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GROUP RINGS
SATISFYING A POLYNOMIAL IDENTITY II

D. S. PASSMAN

In an earlier paper we obtained necessary and sufficient
conditions for the group ring K [G] to satisfy a polynomial
identity. In this paper we obtain similar conditions for a
twisted group ring Kι[G} to satisfy a polynomial identity.
We also consider the possibility of K[G] having a poly-
nomial part.

1Φ Twisted group rings* Let K be a field and let G be a
(not necessarily finite) group. We let Kι[G\ denote a twisted group
ring of G over K. That is K*[G] is an associative iΓ-algebra with
basis {x I x e G} and with multiplication defined by

xy = y(x, y)xy , Ύ(X, y) e K - {0} .

The associativity condition is equivalent to x(yz) = (xy)z for all
x, y, zeG and this is equivalent to

y(x, yz)y(y, z) = y(x, y)y(xy, z) .

We call the function 7: G x G->K - {0} the factor system of Kl[G].
If y(x, y) = 1 for all x,yeG then 15?[G] is in fact the ordinary group
ring 1Γ[GJ. In this section we offer necessary and sufficient condi-
tions for JBΓ* [G] to satisfy a polynomial identity. The proof follows
the one for K[G] given in [3] and we only indicate the suitable
modifications needed. The following is Lemma 1.1 of [2].

LEMMA 1.1. If xeG, then in Kι[G} we have

( i ) 1 = 7(1,1)- 1 ! _
(ϋ) a-* = 7(aj, or^-Mlf ϊ-)-1 ^

PROPOSITION 1.2. Suppose Kι[G\ satisfies a polynomial identity
of degree n and set k — (n !)2. T/^eπ G has a characteristic subgroup
Go such that [G: Go] ^ (k + 1)! and such that for all xeG0

[G: CG(x)] ^ k*{k+1)l .

Proof. This is the twisted analog of Corollary 3.5 of [3]. We
consider § 3 of [3] and observe that each of the prerequisite results
for that corollary also has a twisted analog.
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First Lemma 3-1 of [3] holds for K*[G] with no change in the
proof. Of course x must be replaced by x in the formula

axxβι + oc2xβ2 + + atxβt = xy .

Second Theorem 3.4 of [3] also holds for Kι[G] with no change in its
statement. The proof is modified just slightly so that the inductive
result to be proved is as follows. For each xS9xj+1, • • ,xneG, then
e i t h e r f 3 { x d 1 x j + 1 , , x n ) = 0 o r for s o m e μ e ^ , μ(xjf x j + 1 , •••,£*) =
ay for some aeK — {0}, yeAk{G). Then replacing x's suitably by
x's the proof carries through as before. Finally Corollary 3.5 of [3]
holds for K^G] since it is just a group theoretic consequence of
Theorem 3.4 of [3].

Let Kι [G] be a twisted group ring and let H be a subgroup of G.
Then by K*[H] we mean that twisted group ring of H which is
naturally contained in K*[G\. Let JK*[G] denote the Jacobson
radical of K'[G].

PROPOSITION 1.3. Suppose Kϋ[G] satisfies a polynomial identity
of degree n and suppose further that Gr is finite and Kι[G'\ is
central in K*[G]. Then G has a subgroup Z 2 f f such that

[G: Z] ^ (n/2) 2 | σ / |

with Kι [Z]/(JKι [G'] K% [Z]) commutative.

Proof. Since K*[G'] is commutative, JK^G'] is the intersection
of the maximal two-sided ideals of K'[G']. Moreover K'l&yjK'lG']
is a finite dimensional semisimple algebra and hence it has at most

άimκ

maximal two-sided ideals. Thus we may write

JK\[G'] = Π Γ / ί , m£\G'\

where Iι is a maximal two-sided ideal of
Fix a subscript i. Then ίΓ*[G']//< = -P ,̂ some finite field exten-

sion of K. Now Kl[G'] is central in K*[G], so J, K*[G] is an ideal
in K'[G]. It is now easy to see that #*[<?]/(!, . Kι[G]) is an FΓ

algebra with a basis consisting of the images of coset representatives
for G' in G. Thus clearly K*[G]/(Ii K*[G]) is isomorphic to some
twisted group ring 2*7* [(?/(?'], and this twisted group ring inherits
the polynomial identity satisfied by K*[G]. Thus by Proposition 1.4
of [2], G/G' has a subgroup Zt with [GjGr: Z<] ^ (n/2)2 and with

central in Fi*[G/G']. Let Zi be the complete inverse image
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of Z< in G. Then Z, 2 G', [G: Z,\ ^ (n/2)2 and for all α, βeK'lZ,]
we have α/S - βael{ jBΓ*[Cr]

Set Z - ΠΓ%. Then

[G: Z] ^ /7Γ[G: Z,] ^ (w/2)2m ^ (n/2)a|GΊ .

