GROUP RINGS
 SATISFYING A POLYNOMIAL IDENTITY II

D. S. Passman

Abstract

In an earlier paper we obtained necessary and sufficient conditions for the group ring $K[G]$ to satisfy a polynomial identity. In this paper we obtain similar conditions for a twisted group ring $K^{t}[G]$ to satisfy a polynomial identity. We also consider the possibility of $K[G]$ having a polynomial part.

1. Twisted group rings. Let K be a field and let G be a (not necessarily finite) group. We let $K^{t}[G]$ denote a twisted group ring of G over K. That is $K^{t}[G]$ is an associative K-algebra with basis $\{\bar{x} \mid x \in G\}$ and with multiplication defined by

$$
\bar{x} \bar{y}=\gamma(x, y) \overline{x y}, \quad \gamma(x, y) \in K-\{0\} .
$$

The associativity condition is equivalent to $\bar{x}(\bar{y} \bar{z})=(\bar{x} \bar{y}) \bar{z}$ for all $x, y, z \in G$ and this is equivalent to

$$
\gamma(x, y z) \gamma(y, z)=\gamma(x, y) \gamma(x y, z)
$$

We call the function $\gamma: G \times G \rightarrow K-\{0\}$ the factor system of $K^{t}[G]$. If $\gamma(x, y)=1$ for all $x, y \in G$ then $K^{t}[G]$ is in fact the ordinary group ring $K[G]$. In this section we offer necessary and sufficient conditions for $K^{t}[G]$ to satisfy a polynomial identity. The proof follows the one for $K[G]$ given in [3] and we only indicate the suitable modifications needed. The following is Lemma 1.1 of [2].

Lemma 1.1. If $x \in G$, then in $K^{t}[G]$ we have
(i) $1=\gamma(1,1)^{-1} \overline{1}$
(ii) $\quad \bar{x}^{-1}=\gamma\left(x, x^{-1}\right)^{-1} \gamma(1,1)^{-1} \overline{x^{-1}}$

$$
=\gamma\left(x^{-1}, x\right)^{-1} \gamma(1,1)^{-1} \overline{x^{-1}} .
$$

Proposition 1.2. Suppose $K^{t}[G]$ satisfies a polynomial identity of degree n and set $k=(n!)^{2}$. Then G has a characteristic subgroup G_{0} such that $\left[G: G_{0}\right] \leqq(k+1)$! and such that for all $x \in G_{0}$

$$
\left[G: \boldsymbol{C}_{G}(x)\right] \leqq k^{4^{(k+1)!}} .
$$

Proof. This is the twisted analog of Corollary 3.5 of [3]. We consider § 3 of [3] and observe that each of the prerequisite results for that corollary also has a twisted analog.

First Lemma 3.1 of [3] holds for $K^{t}[G]$ with no change in the proof. Of course x must be replaced by \bar{x} in the formula

$$
\alpha_{1} \bar{x} \beta_{1}+\alpha_{2} \bar{x} \beta_{2}+\cdots+\alpha_{t} \bar{x} \beta_{t}=\bar{x} \gamma .
$$

Second Theorem 3.4 of [3] also holds for $K^{t}[G]$ with no change in its statement. The proof is modified just slightly so that the inductive result to be proved is as follows. For each $x_{j}, x_{j+1}, \cdots, x_{n} \in G$, then either $f_{j}\left(\bar{x}_{j}, \bar{x}_{j+1}, \cdots, \bar{x}_{n}\right)=0$ or for some $\mu \in \mathscr{M} \mathscr{M}_{j}, \mu\left(\bar{x}_{j}, \bar{x}_{j+1}, \cdots, \bar{x}_{n}\right)=$ $a \bar{y}$ for some $a \in K-\{0\}, y \in \Delta_{k}(G)$. Then replacing $x^{\prime} s$ suitably by $\bar{x}^{\prime} s$ the proof carries through as before. Finally Corollary 3.5 of [3] holds for $K^{t}[G]$ since it is just a group theoretic consequence of Theorem 3.4 of [3].

Let $K^{t}[G]$ be a twisted group ring and let H be a subgroup of G. Then by $K^{t}[H]$ we mean that twisted group ring of H which is naturally contained in $K^{t}[G]$. Let $J K^{t}[G]$ denote the Jacobson radical of $K^{t}[G]$.

Proposition 1.3. Suppose $K^{t}[G]$ satisfies a polynomial identity of degree n and suppose further that G^{\prime} is finite and $K^{t}\left[G^{\prime}\right]$ is central in $K^{t}[G]$. Then G has a subgroup $Z \supseteq G^{\prime}$ such that

$$
[G: Z] \leqq(n / 2)^{2\left|G^{\prime}\right|}
$$

with $K^{t}[Z] /\left(J K^{t}\left[G^{\prime}\right] \cdot K^{t}[Z]\right)$ commutative.
Proof. Since $K^{t}\left[G^{\prime}\right]$ is commutative, $J K^{t}\left[G^{\prime}\right]$ is the intersection of the maximal two-sided ideals of $K^{t}\left[G^{\prime}\right]$. Moreover $K^{t}\left[G^{\prime}\right] / J K^{t}\left[G^{\prime}\right]$ is a finite dimensional semisimple algebra and hence it has at most

$$
\operatorname{dim}_{K} K^{t}\left[G^{\prime}\right] / J K^{t}\left[G^{\prime}\right] \leqq\left|G^{\prime}\right|
$$

maximal two-sided ideals. Thus we may write

$$
J K_{1}^{t}\left[G^{\prime}\right]=\bigcap_{1}^{m} I_{i}, m \leqq\left|G^{\prime}\right|
$$

