{i-1} \atop h', h''} \varDelta_k h'^{-1} h''^{-1}$$

we have $\operatorname{Supp} \mu(x, x_{i+1}, \dots, x_n) \cap \Delta_k = \emptyset$ for all $\mu \in \mathcal{M}_{i-1}$. Thus by the inductive result for i-1 we conclude that for all $x \in G-T$ we have $f_{i-1}(x, x_{i+1}, \dots, x_n) = 0$. Note that T is a finite union of right translates of Δ_k , a subset of G of infinite index.

Now clearly

$$\begin{split} f_{i-1}(x, x_{i+1}, \cdots, x_n) \\ = & \sum_{\sigma \in S^i} \sum_{j=1}^{a_\sigma} \theta(\alpha_{0\ \sigma, j}) \theta(\alpha_{1,\sigma, j}) \cdots \theta(\alpha_{i-2,\sigma, j}) \alpha_{i-1,\sigma, j} x \alpha_{i,\sigma, j} x_{\sigma(i+1)} \cdots \alpha_{n-1\ \sigma, j} x_{\sigma(n)} \alpha_{n\ \sigma\ j} \\ & + \sum_{\mu \in \mathscr{M}_i} \mu(x_{i+1}, \cdots, x_n) x \eta(x_{i+1}, \cdots, x_n) \end{split}$$

where the $\eta(\zeta_{i+1}, \dots, \zeta_n)$ are suitable monomials. Since

$$f_{i-1}(x, x_{i+1}, \cdots, x_n) = 0$$

for all $x \in G - T$ we can apply Lemma 2.2. However we must first observe that the hypotheses are satisfied.

Let r and s be defined as in Lemma 2.2. Using the basic fact that

$$|\operatorname{Supp} \alpha \beta| \leq |\operatorname{Supp} \alpha| |\operatorname{Supp} \beta|$$

for any $\alpha, \beta \in K[G]$ it follows easily that

$$r \leq a^{n+1} = r_{\scriptscriptstyle 0}, \qquad s \leq a^{n+1} = s_{\scriptscriptstyle 0}$$
 .

Now $\mu \in \mathscr{M}_i$ implies that $\operatorname{Supp} \mu(x_{i+1}, \dots, x_n) \cap \mathcal{A}_k = \emptyset$. Therefore the only left hand factors of x which have some support in \mathcal{A}_k come from the first of the two sums above. Here we have

$$\operatorname{Supp} \theta(\alpha_{i \sigma, j}) \subseteq U \subseteq \varDelta_b$$

and $(\mathcal{\Delta}_b)^{n+1} \subseteq \mathcal{\Delta}_{b^{n+1}} = \mathcal{\Delta}_t$. Thus the intersection of the supports of these left hand factors with $\mathcal{\Delta}_k$ is easily seen to be contained in $\mathcal{\Delta}_t$. Finally

$$k = r_{\scriptscriptstyle 0} s_{\scriptscriptstyle 0} t^{r_{\scriptscriptstyle 0}} \ge rst^r$$

so the lemma applies.

There are two possible conclusions from Lemma 2.2. The first is that $[G:T] < \infty$. Since T is a finite union of right translates of Δ_k this yields $[G:\Delta_k] < \infty$, a contradiction by our assumption. Thus the second conclusion must hold. Since as we observed above

$$\theta_k(\mu(x_{i+1}, \cdots, x_n)) = 0$$

and clearly

$$\theta_{k} \left[\theta(\alpha_{0,\sigma,j}) \theta(\alpha_{1,\sigma,j}) \cdots \theta(\alpha_{i-2,\sigma,j}) \alpha_{i-1,\sigma,j} \right] \\ = \theta(\alpha_{0,\sigma,j}) \theta(\alpha_{1,\sigma,j}) \cdots \theta(\alpha_{i-2,\sigma,j}) \theta(\alpha_{i-1,\sigma,j})$$

we therefore obtain

$$0 = \sum_{\sigma \in S^i} \sum_{j=1}^{\alpha_{\sigma}} \theta(\alpha_{0 \sigma j}) \theta(\alpha_{1 \sigma j}) \cdots \theta(\alpha_{i-1 \sigma j}) \alpha_{i \sigma j} x_{\sigma(i+1)} \cdots \alpha_{n-1,\sigma,j} x_{\sigma(n)} \alpha_{n,\sigma,j}$$

= $f_i(x_{i+1}, x_{i+2}, \cdots, x_n)$

and the induction step is proved.

In particular, we conclude for i = n that either $f_n = 0$ or there exists $\mu \in \mathcal{M}_n$ with $\operatorname{Supp} \mu \cap \Delta_k \neq \emptyset$. However f_n is known to be a a nonzero constant function and $\mathcal{M}_n \subseteq \{0\}$. Hence we have a contradiction and we must therefore have $[G: \Delta_k] < \infty$. By Lemma 2.3 this yields $[G: \Delta(G)] < \infty$ and $|\Delta(G)'| < \infty$ so the result follows.

3. Polynomial parts. Let E be an algebra over K. We say that E has a polynomial part it and only if E has an idempotent e such that eEe satisfies a polynomial identity. In this section we obtain necessary and sufficient conditions for K[G] to have a polynomial part.

We first discuss some well known properties of the standard polynomial s_n of degree n. Here

$$s_n(\zeta_1,\,\zeta_2,\,\cdots,\,\zeta_n) = \sum_{\sigma\,\in\,S_n} (-1)^\sigma \zeta_{\sigma(1)} \zeta_{\sigma(2)}\,\cdots\,\zeta_{\sigma(n)}$$
 .