Moreover for all a, βe K*[Z] we have

aβ - βcceΠTli K'[G] = JK'[G'] ^ [ G ]

since Kι[G] is free over K*[G']. Hence since K*[G] is free over
K*[Z] we have

aβ - βaeK'lZ] n (JϋΓ^G'J ίΓ'[G]) = JX"*[G'] K*[Z]

and the result follows.

We now come to our main result on twisted group rings satisfy-
ing a polynomial identity.

THEOREM 1.4. Let K*[G] be a twisted group ring of G over K.
Let G 3 4 3 β be subgroups of G with B finite and central in A
and with Kι [A]/(JKt [B] If* [A]) commutative.

( i ) // [G: A] < co then K*[G] satisfies a polynomial identity of
degree n = 2[G: A] . | B |.

(ii) // Kι[G] satisfies a polynomial identity of degree n, then
there exists suitable A and B with [G: A] | B \ bounded by some fixed
function of n.

Proof. The proof of (i) is identical to the proof of Theorem 1.3
( i ) of [3]. Observe that JKι [B] . K * [A] = Kι [A] JKι [B] is an
ideal of K^A] by Lemma 1.2 of [1].

We now consider part (ii). Let Kι[G] satisfy a polynomial
identity of degree n. Set

a = a(n) = (n !) 2, b = b(n) = α 4 ( α + 1 ) ! .

Then by Proposition 1.2 G has a subgroup Go with

[G: Go] ^ (a+ 1)1, GQ = Jb(G0)

where Δk is defined in [3].
Set

c = c(n) = (bY, d - d(n) - (n/2)2c.

Then by Theorem 4.4 of [3], \G'0\^c. Let Gί = CGo(G'd). Then

G[ £ Go so G[ is a finite central subgroup of G l β Moreover



428 D. S. PASSMAN

Let x e (?i. Then conjugation by x induces an automorphism of
K^GΊ]. Moreover since G[ is central in Gx we have

χ~ιyχ = \x(y)y

for all y e G[. It follows easily that λ̂  is a linear character of G[
into K, that is Xx e Horn (G[, K — {0}). In addition, it follows easily
that the map x —> λ̂  is in fact a group homomorphism

G, > Horn (G[,K- {0}) .

Let G2 denote the kernel of this homomorphism. Then

[ G x : G2] ^ I H o r n (G[, K - {0}) \^\G[\^c.

Set B = G'2. Then B Q G[ so \B\^c and £"*[£] is central in
By Proposition 1.3, G2 has a subgroup 4 3 i? with

[G8: A] ^ (w/2)21B1 ^ d

and with Kι [AyiJK1 [B] Kι [A]) commutative. Since | B \ ̂  c and
since

[G: A] = [G: Go] [Go: GJ [G,: G2] [G2: A] ^ (α + 1)! c c d

the result follows.

It is interesting to interpret this result for various fields. If K
has characteristic 0 and if B is a finite group, then K*[B] is semi-
simple by Proposition 1.5 of [1]. Thus

COROLLARY 1.5. Let K*[G] be a twisted group ring of G over K
and let K have characteristic 0. Let A be an abelian subgroup of G
with K^A] commutative.

( i ) // [G: A] < co then Kι [G] satisfies a polynomial identity
of degree n — 2 [G: A].

(ii) // Kl[G] satisfies a polynomial identity of degree n, then
there exists such a group A with [G: A] bounded by some fixed func-
tion of n.

COROLLARY 1.6. Let Kι[G] be a twisted group ring of G over K
and let K have characteristic p > 0. Let G Ξ2 4 3 P be subgroups
of G with P a finite p-group central in A and with Kι \A\\{JKι [P]
iΓ^A]) commutative.

( i ) // [G: A] < oo then Kι [G] satisfies a polynomial identity
of degree n = 2 [G: A] | P \.

(ii) // K^G] satisfies a polynomial identity of degree n, then
there exists suitable A and P with [G: A] | P \ bounded by some fixed
function of n.
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Proof. Let B be given as in Theorem 1.4 and let P be its nor-
mal Sylow p-subgroup. Then P is also central in A. Moreover by
Proposition 1.5 of [1] JK*[B] = JK'IP] K'[B] so the result clearly
follows.