where I_{i} is a maximal two-sided ideal of $K^{t}\left[G^{\prime}\right]$.
Fix a subscript i. Then $K^{t}\left[G^{\prime}\right] / I_{i}=F_{i}$, some finite field extension of K. Now $K^{t}\left[G^{\prime}\right]$ is central in $K^{t}[G]$, so $I_{i} \cdot K^{t}[G]$ is an ideal in $K^{t}[G]$. It is now easy to see that $K^{t}[G] /\left(I_{i} \cdot K^{t}[G]\right)$ is an $F_{i^{-}}$ algebra with a basis consisting of the images of coset representatives for G^{\prime} in G. Thus clearly $K^{t}[G] /\left(I_{i} \cdot K^{t}[G]\right)$ is isomorphic to some twisted group ring $F_{i}^{t_{i}}\left[G / G^{\prime}\right]$, and this twisted group ring inherits the polynomial identity satisfied by $K^{t}[G]$. Thus by Proposition 1.4 of [2], G/G' has a subgroup \bar{Z}_{i} with $\left[G / G^{\prime}: \bar{Z}_{i}\right] \leqq(n / 2)^{2}$ and with $F_{i}^{t_{i}}\left[Z_{i}\right]$ central in $F_{i}^{t_{i}}\left[G / G^{\prime}\right]$. Let Z_{i} be the complete inverse image
of \bar{Z}_{i} in G. Then $Z_{i} \supseteqq G^{\prime},\left[G: Z_{i}\right] \leqq(n / 2)^{2}$ and for all $\alpha, \beta \in K^{t}\left[Z_{i}\right]$ we have $\alpha \beta-\beta \alpha \in I_{i} \cdot K^{t}[G]$.

Set $Z=\bigcap_{1}^{m} Z_{i}$. Then

$$
[G: Z] \leqq \Pi_{1}^{m}\left[G: Z_{i}\right] \leqq(n / 2)^{2 m} \leqq(n / 2)^{2\left|G^{\prime}\right|}
$$

Moreover for all $\alpha, \beta \in K^{t}[Z]$ we have

$$
\alpha \beta-\beta \alpha \in \bigcap_{1}^{m} I_{i} \cdot K^{t}[G]=J K^{t}\left[G^{\prime}\right] \cdot K^{t}[G]
$$

since $K^{t}[G]$ is free over $K^{t}\left[G^{\prime}\right]$. Hence since $K^{t}[G]$ is free over $K^{t}[Z]$ we have

$$
\alpha \beta-\beta \alpha \in K^{t}[Z] \cap\left(J K^{t}\left[G^{\prime}\right] \cdot K^{t}[G]\right)=J K^{t}\left[G^{\prime}\right] \cdot K^{t}[Z]
$$

and the result follows.
We now come to our main result on twisted group rings satisfying a polynomial identity.

Theorem 1.4. Let $K^{t}[G]$ be a twisted group ring of G over K. Let $G \supseteqq A \supseteqq B$ be subgroups of G with B finite and central in A and with $K^{t}[A] /\left(J K^{t}[B] \cdot K^{t}[A]\right)$ commutative.
(i) If $[G: A]<\infty$ then $K^{t}[G]$ satisfies a polynomial identity of degree $n=2[G: A] \cdot|B|$.
(ii) If $K^{t}[G]$ satisfies a polynomial identity of degree n, then there exists suitable A and B with $[G: A] \cdot|B|$ bounded by some fixed function of n.

Proof. The proof of (i) is identical to the proof of Theorem 1.3 (i) of [3]. Observe that $J K^{t}[B] \cdot K^{t}[A]=K^{t}[A] \cdot J K^{t}[B]$ is an ideal of $K^{t}[A]$ by Lemma 1.2 of [1].

We now consider part (ii). Let $K^{t}[G]$ satisfy a polynomial identity of degree n. Set

$$
a=a(n)=(n!)^{2}, \quad b=b(n)=a^{4^{(a+1)!}}
$$

Then by Proposition $1.2 G$ has a subgroup G_{0} with

$$
\left[G: G_{0}\right] \leqq(a+1)!, \quad G_{0}=\Delta_{b}\left(G_{0}\right)
$$

where Δ_{k} is defined in [3].
Set

$$
c=c(n)=\left(b^{4}\right)^{b^{4}}, \quad d=d(n)=(n / 2)^{2 c}
$$

Then by Theorem 4.4 of [3], $\left|G_{0}^{\prime}\right| \leqq c$. Let $G_{1}=C_{G_{0}}\left(G_{0}^{\prime}\right)$. Then $G_{1}^{\prime} \cong G_{0}^{\prime}$ so G_{1}^{\prime} is a finite central subgroup of G_{1}. Moreover

$$
\left|G_{1}^{\prime}\right| \leqq c, \quad\left[G_{0}: G_{1}\right] \leqq c!.
$$

Let $x \in G_{1}$. Then conjugation by \bar{x} induces an automorphism of $K^{t}\left[G_{1}^{\prime}\right]$. Moreover since G_{1}^{\prime} is central in G_{1} we have

$$
\bar{x}^{-1} \bar{y} \bar{x}=\lambda_{x}(y) \bar{y}
$$

for all $y \in G_{1}^{\prime}$. It follows easily that λ_{x} is a linear character of G_{1}^{\prime} into K, that is $\lambda_{x} \in \operatorname{Hom}\left(G_{1}^{\prime}, K-\{0\}\right)$. In addition, it follows easily that the map $x \rightarrow \lambda_{x}$ is in fact a group homomorphism

$$
G_{1} \longrightarrow \operatorname{Hom}\left(G_{1}^{\prime}, K-\{0\}\right) .
$$

Let G_{2} denote the kernel of this homomorphism. Then

$$
\left[G_{1}: G_{2}\right] \leqq\left|\operatorname{Hom}\left(G_{1}^{\prime}, K-\{0\}\right)\right| \leqq\left|G_{1}^{\prime}\right| \leqq c
$$

