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CONVEXITY PROPERTIES OF A GENERALIZED
NUMERICAL RANGE

JOHN DE PILLIS

A numerical range Wn(A) of a bounded linear operator
A on Hubert space £%f is defined to be the set of complex
numbers Wn(A) = {tτ(AM): dimension M = n} where M runs
over all orthogonal ^-dimensional projections on Sff, and
tr( ) is the trace functional. It is known that Wn(A) is
always convex (the Hausdorff-Toeplitz theorem tells us that
TΓi(A) is convex). In what follows, we replace the trace
functional by the more general elementary symmetric func-
tions, and derive certain convexity results.

The classical Haudorίf-Toeplitz theorem has it that for any bounded
linear operator A on Hubert space 3ίf, the numerical range

is a convex subset of the Complex plane (cf. [4], [9], [10]).
Let Px denote the orthogonal projection Px; y —> ζy, xyx onto the

one-dimensional subspace spanned by x. Then (Ax, αζ> can be shown to
equal tr (APβ), the trace of the operator APX (equivalently (Ax, x> =
tr (PXAPX), the trace of the compression of A to the space sp[#] span-
ned by x.)

In light of the above interpretation, it is natural to ask whether
the set

(1.1) Wn(A) = {tτ(AM)ι dimension M = n} ,

where M runs over all ^-dimensional orthogonal projections on 3(f,
is convex; as a convenient ambiguity, we use the symbol M to
represent both the ^-dimensional subspace M and the orthogonal pro-
jection on 3ίf whose range is M. This question seems to have been
raised first by Halmos [5], and consequently answered in the affirma-
tive, by C. A. Berger [1], [6]. The convexity of Wn(A) when A is
normal was proved by R. C. Thompson [11, Theorem 2], which appeared
almost simultaneously with Berger's thesis [1].

In this paper, we extend the notion of nth order numerical range
(1.1) by replacing the linear trace functional tr ( ) by the more
general elementary symmetric functions

#,(.) = tr(-), #«(•), ••-,#,(.), . . . , # . ( . ) - determinant*•) ,

defined on the compressions of the operator A to ^-dimensional sub-
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spaces of έ%f. That is we shall study the set complex of scalars

(1.2) Wr>n(A) = {Er{AM): Mc &?, dimension(M) = n} .

First, a quasi-convexity is shown for the set (1.2) for n = r and with
A replaced by A + z for large complex z (Theorem 5.2). Then, we
present a convexity statement (Theorem 6.1) for those linear operators
which exhibit a certain kind of strong convergence (Definition 3.4).

It is somewhat surprising that the badly nonlinear elementary
symmetric functions allow for any convexity properties relative to
(1.2) at all, but we are able to prove as our principal result, the
following property of Wr>n(A). (See Theorem 6.2.)

THEOREM. Let A be any bounded linear operator on Hilbert space
Jg^ and let r and n be any positive integers such that 1 g r ^ n.
Then for Er(AM) and Er(N) in Wr,n(A), the entire line segment

{\Er{AM) + (l-X)Er(AN): 0 < λ < 1}

is also in Wr,n(A) provided the n-dimensional subspaces M and N are
mutually orthogonal. More specifically, for every pair of mutually
orthogonal n-dimensional subspaces, M and N, and for every λ e (0,1),
there exists an n-dimensional subspace Uλ such that

(1.3) XEr(AM) + (l-X)Er(AN) = Er(AU2) .

Due to the constructive nature of our proof, we are able to show
the interesting fact that Uλ may be chosen once and for all so that
(1.3) remains valid for each r = 1, 2, •••, n.

We proceed to the development of these results now.

2* Preliminaries. Throughout, ^f will be a Hilbert space
(finite or infinite dimensional) with inner product < , >. For each
r = 1, 2, , we construct the vector space

Ar^f = sp [(x, /\x2/\ Λ xr)], %i, %2, > %r e £ίf

spanned by all decomposable r-vectors xι Λ x% Λ Λ xr> where the
vectors x1Jx2, « ,*τr run over έ%f. We use the wedge Λ to deonte
the exterior (Grassmann) product and the symbol

sp [x], xe S^f

denotes the vector subspace generated by all x in j ^ (See Vala
[12].)

