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GENERATING MONOMIALS FOR FINITE SEMIGROUPS

DONALD C. RAMSEY

In this paper consideration is given semigroups which
arise from a group (G, ) by defining a binary operation °
on G by the rule

x o y = xφyφ for all x, y in G ,

where φ, ψ are endomorphisms of G. In particular, the
structure of such semigroups is determined. Also determined
are the structure and number of semigroups that can be de-
fined by

x o y — axsyl for all x, y in G ,

where (G, ) is a finite abelian group containing α, and s, t
are nonnegative integers.

1* Introduction* Let (G, ) be a groupoid and let φ, ψ be
transformations of G. A possibly different groupoid (G, °) is defined
by the rule

x o y — xφyψ for all x, y in G .

In § 2 of this paper we assume that (G, ) is a finite abelian
group and define a groupoid (G, °) by the rule

x o y = axsyϋ for all x, y in G ,

where s, £ are nonnegative integers and aeG. Necessary and suf-
ficient conditions on α, s, and £ are found in order for (G, ©) to be
a semigroup. Also, we determine the number of nonequivalent (i.e.,
non-isomorphic, non-anti-isomorphic) semigroups that are defined in
this manner. Whenever the rule

x o y — axsyt for all x, y in G ,

defines a semigroup, we say that (G, o) is generated by the monomial
axsyι over (G, ).

In § 3 it is shown that if a semigroup (G, °) is defined by the
rule

x o y — α /̂i/r for all x, y in G ,

where #, ψ are endomorphisms of the group (G, ), then (G, ©)
is an inflation of the direct product of a group and a rectangular
band. Consequently, a semigroup generated by a monomial over a
finite abelian group is an inflation of the direct product of a group
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and a rectangular band- Finally, if (Fg, + , ) is a finite field of
order q and if the rule

x o y = axsyι for all x, y in Fq ,

where aeFg defines a semigroup (Fq, °), then (i^, o) is an inflation
of the direct product of a cyclic group and a rectangular band,
together with a zero element. This is a generalization of the results
obtained in [3] by Plemmons and Yoshida.

2* Generating monomials* Throughout this section let (G, ) be
a finite abelian group with identity element e, and let M denote the
least common multiple of the orders of the elements of G. Then M
is the least positive integer q such that xq = e for all x in G. The
following theorem gives necessary and sufficient conditions on a
monomial ax'y* over (G, ), in order for it to generate a semigroup.

THEOREM 1. The monomial axsyι generates a semigroup over
(G, ) if and only if

( i ) αs~f = e and
(ii) s2 — s and t2 — t are multiples of M.

Proof. The monomial ax'y1 generates a semigroup over (G, ) if
and only if for all x, y, z in G

aiax'ytyz* = axs{aysziy

which holds if and only if for all x, y, z in G

α +VV*!?* = at+1xsystzt2

which in turn holds if and only if for all x, z in G

(2.1) αs~V2-s - ^ 2 - ί .

Assuming that ( i ) and (ii) hold, it follows that (2.1) holds since
each side of the equation reduces to e. Thus axsy* generates a semi-
group. Conversely, if ax"yt generates a semigroup then equation (2.1)
holds for all x, z in G, and in particular when x — z = e, so that
a3"* = e. By letting z — e in equation (2.1) and replacing as~ι by e,
we get that xs2~s = e for all x in G, whence s2 ~ s is a multiple of
M. In a similar fashion it can be shown that t2 — t is a multiple of
M.

If s ^ ikί, then s = qM + r for some integers g and r, where
# > 0 and 0 ^ r < M, so that

α^ί/' = axryt for all a?, y in G .
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Hence, in searching for the number of nonequivalent semigroups
generated by monomials over (G, ) we can assume that 0 ^ s < M
and 0 ^ t < M. Also, since the semigroup generated by axfys is
anti-isomorphic to the one generated by axsyι we can assume that
t ^ 8 Furthermore, the following lemma shows that we need only
consider monomials with a = e.

LEMMA 1. Suppose axsyι generates a semigroup (G, °) over ((?, )•
Let (G, *) be the semigroup generated by xsyt and let k denote the
order of a in (G, ). Let m be the solution to the congruence

(2ί - l)α? = 1 (mod k).

Then m is unique (mod k) and the mapping a from G into G defined
by

xa = amx for all x in G ,

is an isomorphism of (G, ©) onto (<?, * ) .