Finally in the above if K is a perfect field of characteristic p,
then by Lemma 2.1 of [1], K'[P] = K[P] so K% [PyjK1 [P] = K. It
then follows easily that

K*[A]) ~ K'ΊA/P]

is in fact some twisted group ring of A/P.

2* Generalized polynomial identities* Let E be an algebra
over K. A generalized polynomial over E is, roughly speaking, a
polynomial in the indeterminates ζx, ζ2, , ζn in which elements of E
are allowed to appear both as coefficients and between the indeter-
minates. We say that E satisfies a generalized polynomial identity
if there exists a nonzero generalized polynomial /(d, ζ2, •• ,ζw) such
that /(#!, cz2ί , an) = 0 for all aίf a2, , aneE. The problem here
is precisely what does it mean for / to be nonzero. For example,
suppose that the center of E is bigger than K and let a be a central
element not in K. Then E satisfies the identity /(ζx) = aζ1 — dα
but surely this must be considered trivial. Again, suppose that E is
not prime. Then we can choose nonzero a, βeE such that E satis-
fies the identity /(ζ j = aζβ and this must also be considered trivial.
We avoid these difficulties by restricting the allowable form of the
polynomials.

We say that / is a multilinear generalized polynomial of degree n
if

and

3=1

where aiσ>jeE and aσ is some positive integer. This form is of
course motivated by Lemma 3.2 of [3]. The above / is said to be
nondegenerate if for some σe Sn, f

σ is not a polynomial identity satis-
fied by E. Otherwise / is degenerate.

In this section we will study group rings K[G] which satisfy
nondegenerate multilinear generalized polynomial identities. Let
A = A{G) denote the F. C. subgroup of G and let θ: K[G] -+ K[Δ(G)\
denote the natural projection.
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LEMMA 2.1. Suppose K[G] satisfies a nondegenerate multilinear
generalized polynomial of degree n. Then K[G] satisfies a polynomial
identity as given above with

Σθiao^θia^j) -.- θ(aUfl9i) Φ 0 .
j = l

Proof. Let K [G] satisfy / as above. Since / is nondegenerate,
by reordering the ζ's if necessary, we may assume that f%lf ζ2, , ζ»)
is not an identity for K[G], Thus since f1 is multilinear there exists
#i! x2y '', xneG with

0 Φ f1(%l,%2, •••, Xn)

= Σ ^0,1,^1^1,1,^2 OCn_uι>jXnantl,j .
3=1

If we replace ζ< in / by x& we see clearly that K[G] satisfies a
suitable / with

al

(*) 0 Φ Σ ao,ujal9l9, antl9, .
3=1

For each i, j write

A;

where βijk e K [Δ\ and {yk} is a finite set of coset representatives for
Δ in G. We substitute this into (*) above. It then follows easily
that for some k09 ku , kn we have

a l

0 Φ Σ βojkoVkoβl^Vk, ' βnjknVkn
i=i

Thus if Zi is defined by zt = ykoVkL * * * V^^ and «0 = 1 then

0 Φ ]C βo°jkoβι)kι /3Wjfc% .

Now &,.*. = θ(aiΛtiyΰ}) s o

It therefore follows that if we replace ζ; in / by zr+iC^+i and if, in
addition, we multiply / on the left by z0 and on the right by z~\.ly

then this new multilinear generalized polynomial identity obtained
has the required property.

LEMMA 2.2. Let a19 a2, , au, βu β2, , βu e K[G]. Suppose
that for some integers k and t
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I ψ Supp at I = r, | g Supp & | = s

and

m t t k ̂  rsΓ. Lei T be a subset of G and suppose that for all
xeG-T we have

ocιxβι + a2xβ2 + + auxβu = 0 .

Then either [G: T] < (k + 2)! or

0*(*i)βi + Θk{a2)β2 + + θk{au)βu = 0 .

Proo/. Let A = Ui Supp <*«, JB = U* Supp ̂  and write

A ' = An Jk = {g19gi9 •••,&»}

A" = A - Λ = {i/i, 2/2, , 7/m}

Here of course m + n = r. Set W = ΠΓ CG{g%). Since by assumption
A' S 4(G) we have clearly [G: W] ^ ΐr. Observe that for all xe W,
x centralizes θh(a^.