An inner product may be defined on Λr£ίf by requiring that for
decomposable vectors xγ Λ x2 A Λ xr> and yγ Λ y2 Λ Λ yr in
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(2.1) <x1Ax2A-- Λxr, l/iΛ|/2Λ Λ 2/r> = det «α<, Vj}) ,

the determinant of the r x r matrix with ijth entry ζxt, y>>. (See
[8, Ch. XVI].)

Let A be any bounded linear operator on έ%f. Then a (bounded)
linear operator Cr(A), the rth compound of A, is defined on ArSίf by
the equation

(2.2) Cr(A) {xι A x2 A Λ xr) = Ax, A Ax2 A Λ A#r ,

for all xly x2, -—,xr in
As a notational convenience, we shall introduce Qnr, the (?)-

element set of order-preserving functions σ sending {1,2, * ,r} into
{1, 2, , r, ri\, where I <^ r ^ n. More exactly,

Qn,r = {σ: {1, 2, , r} > {1, 2, . ., r, . . , n}}

where 1 ^ σ(l) < σ(2) < < σ(r) <: ^.
As an immediate use of this set Qw,r, we set down the following

useful property:

PROPOSITION 2.1. Let M be an n-dimensional subspace of
having o.n. basis i? = {eu β2, * , ^ } . ΓΛe^ /or βαc/̂  integer r,
1 ^ r ^ n, the {^-element set

8"r = Ru) Λ eO(2) Λ Λ eσ{r): σ e Q%,r}

is o.n. in Λr£{f. Moreover, if M is the orthogonal projection on Sίf
with range M spanned by if, then Cr(M) is the orthogonal projection
on Λr£έf with range spanned by the o.n. set &r.

Proof. The fact that g ; is o.n. in A*'S^f is immediate from (2.1).
Similarly, by extending i? to an o.n. basis for all of <̂ ĝ , the second
assertion of our proposition follows from (2.1) and (2.2). (See also de
Pillis [3].) This ends the proof.

Given the ^-element set {xu x2, •••,&»} in Sίf. Then for each
σ eQnΎ, xΰ will be that vector in Λr£$f defined by

(2.3) Xσ = Xσ{ι} A Xσ{2) A Λ Xa(r)

Now let A be any bouded linear operator on έ%f. Let M be (the
orthogonal projection onto) a finite dimensional subspace of £ίf. Then
for each r — 1, 2, •••, n Er(AM), the r t h elementary symmetric func-
tion of AM is defined by

(2.4) Er(AM) = tr (Cr(AM)) ,

the trace of the operator Cr(AM) on
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The existence of the trace presents no problem since M is finite
dimensional (hence, Cr(AM) is finite dimensional on Λr£ίf). In fact
we offer the following more explicit form for Er(AM):

PROPOSITION 2.2. For A a hounded linear operator on £ζf, and
for M an n-dimensional subspace with o.n. basis {eu e2, " ,en}, we
have the equality

(2.5) EXAM) = Σ <Cr(AM)eσ, βσ> .

Proof. The trace of any bounded operator B on Hubert space
may be written as

Σ <Beif e{> where {ej i 6 7
iel

is any o.n. basis of Sίf. Since Cr(AM) = Cr(A)Cr(M) (see 2.2)) is
zero on all but a finite-dimensional subspace Cr(M) of Λr§ίf, it
suffices to consider the sum above relative to the finite o.n. basis
{eσ: σeQnJ of Cr(M) (see Porposition 2.1). That is,

Er{AM) = tv(Cr(AM)) = Σ <Cr(AM)eay eσ>

where {ely e2, •••, en} is an o.n. basis of M, and {e: σeQn,r} is an o.n
basis of Cr(M). The proof is done.