Proof. Since k is the order of a in ((?, ), it follows that k \ M.
Since ax'y* generates a semigroup, M \ t2 — t, whence k \ t2 — t.
Therefore, the greatest common divisor of 2t — 1 and k must divide
(2t — I)2 — i(t2 — t) = 1, whence 2t — 1 and k are relatively prime
Hence [2, Theorem 3-11, p. 34] there exists a unique solution m
(mod A:) to the congruence

(2t - l)x = 1 (mod k) .

Therefore & is a factor of m(2ί — 1) — 1. Now, the mapping a from
G into G defined by

a : z—>α™£

is a permutation of G. Let a?, y be arbitrary elements of G. Then

= (amx)s{amyY

since

gm{s+t) — (w+1) __ « m ( s + ( - l ) - l __ nm(s—t)+m{2t—D—i __

Therefore,

vέ/"-/ — a x y

= (ax9yι)a

= (x o y)a .
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Thus a is an isomorphism of (G, o) onto (G, * )•

Let n denote the order of (G, ) and let n = pa^pl2 pjv be
the prime power factorization of w, where pi Φ ps if i Φ j , and
α^ > 0 for 1 ^ i rgi r . By the fundamental theorem for finite abelian
groups, G has the structure S(pJ x S(p2) x ••• x S (pr) where each
S(Pi) is the Sylow p-subgroup of (G, ) of order p^ for 1 <£ i ^ r
The order of any element in S(Pi) is a power of the prime pi so that
for each prime pi with 1 ίg i ^ r, there exists an element ^ e G
having order a power > 0 of p*. Thus the prime power factorization
of M is M = p l 1 ^ 2 ί>^r where 0 < τ< ^ α* for 1 ^ i <£ r.

For each integer m let

Gm = {a e G : xm = β} .

Let s be a positive integer such that M\s(s — 1). Since s and s —1

are relatively prime, the prime factors of M which divide s do not

divide s — 1 , and those dividing s — 1 do not divide s. Assume that

the indexing of the primes p{ in the factorization of M is such that

pppl* PiJ< I (β — 1) and p^p]^2 pr

r

r \ s. Identifying the elements

of G and Sfa) x S(p2) x x S(pr) we get the following lemma.

L E M M A 2 . The set G s _ i i s ίfee subgroup S ( p ^ x S(j>2) x ••• S ( p s )
of G having order pl^pl2 pp\

Proof. Let » e 6 M . Wri t ten as an r-tuple, α? = ( ^ x2, •••, a?r),
so α;8"1 = (x'Γ\ xl~\ , a??"1) = erJ where er is the r-tuple (e, e, , e).
In particular, a J+i = α J+2 — = K~ι — e Since the orders of
%j+1, xj+2, , %r are relatively prime to s — 1 it follows t h a t xj+1 =
xj+2 = . . . = χr = e. Hence xeS(pj) x AS(^2) X ••• X S(PJ). Con-

versely, let xeSfa) x S(p2) x ••• x S(pj). We write

x = (a?!, aj2> * > ̂ i )

L e t t i n g eβ d e n o t e t h e i - t u p l e (e, e, •••, e), w e h a v e

βy — a; — [XL , X2 , , Xj ) ,

so t h a t a;1

s(s~1) = a?^8"11 = = a?}(8"1} = e. Since the orders of
Xi, Xif " # , x3 are relatively prime to s, a?;"1 = a J"1 = = x8^1 = e,
whence xs~ι = e5 and x e Gβ_i.

LEMMA 3. Let s and s' be positive integers less than M such
that MI s2 — s <mcZ ikf | s'2 — s\ // the order of Gs_! is the same as
the order of Gβ/_i ί/̂ ew s = s'
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Proof. By Lemma 2 the subgroups Gs_! and G,^ are direct
products of Sylow p-subgroups of G. Since the order of G ^ is the
same as the order of G8>-ίf it follows that the prime powers in the
factorization of M which divide s —1 are exactly those which divide
s '- l . Thus M\s(s'-1) and M\s'(s-1), whence

M\[s(s'-1) - s ' ( s - l ) ] ,

so MI sr—s. Since — M < s' — s < M, s' — s = 0, whence s' = s.

THEOREM 2 Suppose xsyι and xs'ytf generate semigroups over
(G, ), where 0 ̂ t^s < M and 0 ̂ t' ^s' < M. Then these semi-
groups are isomorphic if and only ifs = s' and t = V.