Suppose that

v - θkiadfa + θk(a2)β2 + + ̂ ( α j ^ Φ 0

and let v e Supp 7. If /̂̂  is conjugate to vzj1 in G for some i, j1

choose hί:jeG with hj-r\jihij — vzj1.
Write (Xi = θk(a^) + ά- and then write

ocϊ = Σ ^iil/i, /Si = Σ M ;

Let ice TΓ-Γ. Then we must have

0 = x~1aιxβι + x~ίa2xβ2 + + x~1auxβu

= [**(«i)A + ̂ (O/32 + + θk(au)βu]

+ K' ft + ̂ ;/χ/32 + + α ' ^ j .

Since v occurs in the support of the first term it must also occur in
the second and hence there exists yif z3- with v = y\zi or

x-'ViX = vzj1 = hT/Vihj .

Thus x e CG(yi)hi:}. We have therefore shown that



432 D. S. PASSMAN

Let w19w2, *",wd be a complete set of coset representatives for
W in G. Then d = [G: W] ^ V and the above yields

G = Twγ U Tw2 U U Twd U S

where

Now the number of cosets in the above union for S is at most

rsd ^ rstr ^ k

by assumption on &. Moreover y{^Ak so [(?: Cβ^/*)] > k for all ΐ .
Thus by Lemma 2.3 of [3] S Φ G and then Lemma 2.1 of [3] yields

[G: T]^(k + 1)1

where

f=Uc Twc .

Thus

[ G : T] £ (k + 1 ) ! d^(k + 1 ) 1 (k + 2)

and the result follows.

We will need the following group theoretic lemma.

LEMMA 2.3. Let G be a group. The following are equivalent
( i ) [G: A{G)] < co and | A(G)' \ < <*>.
(ii) There exists an integer k with [G: Ak(G)] < °o.

Proof. Suppose that G satisfies ( i ) and set n = [G:A], m = \A'\.
If xeA, then by Theorem 4.4 (i) of [3], [A:CΔ(x)]^m and hence
[G: CG(x)] ^ nm. Thus (ii) follows with k = mw.

Now suppose that (ii) holds. Since A(G)^Ak(G) and [G: Λ ^ ^ o
we conclude that [G: A] < co. Now z/(G) is a subgroup of G so every
right translate of Ak in G is either entirely contained in A or is dis-
joint from A. This implies that [A: Ak] < co and say

A = J / ^ U Λ2/2 U U Akyr .

Since each y^Δ we can set w = max^ [G: Cί^)] < co. If xeA then
xeAkyi for some i and this implies easily that [G: C(#)] ^ nk. Thus
[J: C,(α;)] ^ nk and by Theorem 4.4 (ii) of [3], | J ' | < °°

We now come to the main result of this section

THEOREM 2.4. Let K[G] be a group ring of G over K and sup-
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pose that K[G] satisfies a nondegegerate multilinear polynomial iden-
tity. Then [G: A{G)} < oo and \Δ{G)'\ < <*>.

Proof. By Lemma 2.1. we may assume that K [G] satisfies

J (Ci> Q21 * * * > ζ Λ ) — 2u 2_j ^Ό,σ,iζσ(l)^l σ,iCσ(2) ' * * # Λ - i σ jζσ(n)&n,σ j
S j

with
al

Σ #(#O,i,i) θ(an.l j) * * * θ(an l i) ^ 0
i = i

We first define a number of numerical parameters associated with / .
Set

α = σ Σ Σ Σ | S u p p α ΐ f β i |

and

' o — ύ o — W'

Now consider

Then U is a finite subset of Δ{G) so there exists an integer b with
U S z/6(G). Set

ί = δ%+1 and A - rosot
r° .

We assume now that [G: Δk\ — 00 and derive a contradiction.
For i = 0,1, , w define S i S S% by

S* - {σ e S J σ(l) = 1, σ(2) = 2, . . , σ(i) - i) .

Then S 0 = Sn, Sn = <1> and S* is just an embedding of Sn^ in Sw.
We define the multilinear generalized polynomial f{ of degree n—i by

= Σ Σ
σeSi j=ί

Thus /o = / and

i—1

is a nonzero element of ίΓ[G] since
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*(/.) = Σ θ(aOΛ,j)θ(aίΛ,i) • θ{an^uul)θ{anΛt3) Φ 0 .