Set $B=G_{2}^{\prime}$. Then $B \subseteq G_{1}^{\prime}$ so $|B| \leqq c$ and $K^{t}[B]$ is central in $K^{t}\left[G_{2}\right]$. By Proposition 1.3, G_{2} has a subgroup $A \supseteqq B$ with

$$
\left[G_{2}: A\right] \leqq(n / 2)^{2|B|} \leqq d
$$

and with $K^{t}[A] /\left(J K^{t}[B] \cdot K^{t}[A]\right)$ commutative. Since $|B| \leqq c$ and since

$$
[G: A]=\left[G: G_{0}\right]\left[G_{0}: G_{1}\right]\left[G_{1}: G_{2}\right]\left[G_{2}: A\right] \leqq(a+1)!\cdot c \cdot c \cdot d
$$

the result follows.
It is interesting to interpret this result for various fields. If K has characteristic 0 and if B is a finite group, then $K^{t}[B]$ is semisimple by Proposition 1.5 of [1]. Thus

Corollary 1.5. Let $K^{t}[G]$ be a twisted group ring of G over K and let K have characteristic 0 . Let A be an abelian subgroup of G with $K^{t}[A]$ commutative.
(i) If $[G: A]<\infty$ then $K^{t}[G]$ satisfies a polynomial identity of degree $n=2[G: A]$.
(ii) If $K^{t}[G]$ satisfies a polynomial identity of degree n, then there exists such a group A with $[G: A]$ bounded by some fixed function of n.

Corollary 1.6. Let $K^{t}[G]$ be a twisted group ring of G over K and let K have characteristic $p>0$. Let $G \supseteqq A \supseteqq P$ be subgroups of G with P a finite p-group central in A and with $K^{t}[A] /\left(J K^{t}[P] \cdot\right.$ $\left.K^{t}[A]\right)$ commutative.
(i) If $[G: A]<\infty$ then $K^{t}[G]$ satisfies a polynomial identity of degree $n=2[G: A] \cdot|P|$.
(ii) If $K^{t}[G]$ satisfies a polynomial identity of degree n, then there exists suitable A and P with $[G: A] \cdot|P|$ bounded by some fixed function of n.

Proof. Let B be given as in Theorem 1.4 and let P be its normal Sylow p-subgroup. Then P is also central in A. Moreover by Proposition 1.5 of [1] $J K^{t}[B]=J K^{t}[P] \cdot K^{t}[B]$ so the result clearly follows.

Finally in the above if K is a perfect field of characteristic p, then by Lemma 2.1 of $[1], K^{t}[P] \cong K[P]$ so $K^{t}[P] / J K^{t}[P]=K$. It then follows easily that

$$
K^{t}[A] /\left(J K^{t}[P] \cdot K^{t}[A]\right) \cong K^{t^{\prime}}[A / P]
$$

is in fact some twisted group ring of A / P.
2. Generalized polynomial identities. Let E be an algebra over K. A generalized polynomial over E is, roughly speaking, a polynomial in the indeterminates $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}$ in which elements of E are allowed to appear both as coefficients and between the indeterminates. We say that E satisfies a generalized polynomial identity if there exists a nonzero generalized polynomial $f\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)$ such that $f\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)=0$ for all $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in E$. The problem here is precisely what does it mean for f to be nonzero. For example, suppose that the center of E is bigger than K and let α be a central element not in K. Then E satisfies the identity $f\left(\zeta_{1}\right)=\alpha \zeta_{1}-\zeta_{1} \alpha$ but surely this must be considered trivial. Again, suppose that E is not prime. Then we can choose nonzero $\alpha, \beta \in E$ such that E satisfies the identity $f\left(\zeta_{1}\right)=\alpha \zeta_{1} \beta$ and this must also be considered trivial. We avoid these difficulties by restricting the allowable form of the polynomials.

We say that f is a multilinear generalized polynomial of degree n if

$$
f\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)=\sum_{\sigma \in S_{n}} f^{\sigma}\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)
$$

and

$$
f^{\sigma}\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)=\sum_{j=1}^{a_{\sigma}} \alpha_{0 \sigma j_{j} \zeta_{\sigma(1)}} \alpha_{1 \sigma, j} \zeta_{\sigma(2)} \cdots \alpha_{n-1 \sigma, j} \zeta_{\sigma(n)} \alpha_{n, \sigma, j}
$$

where $\alpha_{i \sigma, j} \in E$ and α_{σ} is some positive integer. This form is of course motivated by Lemma 3.2 of [3]. The above f is said to be nondegenerate if for some $\sigma \in S_{n}, f^{\sigma}$ is not a polynomial identity satisfied by E. Otherwise f is degenerate.

In this section we will study group rings $K[G]$ which satisfy nondegenerate multilinear generalized polynomial identities. Let $\Delta=\Delta(G)$ denote the F. C. subgroup of G and let $\theta: K[G] \rightarrow K[\Delta(G)]$ denote the natural projection.