Proof. Clearly if s — s' and t — V then x8y* and xs'ytf generate
the same semigroup over (G, )• Conversely, suppose that x8yι and
xs V generate semigroups (G, ©) and (G, * ) , respectively, and suppose
(G, o) is isomorphic to (G, * ) . Then the Cayley tables for (G, o) and
(G, *) must have the same number of distinct rows. That is, (G, ©)
and (G, *) must have the same number of distinct inner left transla-
tions [1, p 9]. The distinct inner left translations of (G, °) are
determined by the distinct elements of the set {x8: xeG}. But

{xs: xeG} - Gs_x

as defined above Thus the orders of G8^ and G8^ are equal,
whence by Lemma 3, s = s' if both s and s' are positive. If s = 0
then Gs'-! = Gs-i = {e}, so that M\s', whence s' = 0. Similarly, if
s' = 0 then s = 0, so that in any case s = s'. Dually, by considering
columns in the Cayley tables of (G, °) and (G, * ) , we see that t = ί\

We now approach the problem of determining the number of non-
equivalent semigroups of order n generated by monomials over (G, )•
The integers s with 0 ̂  s < M that will serve as exponents in
generating monomials are exactly those such that M\s2—s. Hence
the set H of such integers is the solution set of the congruence

(2.2) x2 - x = 0 (mod M) .

LEMMA 4. The cardinality of the solution set H to the con-
gruence (2.2) is 2% where r is the number of distinct primes in the
prime power factorization of M.

Proof. Let M—p[ιpl2 ••• pr/ be the prime power factorization of
M. Then x0 is a solution to (2.2) if and only if x0 is a simultaneous
solution to the system of congruences
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(2.3) x2 - x = 0 ( m o d p i * ) l ^ i ^ r .

For each i, 1 <L £ <̂  r, suppose c4 is a solution to &2 — α? = 0 (mod pi*).
Then, by the Chinese Remainder Theorem, there is a solution xQ to
the system

x = <?! (mod pf*), a? = c2 (mod pj8), , x == cr (mod pj>)

which is unique modulo M. Then each r-tuple (cί9 •••,<?,) gives rise
to a unique solution (mod Jlf) to system (2.3) Thus the number of
solutions to (2.2) is the product of the numbers of roots of the con-
gruences in (2.3). But, by §3.5 of [2], the solution set to each of
these congruences is {0, 1}, whence the cardinality of the solution set
of (2.2) is 2r.

Finally, we have the following theorem.

THEOREM 3. The number NG of nonequivalent semigroups gener-
ated by monomials over (G, ) is 2r~1(2r + 1), where r is the number
of distinct primes which divide M.

Proof. The pairs s, t of elements of H yield monomials x'y*
which generate semigroups over ((•?, ). Moreover, these are the only
pairs modulo M which will do so. Thus to determine NG we need
only count the ways in which s and t can be picked from H with
t ^ s. There are

- 2r-1(2r

2

ways to do this.

3. Structure theorems* The following definition and facts are
the contents of [1, p. 98, Exercise 10]. Let T be a semigroup. With
each element a of Γ, associate a set Xa containing a such that the
sets Xa are mutually disjoint. Let s — \JaeτXa, and let the product
in T be extended to a product in S by defining ab = aβ if a e Xa and
be Xβ. Then S is a semigroup and is said to be an inflation of T.
Now, T is a subsemigroup of S such that S2 g T. If we define a
mapping θ from S into T by ad — a when a e Xa, then

( i ) θ maps S upon T,
(ii) θ2 = θ, and
(iii) (aθ)(bθ) = ab for all α, beS.
Let T be a subsemigroup of S such that S2 £ T, and let θ be a

transformation of S having properties ( i ) , (ii), and (iii) above.
Then S is an inflation of T.

By a left zero semigroup we mean a semigroup S such that #τ/ = x
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for all x, y e S. A right zero semigroup is defined dually.

THEOREM 4. Let (S, •) be a semigroup such that for some trans-
formation φ of S, xy — xφ for all x, y e S. Then S is an inflation
of the range Sφ of φ, and Sφ is a left zero semigroup. Conversely,
each inflation of a left zero semigroup is obtained in this manner.

Proof. Since S is a semigroup, (xy)z — x(yz) for all x, y, ze S,
so xφ2 = xφ for all xe S, whence φ2 = φ on S. Since S2 = Sφ, Sφ is
a subsemigroup of S such that S2 Q Sφ. Now φ maps S onto Sφ
and

aφbφ = aφ2 = aφ = ab f o r a l l α , b e S .

Hence, S is an inflation of Sφ. Let a, be Sφ. Then a = α^, so

αδ = α^6 = α^2 — aφ — a ,

thus S^ is a left zero semigroup. Conversely, let (S, ) be an in-
flation of a left zero semigroup L. Since S is an inflation of L, S is
the disjoint union of subsets Xa, where aeL(λXa. Define a trans-
formation φ of S by xφ = α if and only if a ;e l α . Let x, yeS with
aielα and y e Xb. Then xy = ab = a = xφ.