Suppose A is a subset of $\{\zeta_1, \zeta_2, \dots, \zeta_n\}$ of size a. Then we let $s_a(A)$ denote s_a evaluated at these variables. This is of course only determined up to a plus or minus sign.

LEMMA 3.1. Let a_1, a_2, \dots, a_r be fixed integers with

$$a_{\scriptscriptstyle 1}+a_{\scriptscriptstyle 2}+\,\cdots\,+\,a_{\scriptscriptstyle r}=n$$
 .

Then

$$s_n(\zeta_1, \zeta_2, \dots, \zeta_n) = \sum_{A_1, A_2, \dots, A_r} \pm s_{a_1}(A_1) s_{a_2}(A_2) \dots s_{a_r}(A_r)$$

where A_1, A_2, \dots, A_r run through all subsets of $\{\zeta_1, \zeta_2, \dots, \zeta_n\}$ with $|A_i| = a_i$ and $A_1 \cup A_2 \cup \dots \cup A_r = \{\zeta_1, \zeta_2, \dots, \zeta_n\}$.

Proof. Consider all those terms in the sum for s_n such that the first a_1 variables come from A_1 , the next a_2 variables come from A_2 , etc. Then the subsum of all such terms is easily seen to be

$$\pm s_{a_1}(A_1)s_{a_2}(A_2)\cdots s_{a_r}(A_r)$$
.

This clearly yields the result.

THEOREM 3.2. Let K[G] be a group ring of G over K which satisfies a polynomial identity. Then K[G] satisfies a standard polynomial identity.

Proof. If K has characteristic 0 then Theorem 1.1 of [3] and proof of (i) of that theorem show that K[G] satisfies a standard identity. If K has characteristic p > 0 then Theorem 1.3 of [3] and

a slight modification of the proof of (i) of that theorem show that K[G] satisfies

$$s_{2n}(\zeta_1, \zeta_2, \cdots, \zeta_{2n}) s_{2n}(\zeta_{2n+1}, \zeta_{2n+2}, \cdots, \zeta_{4n}) \cdots$$

 $\cdots s_{2n}(\zeta_{2(m-1)n+1}, \zeta_{2(m-1)n+2}, \cdots, \zeta_{2mn}).$

Of course it also satisfies this polynomial with all possible permutations of the 2mn variables. Thus by Lemma 3.1 K[G] satisfies s_{2mn} .

THEOREM 3.3. Let K[G] be a group ring of G over K. Then the following are equivalent.

(i) $[G: \varDelta(G)] < \infty$ and $|\varDelta(G)'| < \infty$.

(ii) K[G] satisfies a nondegenerate multilinear generalized polynomial identity.

(iii) K[G] has polynomial part.

(iv) K[G] has a central idempotent e such that eK[G] satisfies a standard identity.

Proof. (iv) \Rightarrow (iii). This is obvious.

(iii) \Rightarrow (ii). Let *e* be an idempotent such that E = eK[G]e satisfies a polynomial identity. By Lemma 3.2 of [3], *E* satisfies an identity of the form

$$g(\zeta_1, \zeta_2, \cdots, \zeta_n) = \sum_{\sigma \in S_n} b_\sigma \zeta_{\sigma(1)} \zeta_{\sigma(2)} \cdots \zeta_{\sigma(n)}$$
.

If $\alpha \in K[G]$ then of course $e\alpha e \in E$. This shows immediately that K[G] satisfies the multilinear generalized polynomial identity

$$f(\zeta_1, \zeta_2, \cdots, \zeta_n) = \sum_{\sigma \in S_n} b_\sigma e \zeta_{\sigma(1)} e \zeta_{\sigma(2)} e \cdots e \zeta_{\sigma(n)} e$$
.

Moreover f is nondegenerate since $b_{\sigma} \neq 0$ for some σ and then

$$f^{\sigma}(1, 1, \dots, 1) = b_{\sigma}e \neq 0$$
.

(ii) \Rightarrow (i). This follows from Theorem 2.4.

(i) \Rightarrow (iv). Suppose first that K has characteristic 0. Let $H = \Delta(G)'$ so that H is a finite normal subgroup of G. Set

$$e = rac{1}{|H|} \sum_{x \in H} x \in K[G]$$
.

Then e is a central idempotent in K[G] and eK[G] is easily seen to be isomorphic to K[G/H]. Now G/H has an abelian subgroup $\Delta(G)/H$ of finite index so by Theorem 3.2 and Theorem 1.1 of [3],

$$eK[G] \cong K[G/H]$$

satisfies a standard identity.

Now let K have characteristic p > 0 and let $A = C_{A(G)}(\Delta(G)')$. Then A is normal in G, $[G:A] < \infty$ and $A' \subseteq \Delta(G)'$ so A' is central in A. Let H be the normal p-compliment of A' and define e as above. Then again e is central in K[G] and $eK[G] \cong K[G/H]$. Since G/H has a p-abelian subgroup A/H of finite index it follows from Theorem 3.2 and Theorem 1.3 of [3] that K[G/H] satisfies a standard identity. This completes the proof of the theorem.

References

1. D. S. Passman, Radicals of twisted group rings, Proc. London Math. Soc., 20 (1970) 409-437.

2. ____, Linear identies in group rings II, Pacific J. Math., 36 (1971), 485-505.

3. ____, Group rings satisfying a polynomial identity, J. of Algebra. (to appear).

Received January 28, 1971.

UNIVERSITY OF WISCONSIN

438