Lemma 2.1. Suppose $K[G]$ satisfies a nondegenerate multilinear generalized polynomial of degree n. Then $K[G]$ satisfies a polynomial identity as given above with

$$
\sum_{j=1}^{a_{1}} \theta\left(\alpha_{0,1, j}\right) \theta\left(\alpha_{1,1, j}\right) \cdots \theta\left(\alpha_{n, 1, j}\right) \neq 0 .
$$

Proof. Let $K[G]$ satisfy f as above. Since f is nondegenerate, by reordering the ζ^{\prime} 's if necessary, we may assume that $f^{1}\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)$ is not an identity for $K[G]$. Thus since f^{1} is multilinear there exists $x_{1}, x_{2}, \cdots, x_{n} \in G$ with

$$
\begin{aligned}
0 & \neq f^{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
& =\sum_{j=1}^{a_{1}} \alpha_{0,1, j} x_{1} \alpha_{1,1, j} x_{2} \cdots \alpha_{n-1,1, j} x_{n} \alpha_{n, 1, j}
\end{aligned}
$$

If we replace ζ_{i} in f by $x_{i} \zeta_{i}$ we see clearly that $K[G]$ satisfies a suitable f with

$$
\begin{equation*}
0 \neq \sum_{j=1}^{a_{1}} \alpha_{0,1, j} \alpha_{1,1, j} \cdots \alpha_{n, 1, j} \tag{}
\end{equation*}
$$

For each i, j write

$$
\alpha_{i, 1, j}=\sum_{k} \beta_{i j k} y_{k}
$$

where $\beta_{i j k} \in K[4]$ and $\left\{y_{k}\right\}$ is a finite set of coset representatives for Δ in G. We substitute this into (*) above. It then follows easily that for some $k_{0}, k_{1}, \cdots, k_{n}$ we have

$$
0 \neq \sum_{j=1}^{a_{1}} \beta_{0 j k_{0}} y_{k_{0}} \beta_{1 k_{1}} y_{k_{1}} \cdots \beta_{n j k_{n}} y_{k_{n}}
$$

Thus if z_{i} is defined by $z_{i}=y_{k_{0}} y_{k_{1}} \cdots y_{k_{i-1}}$ and $z_{0}=1$ then

$$
0 \neq \sum_{j=1}^{a_{1}} \beta_{0 j k_{0}}^{z_{0}^{-1}} \beta_{1 j k_{1}}^{z_{1}^{-1}} \cdots \beta_{n j k_{n}}^{z^{-1}} .
$$

Now $\beta_{i j k_{i}}=\theta\left(\alpha_{i, 1, j} y_{k_{i}}^{-1}\right)$ so

$$
\beta_{i j k_{i}}^{z_{i}^{-1}}=\theta\left(z_{i} \alpha_{i, 1, j} y_{k_{i}}^{-1} z_{i}^{-1}\right)=\theta\left(z_{i} \alpha_{i, 1, j} z_{i+1}^{-1}\right) .
$$

It therefore follows that if we replace ζ_{i} in f by $z_{i+1}^{-1} \zeta_{i} z_{i+1}$ and if, in addition, we multiply f on the left by z_{0} and on the right by z_{n+1}^{-1}, then this new multilinear generalized polynomial identity obtained has the required property.

Lemma 2.2. Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{u}, \beta_{1}, \beta_{2}, \cdots, \beta_{u} \in K[G] . \quad$ Suppose that for some integers k and t

$$
\left|\bigcup_{i} \operatorname{Supp} \alpha_{i}\right|=r,\left|\bigcup \underset{i}{ } \operatorname{Supp} \beta_{i}\right|=s
$$

and

$$
\left(\bigcup_{i} \operatorname{Supp} \alpha_{i}\right) \cap \Delta_{k}(G) \subseteq \Delta_{t}(G)
$$

with $k \geqq r s t^{r}$. Let T be a subset of G and suppose that for all $x \in G-T$ we have

$$
\alpha_{1} x \beta_{1}+\alpha_{2} x \beta_{2}+\cdots+\alpha_{u} x \beta_{u}=0
$$

Then either $[G: T]<(k+2)$! or

$$
\theta_{k}\left(\alpha_{1}\right) \beta_{1}+\theta_{k}\left(\alpha_{2}\right) \beta_{2}+\cdots+\theta_{k}\left(\alpha_{u}\right) \beta_{u}=0
$$

Proof. Let $A=\mathbf{U}_{i} \operatorname{Supp} \alpha_{i}, B=\bigcup_{i} \operatorname{Supp} \beta_{i}$ and write

$$
\begin{aligned}
A^{\prime} & =A \cap \Delta_{k}=\left\{g_{1}, g_{2}, \cdots, g_{n}\right\} \\
A^{\prime \prime} & =A-\Delta_{k}=\left\{y_{1}, y_{2}, \cdots, y_{m}\right\} \\
B & =\left\{z_{1}, z_{2}, \cdots, z_{s}\right\}
\end{aligned}
$$

Here of course $m+n=r$. Set $W=\bigcap_{1}^{n} \boldsymbol{C}_{G}\left(g_{i}\right)$. Since by assumption $A^{\prime} \subseteq \Delta_{t}(G)$ we have clearly $[G: W] \leqq t^{r}$. Observe that for all $x \in W$, x centralizes $\theta_{k}\left(\alpha_{i}\right)$.

Suppose that

$$
\gamma=\theta_{k}\left(\alpha_{1}\right) \beta_{1}+\theta_{k}\left(\alpha_{2}\right) \beta_{2}+\cdots+\theta_{k}\left(\alpha_{u}\right) \beta_{u} \neq 0
$$

and let $v \in \operatorname{Supp} \gamma$. If y_{i} is conjugate to $v z_{j}^{-1}$ in G for some i, j choose $h_{i j} \in G$ with $h_{i j}^{-1} y_{i} h_{i j}=v z_{j}^{-1}$.