Let ^ be the set of monomial polynomials obtained as follows.
For each σ, j we start with

and we modify it by (1) deleting some but not all of the ζ<; (2) re-
placing some of the aitOtί by θ(aUσ 3)] and (3) replacing some of the
ai>σ>j by 1. Then ^f consists of all such monomials obtained for all
σ, j and clearly ^^ is a finite set. Note that ^/ί may contain the
zero monomial but it contains no nonzero constant monomial since in
(1) we do not allow all the ζ< to be deleted.

For i = 0,1, , n define ^£{ £ ^ by μ^^/^ if and only if
Ci> Csi •> ζ< do not occur as variables in μ. Thus ^ C S {0} where 0
is the zero monomial.

Under the assumption that [G: Δk\ = oo we prove by induction
on i = 0,1, , n that for all xi+1, xi+2, , xn e G either

f i ( x i + ι , x i + 2 , - - - , x n ) = 0

or there exists μ e ^//{ with Supp μ (xi+1, xi+2, , xn) Π Δk Φ 0 . Since
fo=f is an identity satisfied by K [G] the result for i = 0 is clear.

Suppose the inductive result holds for some i — 1 < n. Fix
xi+ι,xi+2, ---,xneG and let xeG play the role of the i t h variable.
Let μ e ^//i. If Supp μ(xi+1, , xn) Π Δk Φ 0 we are done. Thus we
may assume that Swpp μ(xi+19 , xn) Π Δk = 0 for all μe^fi. Set

Now let μ e ^ ί - i so that // involves the variable ζim Write ^ =
μ'ζiμ" where μ' and /^" are monomials in the variables ζ i + 1, •• ,ζTO.
Then Supp jw(a;, α?ί+1, , xn) Π Ak Φ 0 implies that

x e hf~ιAkh"-1 - Δkh'-γ}ι"-1

where h! e Supp μ'{xi+ι<> •••,«») and Λ" G Supp μ"(xi+ι1 , »w). Thus i t

follows t h a t for all a e G - Γ where

T = U Δkh'-ιh"-1

h',h"

we have Supp μ (x, xi+ι, , xn) Π Δk = 0 for all μ e ^C_i Thus by
the inductive result for i — 1 we conclude that for all xeG—T we
have /»-i(ίc, £cί+1, •••,#») = 0. Note that Γ is a finite union of right
translates of z/Λ, a subset of G of infinite index.

Now clearly
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Xi+1, ' , O

) O ( ) 6 l ( 2 , σ , i )α: ί _ 1 , σ ,^α: ί , σ , i x σ ( ί + 1 ) an^ σ,3xa{n)an σ 3

σ

σeS1 j=ι

where the η{ζi+ι, * ,ζΛ) are suitable monomials. Since

fi-^XiXi+i, •••,«») = 0

for all xeG—T we can apply Lemma 2.2. However we must first
observe that the hypotheses are satisfied.

Let r and s be defined as in Lemma 2.2. Using the basic fact that

I Supp aβ\^\ Supp a \ | Supp β \

for any a, βeK[G] it follows easily that

r ^ an+1 = r0, = s0 .

Now μe ^ ^ implies that Suppμ (xi+1, " , xn) Γ) Λk = 0 . Therefore
the only left hand factors of x which have some support in Ak come
from the first of the two sums above. Here we have

Supp θ(at a%3) s U^Ah

and (Ab)
n+1 £ 4b*+ι = Δt. Thus the intersection of the supports of these

left hand factors with Ak is easily seen to be contained in Δt. Finally

k — rosQtr° ^ rstr

so the lemma applies.
There are two possible conclusions from Lemma 2.2. The first is

that [G: T] < co. Since T is a finite union of right translates of Ak

this yields [G: Ak] < oo, a contradiction by our assumption. Thus
the second conclusion must hold. Since as we observed above

θk(μ(xi+1, ••-,»»)) = 0

and clearly

we therefore obtain

σ

0 = Σ. Σ
a ^{a, σ 3) i σ 3xσ{i+ι) an^i(J.3 xσ{n)an,σ:3

and the induction step is proved.



436 D. S. PASSMAN

In particular, we conclude for i = n that either fn — 0 or there
exists μ e . ^ C with Suppμ C\ΔkΦ 0 . However fn is known to be a
a nonzero constant function and ^ C Si {0}. Hence we have a contra-
diction and we must therefore have [G: Δk\ < oo. By Lemma 2.3 this
yields [G: A{G)\ < oo and | Δ(G)' \ < oo so the result follows.