COROLLARY 1. If (G, °) is generated by xs over a finite abelian
group (G, ), £Ae% ((?, o) is an inflation of the left zero semigroup
(L, o), where L = {xs: x e G}.

By the dual of Theorem 4 we get the following corollary.

COROLLARY 2. // (G, °) is generated by yt over the finite abelian
group (G, ), then (G, °) is an inflation of the right zero semigroup
(R, o), where R — {y*: y eG}.

Before investigating the structure of semigroups generated by
the more general monomial xsyι with 0 ^ t ^ s < M, we prove the
following lemma.

LEMMA 5. Suppose the semigroup (G, o) is generated by xsyι over
an abelian group (G, ) with 0 ^ t ^ s < M. Then o is commutative
if and only if s = t.

Proof. S u p p o s e s = t. T h e n f o r x , yeG w e h a v e

X o y = χsys = ysχs — y o x .
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Conversely, if o is commutative, then x o y = y o x for all x, yeG,
so that xsyt = ysxι for all x,yeG. Letting y — e, we see that xs = xι

for all xeG, so that M \ s — t. Thus s — t = 0, whence s = t.
Given an arbitrary group (G, ) and a pair of transformations φy

ψ of G, a groupoid (G, ©) is defined by the rule

x o y z= xφyψ for all x, y in G .

We say that (G, °) is generated by the pair of transformations (φ, ψ)
over (G, )• H w e insist that the transformations φ and ψ* be endo-
morphisms, the following lemma gives necessary and sufficient con-
ditions in order for (G, o) to be a semigroup.

LEMMA 6. Let (G, ) be an arbitrary group with identity element
e, and let φ, ψ be endomorphisms of (G, ). Define a groupoid (G, © )
by the rule

x o y = xφyψ for all x, y in G .

Then (G, °) is a semigroup if and only if φ and ψ are idempotent
and commute.

Proof. Assume that the groupoid (G, °) is a semigroup. Then

(x o y) o z = x o (y o z) for all x, y, z in G ,

so

(3.1) {xφyiήφ zf — xφ(yφzψ)Ψ for all x, y, z in G.

Upon setting y = z = e in (3.1), we get

(xφ)φ — xφ for all x in G ,

since eφ = ety = e. In a similar fashion ψ2 = ψ. Letting x — z = e
in (3.1), we see that

(Vψ)Φ = (2/0)^ for a 1 1 1/ in G ,

hence ^ ^ = ψφ. Conversely, assume t h a t φ2 — φ, ψ2 = ψ, and

α/r̂ . Then for arbi t rary x, y, zeG

(x o y) o z = (xφyψ)φ zψ

— x^ yφψ ^

= xφ(yφzψ)ψ

= X o (y o z) .

Thus (G, ©) is a semigroup.
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The following definitions come from [1, p. 98, p. 25]. A semigroup
S is called stationary on the right if for all a, b, c in S, ab — ac im-
plies xb — xc for all xeS. A semigroup S is called E-inversive if for
each aeS there exists xeS such that ax is idempotent. Let α, b, x,
y be elements of a semigroup S. Consider the four elements ax, ay,
bx, by of S. We call S rectangular if, whenever three elements are
equal, all four are equal. Let X and Y be any two sets, and define
a binary operation in S = X x Y by

(x19 y,) (x2, y2) = (a?i, 2/2)

where xlf x2e X and ^ #2 e Y. Then S is a semigroup called the
rectangular band on X x y.

THEOREM 5. Lei (G, o) be a semigroup generated by a pair of
endomorphisms (φ, ψ) over the group (G, )• Then (G, ° ) is an in-
flation of its kernel G ° G and its kernel is isomorphic to the direct
product of a group and a rectangular band.

Proof. By Lemma 6, Φ2 = φ, ψ2 = ψ, and φψ = ψφ. Now (G, °.)
is stationary on the right, since if a ° b = a o c for arbitrary α, b,
ceG then α̂ δτ/τ = aφcψ, so ίh/r = cτ/r. Thus xφbψ = xφcψ for all x e G,
so that x o b = x o c for all a; e G. Let α e G and denote by a~ι its
group inverse. Then

a o a"1 — aφiaψ)"1 .