Write $\alpha_{i}=\theta_{k}\left(\alpha_{i}\right)+\alpha_{i}^{\prime \prime}$ and then write

$$
\alpha_{i}^{\prime \prime}=\sum a_{i j} y_{j}, \beta_{i}=\sum b_{i j} z_{j} .
$$

Let $x \in W-T$. Then we must have

$$
\begin{aligned}
& 0=x^{-1} \alpha_{1} x \beta_{1}+x^{-1} \alpha_{2} x \beta_{2}+\cdots+x^{-1} \alpha_{u} x \beta_{u} \\
& =\left[\theta_{k}\left(\alpha_{1}\right) \beta_{1}+\theta_{k}\left(\alpha_{2}\right) \beta_{2}+\cdots+\theta_{k}\left(\alpha_{u}\right) \beta_{u}\right] \\
& \quad+\left[\alpha_{1}^{\prime \prime x} \beta_{1}+\alpha_{2}^{\prime \prime x} \beta_{2}+\cdots+\alpha_{u}^{\prime \prime x} \beta_{u}\right] .
\end{aligned}
$$

Since v occurs in the support of the first term it must also occur in the second and hence there exists y_{i}, z_{j} with $v=y_{i}^{x} z_{j}$ or

$$
x^{-1} y_{i} x=v z_{j}^{-1}=h_{i j}^{-1} y_{i} h_{i j}
$$

Thus $x \in \boldsymbol{C}_{G}\left(y_{i}\right) h_{i j}$. We have therefore shown that

$$
W \cong T \cup \bigcup_{i j} \boldsymbol{C}_{G}\left(y_{i}\right) h_{i j} .
$$

Let $w_{1}, w_{2}, \cdots, w_{d}$ be a complete set of coset representatives for W in G. Then $d=[G: W] \leqq t^{r}$ and the above yields

$$
G=T w_{1} \cup T w_{2} \cup \cdots \cup T w_{d} \cup S
$$

where

$$
S=\bigcup_{i, j, c} \boldsymbol{C}_{G}\left(y_{i}\right) h_{i j} w_{c}
$$

Now the number of cosets in the above union for S is at most

$$
r s d \leqq r s t^{r} \leqq k
$$

by assumption on k. Moreover $y_{i} \notin \Delta_{k}$ so $\left[G: \boldsymbol{C}_{G}\left(y_{i}\right)\right]>k$ for all i. Thus by Lemma 2.3 of [3] $S \neq G$ and then Lemma 2.1 of [3] yields

$$
[G: \widetilde{T}] \leqq(k+1)!
$$

where

$$
\widetilde{T}=\bigcup_{c} T w_{c}
$$

Thus

$$
[G: T] \leqq(k+1)!d \leqq(k+1)!(k+2)
$$

and the result follows.
We will need the following group theoretic lemma.
Lemma 2.3. Let G be a group. The following are equivalent
(i) $[G: \Delta(G)]<\infty$ and $\left|\Delta(G)^{\prime}\right|<\infty$.
(ii) There exists an integer k with $\left[G: \Delta_{k}(G)\right]<\infty$.

Proof. Suppose that G satisfies (i) and set $n=[G: \Delta], m=\left|\Delta^{\prime}\right|$. If $x \in \Delta$, then by Theorem 4.4 (i) of [3], [$\left.4: C_{\Delta}(x)\right] \leqq m$ and hence [$\left.G: \boldsymbol{C}_{G}(x)\right] \leqq n m$. Thus (ii) follows with $k=m n$.

Now suppose that (ii) holds. Since $\Delta(G) \supseteq \Delta_{k}(G)$ and $\left[G: \Delta_{k}\right]<\infty$ we conclude that $[G: \Delta]<\infty$. Now $\Delta(G)$ is a subgroup of G so every right translate of Δ_{k} in G is either entirely contained in Δ or is disjoint from Δ. This implies that $\left[\Delta: \Delta_{k}\right]<\infty$ and say

$$
\Delta=\Delta_{k} y_{1} \cup \Delta_{k} y_{2} \cup \cdots \cup \Delta_{k} y_{r}
$$

Since each $y_{i} \in \Delta$ we can set $n=\max _{i}\left[G: C\left(y_{i}\right)\right]<\infty$. If $x \in \Delta$ then $x \in \Delta_{k} y_{i}$ for some i and this implies easily that $[G: C(x)] \leqq n k$. Thus $\left[\Delta: C_{A}(x)\right] \leqq n k$ and by Theorem 4.4 (ii) of [3], $\left|\Delta^{\prime}\right|<\infty$.

We now come to the main result of this section
Theorem 2.4. Let $K[G]$ be a group ring of G over K and sup-
pose that $K[G]$ satisfies a nondegegerate multilinear polynomial identity. Then $[G: \Delta(G)]<\infty$ and $\left|\Delta(G)^{\prime}\right|<\infty$.

Proof. By Lemma 2.1. we may assume that $K[G]$ satisfies

$$
f\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)=\sum_{\sigma \in S_{n}} \sum_{j=1}^{a_{\sigma}} a_{0, \sigma, j} \zeta_{\sigma(1)} \alpha_{1 \sigma, j} \zeta_{\sigma(2)} \cdots \alpha_{n-1 \sigma j} \zeta_{\sigma(n)} \alpha_{n, \sigma j}
$$

with

$$
\sum_{j=1}^{a_{1}} \theta\left(\alpha_{0,1, j}\right) \theta\left(\alpha_{n, 1 j}\right) \cdots \theta\left(\alpha_{n 1 \cdot j}\right) \neq 0
$$

We first define a number of numerical parameters associated with f. Set

$$
\alpha=\sum_{\sigma \in S_{n}} \sum_{i=0}^{n} \sum_{j=1}^{a_{\sigma}}\left|\operatorname{Supp} \alpha_{i, \sigma j}\right|
$$

and

$$
r_{0}=s_{0}=a^{n+1}
$$

Now consider

$$
U=\bigcup_{\sigma \in S_{n}} \bigcup_{j=1}^{a_{\sigma}} \bigcup_{i=0}^{n} \operatorname{Supp} \theta\left(\alpha_{i, \sigma, j}\right)
$$