3* Polynomial parts* Let i? be an algebra over K. We say
that E has a polynomial part it and only if E has an idempotent e
such that eEe satisfies a polynomial identity. In this section we ob-
tain necessary and sufficient conditions for K[G] to have a polynomial
part.

We first discuss some well known properties of the standard poly-
nomial sn of degree n. Here

Sn(Qi9 S2> * *> in) — 2~t (-~~l/ζσ(l)ζσ(2) * * * Qσ(n)

Suppose A is a subset of {ζl9 ζ2, , ζ j of size α. Then we let sa(A)
denote sa evaluated at these variables. This is of course only deter-
mined up to a plus or minus sign.

LEMMA 3.1. Let aiy α2, , ar be fixed integers with

ax + a2 + + ar = n .

Then

sn(d, ζ2, , Q = Σ ±sβl(A1)sβ2(A2) sαr(Ar)

where A19 A2, , Ar run through all subsets of {ζ19 ζ2, , ζn) with
I Ai I = ai and Λ u Λ U U A ^ {d, ζ2, , ζΛ}

Proof. Consider all those terms in the sum for sn such that the
first aγ variables come from Aί9 the next α2 variables come from A29

etc. Then the subsum of all such terms is easily seen to be

±sai(A1)sa2(A2) sar(Ar) .

This clearly yields the result.

THEOREM 3.2. Let K[G] be a group ring of G over K which
satisfies a polynomial identity. Then K[G] satisfies a standard poly-
nomial identity.

Proof. If K has characteristic 0 then Theorem 1.1 of [3] and
proof of ( i ) of that theorem show that K[G] satisfies a standard
identity. If K has characteristic p > 0 then Theorem 1.3 of [3] and
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a slight modification of the proof of ( i ) of that theorem show that
K [G] satisfies

Of course it also satisfies this polynomial with all possible permuta-
tions of the 2mn variables. Thus by Lemma 3.1 K[G] satisfies s2mn.

THEOREM 3.3. Let K[G] be a group ring of G over K. Then
the following are equivalent.

( i ) [G: A{G)] < co and | A(G)'\ < <*>.
(ii) K[G] satisfies a nondegenerate multilinear generalized poly-

nomial identity.
(iii) K[G] has polynomial part.
(iv) K[G] has a central idempotent e such that eK[G] satisfies a

standard identity.

Proof, (iv) ==> (iii). This is obvious.
(iii) => (i i) . Let e be an idempotent such that E = eK[G]e satis-

fies a polynomial identity. By Lemma 3.2 of [3], E satisfies an iden-
tity of the form

#(Ci> ζ 2 , > ζn) = Σ bσζσωζσ{2) ζσ{n) .
aeSn

If aeK[G] then of course eaeeE. This shows immediately that
K[G] satisfies the multilinear generalized polynomial identity

f(ζlf ζ 2 , , ζn) = ΣJ bσeζσ{1)eζσ{2)e eζσ{n)e .
σeSn

Moreover / is nondegenerate since bσ Φ 0 for some σ and then

/*(1,1, ---,1) = bσeΦ0 .

(ii) ==> ( i ) . This follows from Theorem 2.4.
( i ) =» (iv). Suppose first that K has characteristic 0. Let H =

A(G)f so that if is a finite normal subgroup of G. Set

e τ4rΣ *\H\ **H

Then e is a central idempotent in K[G] and βiί[G] is easily seen to
be isomorphic to K[G/H]. Now G/H has an abelian subgroup A(G)/H
of finite index so by Theorem 3.2 and Theorem 1.1 of [3],

eK[G] = K[G/H]
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satisfies a standard identity.
Now let K have characteristic p > 0 and let A = CMG){A(G)').

Then A is normal in G, [G: A] < co and A' g Λ(G)' so A is central
in A. Let if be the normal ^-compliment of A! and define e as
above. Then again e is central in K[G] and eiT[G] = K[G/H].
Since G/iϊ has a p-abelian subgroup A/H of finite index it follows
from Theorem 3.2 and Theorem 1.3 of [3] that K[G/H] satisfies a
standard identity. This completes the proof of the theorem.

REFERENCES

1. D. S. Passman, Radicals of twisted group rings, Proc. London Math. Soc, 2O
(1970) 409-437.
2. , Linear identies in group rings II, Pacific J. Math., 36 (1971), 485-505.

3. , Group rings satisfying a polynomial identity, J. of Algebra, (to appear)»

Received January 28, 1971.

UNIVERSITY OF WISCONSIN