Now,

(a o α"1) o (α o α"1) = (aφ(aψ)~1)φ (aφ(aψ)~ι)ψ

= aφ2 (afφ)-1 α̂ τ/r . (aψ2)"1

— aφ

= a

so (G, o) ίs ϋMnversive since α was taken to be arbitrary in G. Let
β denote the identity element of (G, )• Since (G, °) is stationary on
the right it is rectangular, whence by Theorem 8 of [4], G o G is the
kernel of G and

G o G ~IH x E

where E is the rectangular band consisting of the idempotents of
(G, ©), and H is the subgroup

e o G ° e = {xφψ: xeG]

of ((?, o). By [5] the mapping θ: G —> G o G defined by α# = α o /, where
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/ is the identity element of the maximal subgroup to which a o a
belongs, is onto, idempotent, and aθ o bθ = a o b for all a,beG,
whence (G, ©) is an inflation of (G ° G, o). Thus (G, o) is an inflation
of the direct product of a group and a rectangular band. (We note
that (H, ) = (H, o).)

The structure of a semigroup (G, °) generated by the monomial
x'y* is revealed by the following theorem, which is a consequence of
Theorem 5.

THEOREM 6 Let (G, °) be a semigroup generated by the mono-
mial x8yt over the finite abelian group (G, )• Then (G, o) is an
inflation of its kernel Go(J, and its kernel is isomorphic to the direct
product of the subgroup

H= {xst: xeG)

of (G, ©) and the rectangular band

E = {xeG: x = xs+t} .

Proof. Let φ, ψ be defined on (G9 ) by xΦ = xs and yψ = y*.
Then φ, ψ are endomorphisms of (G, ) since (G, ) is abelian Also,
Φ2 = φ and ψ2 = ψ since x*2 — x8 and xt2 = α;* for all a eG, Since

(O* = xst = (x*)8 for all x e G ,

it follows that ^ and ^ commute. Thus φ and ψ1 as defined above
satisfy the hypothesis of Theorem 5, so (G, o) is an inflation of its
kernel (G o G, o). Since a ? ^ = xst for O G G, and since x is an idem-
potent of (G, o) if and only if xs+t — x, it follows that

GoG~Hx E

where H and E are as defined in the statement of the theorem.
Let (α, 6) denote the greatest common divisor of integers a and

6. We have the following lemma concerning certain subgroups of a
cyclic group.

LEMMA 7. Let G be a cyclic group of order n with identity ele-

ment e, and let s be a nonnegative integer such that n\s2 — s. Then

Gs_i == {xe G: of"1 = e} is a subgroup of G having order (n, s — 1).

Proof. It follows immediately that Gs_x is a subgroup of G. Let
m denote the order of Gs_i, and let d — (n, s — 1). Since

Xs-1 = e = xn , for all x e G8_! ,
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it follows that m\s — 1 and m\n, whence m ^ d. Now, let a be a
generator of G. Then an/d generates a subgroup [an/d] of G, of order
d. But ( α ^ ) 8 " 1 = (an){8-1)/d = β, so an/d e G8^, whence [anld] § G^.

Thus d ^ m, and so m = <2 = (n, s—ϊ).

The next theorem gives the structure of the group H in Theorem
6, whenever (G, ) is a cyclic group.

THEOREM 7. // ((?, ©) is a semigroup generated by the mono-
mial xsy* over the cyclic group (G, ) of order n, then (G, ° ) is an in-
flation of its kernel G © G. Furthermore, its kernel is isomorphic to
the direct product of the cyclic subgroup

H= {xst:xeG}

of (G, o) of order (n, st — 1) and the rectangular band

E = {xeG: xs+t = x) .

Proof. Suppose xsy* generates a semigroup over (G, )• Then
the set H defined above is the same as the set

G8t^ = {xeG:xst~ι = e) .

S i n c e n \ s 2 — s , a n d n \ f — t, i t f o l l o w s t h a t

n\ (s2-s)t + sψ-t) ,

whence ^|(sί) 2—st. By Lemma 7, i ϊ has order (n, st — 1). The re-
maining part of the proof follows immediately from Theorem 6

We conclude with a corollary to Theorem 7 which extends the
results obtained in [3].

COROLLARY 3. Let (Fq, + , ) be a finite field of order q, and
let (FQ, o) be a semigroup generated by xsyt over (Fq, ). Then
(Fq, o) is an inflation of the direct product of a cyclic group of order
(q — 1, st — 1), and a rectangular band, together with a zero element.

Proof. Let F* = Fq\{0}. Then (F*, ) is the multiplicative
group of (Fq, + , •)> hence is a cyclic group of order # — 1 . By
Theorem 7, (F*9 o) is an inflation of the direct product of a cyclic
group of order (# — 1, st — 1), and a rectangular band. Since

Fq = Fq* U {0}

and 0 is a zero for o , the corollary holds.
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