Then U is a finite subset of $\Delta(G)$ so there exists an integer b with $U \subseteq A_{b}(G)$. Set

$$
t=b^{n+1} \quad \text { and } \quad k=r_{0} s_{0} t^{r_{0}}
$$

We assume now that $\left[G: \Delta_{k}\right]=\infty$ and derive a contradiction.
For $i=0,1, \cdots, n$ define $S^{i} \cong S_{n}$ by

$$
S^{i}=\left\{\sigma \in S_{n} \mid \sigma(1)=1, \sigma(2)=2, \cdots, \sigma(i)=i\right\}
$$

Then $S^{0}=S_{n}, S^{n}=\langle 1\rangle$ and S^{i} is just an embedding of S_{n-i} in S_{n}. We define the multilinear generalized polynomial f_{i} of degree $n-i$ by

$$
\begin{aligned}
& f_{i}\left(\zeta_{i+1}, \zeta_{i+2}, \cdots, \zeta_{n}\right) \\
= & \sum_{\sigma \in S^{i}} \sum_{j=1}^{a_{\sigma}} \theta\left(\alpha_{0 \sigma, j}\right) \theta\left(\alpha_{1, \sigma, j}\right) \cdots \theta\left(\alpha_{i-1, \sigma, j}\right) \alpha_{i \cdot \sigma, j} \zeta_{\sigma(i+1)} \cdots \alpha_{n-1, \sigma j} \zeta_{\sigma(n)} \alpha_{n \sigma, j}
\end{aligned}
$$

Thus $f_{0}=f$ and

$$
f_{n}=\sum_{j=1}^{a_{1}} \theta\left(\alpha_{0,1 \cdot j}\right) \theta\left(\alpha_{1,1, j}\right) \cdots \theta\left(\alpha_{n-1,1, j}\right) \alpha_{n 1, j}
$$

is a nonzero element of $K[G]$ since

$$
\theta\left(f_{n}\right)=\sum_{j=1}^{a_{1}} \theta\left(\alpha_{0,1, j}\right) \theta\left(\alpha_{1,1, j}\right) \cdots \theta\left(\alpha_{n-1,1, j}\right) \theta\left(\alpha_{n, 1, j}\right) \neq 0
$$

Let \mathscr{M} be the set of monomial polynomials obtained as follows. For each σ, j we start with

$$
\alpha_{0, a, j} \zeta_{\sigma(1)} \alpha_{1, \sigma, j} \zeta_{\sigma(2)} \cdots \alpha_{n-1, \sigma, j} \zeta_{\sigma(n)} \alpha_{n, \sigma, j}
$$

and we modify it by (1) deleting some but not all of the ζ_{i}; (2) replacing some of the $\alpha_{i, \sigma, j}$ by $\theta\left(\alpha_{i, \sigma j}\right)$; and (3) replacing some of the $\alpha_{i, a, j}$ by 1. Then \mathscr{M} consists of all such monomials obtained for all σ, j and clearly \mathscr{M} is a finite set. Note that \mathscr{M} may contain the zero monomial but it contains no nonzero constant monomial since in (1) we do not allow all the ζ_{i} to be deleted.

For $i=0,1, \cdots, n$ define $\mathscr{M}_{i} \cong \mathscr{M}$ by $\mu \in \mathscr{M}_{i}$ if and only if $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{i}$ do not occur as variables in μ. Thus $\mathscr{M}_{n} \subseteq\{0\}$ where 0 is the zero monomial.

Under the assumption that $\left[G: \Delta_{k}\right]=\infty$ we prove by induction on $i=0,1, \cdots, n$ that for all $x_{i+1}, x_{i+2}, \cdots, x_{n} \in G$ either

$$
f_{i}\left(x_{i+1}, x_{i+2}, \cdots, x_{n}\right)=0
$$

or there exists $\mu \in \mathscr{M}_{i}$ with $\operatorname{Supp} \mu\left(x_{i+1}, x_{i+2}, \cdots, x_{n}\right) \cap \Delta_{k} \neq \varnothing$. Since $f_{0}=f$ is an identity satisfied by $K[G]$ the result for $i=0$ is clear.

Suppose the inductive result holds for some $i-1<n$. Fix $x_{i+1}, x_{i+2}, \cdots, x_{n} \in G$ and let $x \in G$ play the role of the i th variable. Let $\mu \in \mathscr{N}_{i}$. If $\operatorname{Supp} \mu\left(x_{i+1}, \cdots, x_{n}\right) \cap \Delta_{k} \neq \varnothing$ we are done. Thus we may assume that $\operatorname{Supp} \mu\left(x_{i+1}, \cdots, x_{n}\right) \cap \Delta_{k}=\varnothing$ for all $\mu \in \mathscr{M}_{i}$. Set $\mathscr{M}_{i-1}-\mathscr{M}_{i}=\mathscr{N}_{i-1}$.

Now let $\mu \in \mathscr{N}_{i-1}$ so that μ involves the variable ζ_{i}. Write $\mu=$ $\mu^{\prime} \zeta_{i} \mu^{\prime \prime}$ where μ^{\prime} and $\mu^{\prime \prime}$ are monomials in the variables $\zeta_{i+1}, \cdots, \zeta_{n}$. Then $\operatorname{Supp} \mu\left(x, x_{i+1}, \cdots, x_{n}\right) \cap \Delta_{k} \neq \varnothing$ implies that

$$
x \in h^{\prime-1} \Delta_{k} h^{\prime \prime-1}=\Delta_{k} h^{\prime-1} h^{\prime \prime-1}
$$

where $h^{\prime} \in \operatorname{Supp} \mu^{\prime}\left(x_{i+1}, \cdots, x_{n}\right)$ and $h^{\prime \prime} \in \operatorname{Supp} \mu^{\prime \prime}\left(x_{i+1}, \cdots, x_{n}\right)$. Thus it follows that for all $x \in G-T$ where

$$
T=\bigcup_{\substack{\mu \in N_{i-1} \\ h^{\prime}, h^{\prime}, 1}} J_{k} h^{\prime-1} h^{\prime \prime-1}
$$

we have $\operatorname{Supp} \mu\left(x, x_{i+1}, \cdots, x_{n}\right) \cap \Delta_{k}=\varnothing$ for all $\mu \in \mathscr{M}_{i-1}$. Thus by the inductive result for $i-1$ we conclude that for all $x \in G-T$ we have $f_{i-1}\left(x, x_{i+1}, \cdots, x_{n}\right)=0$. Note that T is a finite union of right translates of Δ_{k}, a subset of G of infinite index.

Now clearly

$$
\begin{aligned}
& f_{i-1}\left(x, x_{i+1}, \cdots, x_{n}\right) \\
= & \sum_{\sigma \in S^{i}} \sum_{j=1}^{a_{\sigma}} \theta\left(\alpha_{0, j}\right) \theta\left(\alpha_{1, \sigma, j}\right) \cdots \theta\left(\alpha_{i-2, \sigma, j}\right) \alpha_{i-1, \sigma, j} x \alpha_{i, \sigma, j} x_{\sigma(i+1)} \cdots \alpha_{n-1 \sigma, j} x_{\sigma(n)} \alpha_{n \sigma j} \\
& +\sum_{\mu \in \mu_{i}} \mu\left(x_{i+1}, \cdots, x_{n}\right) x \eta\left(x_{i+1}, \cdots, x_{n}\right)
\end{aligned}
$$

where the $\eta\left(\zeta_{i+1}, \cdots, \zeta_{n}\right)$ are suitable monomials. Since

$$
f_{i-1}\left(x, x_{i+1}, \cdots, x_{n}\right)=0
$$

for all $x \in G-T$ we can apply Lemma 2.2. However we must first observe that the hypotheses are satisfied.

Let r and s be defined as in Lemma 2.2. Using the basic fact that

$$
|\operatorname{Supp} \alpha \beta| \leqq|\operatorname{Supp} \alpha||\operatorname{Supp} \beta|
$$

for any $\alpha, \beta \in K[G]$ it follows easily that

$$
r \leqq a^{n+1}=r_{0}, \quad s \leqq a^{n+1}=s_{0} .
$$

Now $\mu \in \mathscr{M}_{i}$ implies that $\operatorname{Supp} \mu\left(x_{i+1}, \cdots, x_{n}\right) \cap \Delta_{k}=\varnothing$. Therefore the only left hand factors of x which have some support in Δ_{k} come from the first of the two sums above. Here we have

$$
\operatorname{Supp} \theta\left(\alpha_{i \sigma, j}\right) \cong U \subseteq \Delta_{b}
$$

and $\left(\Delta_{b}\right)^{n+1} \subseteq \Delta_{b^{n+1}}=\Delta_{t}$. Thus the intersection of the supports of these left hand factors with Δ_{k} is easily seen to be contained in Δ_{t}. Finally

$$
k=r_{0} s_{0} t^{r_{0}} \geqq r s t^{r}
$$

so the lemma applies.
There are two possible conclusions from Lemma 2.2. The first is that $[G: T]<\infty$. Since T is a finite union of right translates of Δ_{k} this yields $\left[G: \Delta_{k}\right]<\infty$, a contradiction by our assumption. Thus the second conclusion must hold. Since as we observed above

$$
\theta_{k}\left(\mu\left(x_{i+1}, \cdots, x_{n}\right)\right)=0
$$

and clearly

$$
\begin{aligned}
& \theta_{k}\left[\theta\left(\alpha_{0, j}\right) \theta\left(\alpha_{1, \sigma, j}\right) \cdots \theta\left(\alpha_{i-2} \sigma, j\right) \alpha_{i-1, \sigma, j}\right] \\
= & \theta\left(\alpha_{0, a, j}\right) \theta\left(\alpha_{1, \sigma, j}\right) \cdots \theta\left(\alpha_{i-2, o, j}\right) \theta\left(\alpha_{i-1, \sigma, j}\right)
\end{aligned}
$$

we therefore obtain

$$
\begin{aligned}
0 & =\sum_{\sigma \in S^{i}} \sum_{j=1}^{a_{\sigma}} \theta\left(\alpha_{0 \sigma j}\right) \theta\left(\alpha_{1 \sigma j}\right) \cdots \theta\left(\alpha_{i-1 \sigma, j}\right) \alpha_{i \sigma j} x_{\sigma(i+1)} \cdots \alpha_{n-1, \sigma \cdot j} x_{\sigma(n)} \alpha_{n, \sigma, j} \\
& =f_{i}\left(x_{i+1}, x_{i+2}, \cdots, x_{n}\right)
\end{aligned}
$$

and the induction step is proved.

In particular, we conclude for $i=n$ that either $f_{n}=0$ or there exists $\mu \in \mathscr{M}_{n}$ with $\operatorname{Supp} \mu \cap \Delta_{k} \neq \varnothing$. However f_{n} is known to be a a nonzero constant function and $\mathscr{M}_{n} \subseteq\{0\}$. Hence we have a contradiction and we must therefore have $\left[G: \Delta_{k}\right]<\infty$. By Lemma 2.3 this yields $[G: \Delta(G)]<\infty$ and $\left|\Delta(G)^{\prime}\right|<\infty$ so the result follows.
3. Polynomial parts. Let E be an algebra over K. We say that E has a polynomial part it and only if E has an idempotent e such that $e E e$ satisfies a polynomial identity. In this section we obtain necessary and sufficient conditions for $K[G]$ to have a polynomial part.

We first discuss some well known properties of the standard polynomial s_{n} of degree n. Here

$$
s_{n}\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)=\sum_{\sigma \in S_{n}}(-1)^{\sigma} \zeta_{\sigma(1)} \zeta_{\sigma(2)} \cdots \zeta_{\sigma(n)}
$$

Suppose A is a subset of $\left\{\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right\}$ of size a. Then we let $s_{a}(A)$ denote s_{a} evaluated at these variables. This is of course only determined up to a plus or minus sign.

Lemma 3.1. Let $a_{1}, a_{2}, \cdots, a_{r}$ be fixed integers with

$$
a_{1}+a_{2}+\cdots+a_{r}=n
$$

Then

$$
s_{n}\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)=\sum_{A_{1}, A_{2}, \cdots, A_{r}} \pm s_{a_{1}}\left(A_{1}\right) s_{a_{2}}\left(A_{2}\right) \cdots s_{a_{r}}\left(A_{r}\right)
$$

where $A_{1}, A_{2}, \cdots, A_{r}$ run through all subsets of $\left\{\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right\}$ with $\left|A_{i}\right|=\alpha_{i}$ and $A_{1} \cup A_{2} \cup \cdots \cup A_{r}=\left\{\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right\}$.

Proof. Consider all those terms in the sum for s_{n} such that the first a_{1} variables come from A_{1}, the next a_{2} variables come from A_{2}, etc. Then the subsum of all such terms is easily seen to be

$$
\pm s_{a_{1}}\left(A_{1}\right) s_{a_{2}}\left(A_{2}\right) \cdots s_{a_{r}}\left(A_{r}\right)
$$

This clearly yields the result.
Theorem 3.2. Let $K[G]$ be a group ring of G over K which satisfies a polynomial identity. Then $K[G]$ satisfies a standard polynomial identity.

Proof. If K has characteristic 0 then Theorem 1.1 of [3] and proof of (i) of that theorem show that $K[G]$ satisfies a standard identity. If K has characteristic $p>0$ then Theorem 1.3 of [3] and
a slight modification of the proof of (i) of that theorem show that $K[G]$ satisfies

$$
\begin{aligned}
s_{2 n}\left(\zeta_{1}, \zeta_{2},\right. & \left.\cdots, \zeta_{2 n}\right) s_{2 n}\left(\zeta_{2 n+1}, \zeta_{2 n+2}, \cdots, \zeta_{4 n}\right) \cdots \\
& \cdots s_{2 n}\left(\zeta_{2(m-1) n+1}, \zeta_{2(m-1) n+2}, \cdots, \zeta_{2 m n}\right) .
\end{aligned}
$$

Of course it also satisfies this polynomial with all possible permutations of the $2 m n$ variables. Thus by Lemma 3.1 $K[G]$ satisfies $s_{2 m n}$.

Theorem 3.3. Let $K[G]$ be a group ring of G over K. Then the following are equivalent.
(i) $[G: \Delta(G)]<\infty$ and $\left|\Delta(G)^{\prime}\right|<\infty$.
(ii) $K[G]$ satisfies a nondegenerate multilinear generalized polynomial identity.
(iii) $K[G]$ has polynomial part.
(iv) $K[G]$ has a central idempotent e such that eK[G] satisfies a standard identity.

Proof. (iv) \Rightarrow (iii). This is obvious.
(iii) \Rightarrow (ii). Let e be an idempotent such that $E=e K[G] e$ satisfies a polynomial identity. By Lemma 3.2 of [3], E satisfies an identity of the form

$$
g\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)=\sum_{\sigma \in S_{n}} b_{\sigma} \zeta_{\sigma(1)} \zeta_{\sigma(2)} \cdots \zeta_{\sigma(n)}
$$

If $\alpha \in K[G]$ then of course $e \alpha e \in E$. This shows immediately that $K[G]$ satisfies the multilinear generalized polynomial identity

$$
f\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)=\sum_{\sigma \in S_{n}} b_{\sigma} e \zeta_{\sigma(1)} e \zeta_{\sigma(2)} e \cdots e \zeta_{\sigma(n)} e
$$

Moreover f is nondegenerate since $b_{\sigma} \neq 0$ for some σ and then

$$
f^{\sigma}(1,1, \cdots, 1)=b_{o} e \neq 0
$$

(ii) \Rightarrow (i). This follows from Theorem 2.4.
(i) \Rightarrow (iv). Suppose first that K has characteristic 0 . Let $H=$ $\Delta(G)^{\prime}$ so that H is a finite normal subgroup of G. Set

$$
e=\frac{1}{|H|} \sum_{x \in H} x \in K[G]
$$

Then e is a central idempotent in $K[G]$ and $e K[G]$ is easily seen to be isomorphic to $K[G / H]$. Now G / H has an abelian subgroup $\Delta(G) / H$ of finite index so by Theorem 3.2 and Theorem 1.1 of [3],

$$
e K[G] \cong K[G / H]
$$

satisfies a standard identity.
Now let K have characteristic $p>0$ and let $A=C_{\Delta(G)}\left(\Delta(G)^{\prime}\right)$. Then A is normal in $G,[G: A]<\infty$ and $A^{\prime} \subseteq \Delta(G)^{\prime}$ so A^{\prime} is central in A. Let H be the normal p-compliment of A^{\prime} and define e as above. Then again e is central in $K[G]$ and $e K[G] \cong K[G / H]$. Since G / H has a p-abelian subgroup A / H of finite index it follows from Theorem 3.2 and Theorem 1.3 of [3] that $K[G / H]$ satisfies a standard identity. This completes the proof of the theorem.

References

1. D. S. Passman, Radicals of twisted group rings, Proc. London Math. Soc., 20 (1970) 409-437.
2. - Linear identies in group rings II, Pacific J. Math., 36 (1971), 485-505.
3. - Group rings satisfying a polynomial identity, J. of Algebra. (to appear).

Received January 28, 1971.
University of Wisconsin