REMARK. It is to be noted that

(2.6) Er(AM)= Σ <Cr(AM)eσ,eσ>= Σ <Cr(A)eσ, eσ> ,

so that the appearance of J l ί= sp [eu e2,
 # βn] becomes superfluous in

(2.5). To see this, observe that Cr(AM) = Cr(A)Cr(ikί) (from (2.2)),
and that Cr(M)eσ = eσ.

REMARK. Let us write t r (AM) in the form

(2.7) tr (AM) - Σ <M, O
i = l

where K, e2, •••, eΛ} is any o.n. basis of ilί. Then the extended
Hausdorff-Toeplitz theorem of Berger [1], [6] tells us that the set
Wn(A) of all such n-term. sums, is convex. Can we then conclude
that the set Wrn{A) of all ( )-term sums (2.6) is also convex (by
replacing A in (2.7) with Cr(A) and replacing e{ with eσ) ? The answer
is the convexity Wr>n(A) cannot be so deduced from the convexity of
Wn{A) since in (2.7), all ^-element o.n. sets {el9 e2, •••, en) of 3ίf are
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permitted. Contrariwise, in considering Wr>n(A) given in (1.2), the
set of all sums of the form (2.6), only those o.n. sets {ely e2, •••, eR},
R = ( ), are permitted where each e{ is a decomposable unit vector of
Λr3ίf. Recall that Ar£έf is the span of all decomposable vectors
%i A #2 Λ Λ xr so that in general, not every unit vector is de-
composable.

Now let M be an r-dimensional subspace of Sίf with o.n. basis
{elf e2, •••, er}. Let A be a bounded linear operator on έ%f and let z
be complex. Then

(2.8)' ζCr(A+z)e1 Λe2 Λ Λ er, e, A e2 A βr>

is the rth degree polynomial

(2.8) ± Σ z^ζC3 (A)eσyeσy:

For j = 0, we define Σαeρr,0<C0(-A)eα, eσ> to be the number 1. The

equivalence of (2.8)' and (2.8) follows from the orthogonality of the

set {eu e2, •••, er} along with use of (2.1) and (2.2).
Finally, we define Berger bases for a pair of r-dimensional sub-

spaces M and N in £έf, after C. A. Berger, who proved [1], [6], that
such pairs of bases always exist for any such M and N.

DEFINITION 2.3. The orthonormal bases {x19 x2, , xr} c M and
{Vif V2, , Vr) c N will be called Berger bases (relative to M and N)
if and only if ζxiy ydy = 0 whenever i Φ j . (Note: No constraint is
placed on ζxh y>>.)

3* Convergence properties of A. In what follows, A will be
a fixed bounded linear operator on Hubert space < ^ and x is a unit
vector in

DEFINITION 3.1. The unit vector xz e ^f is defined for each suf-
ficiently large complex z by the conditions that

( 1 ) (A + z)xz = <(A + z)xz, x>x ,

and

(2) <s,,a?>>0.

REMARK. Since A is bounded, sufficiently large complex z may
always be found so that A + z is invertible; that is, so that a unit
vector xz always exists which is sent by A + z to a scalar multiple
of the fixed unit vector x. We note that if Condition (1) above ob-
tains for some unit vector xz, then it obtains equally well for the
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vector τ£ xz, where w is any complex scalar of modulus one. Hence,
Condition (2) is presented to allow a unique xz\ as we shall now see,
xz has the further property that xz —> x as z —> oo. In fact, we pre-
sent a stronger statement of convergence in the following lemma:

LEMMA 3.2. Given the bounded linear operator A and unit vectors
x and xz defined in Definition 3.1. Then

z(l — \(xt, xy\2) > 0 as z > oo .

Consequently, xz—>x as z —> oo.

Proof. We write the expression ((A+z)xz, xzy in two ways:

(3.1) <£A + z)xΛ, xzy = <Axz, xzy + z.

Substituting ζ(A+z)xβ9 xyx for (A+z)xz, yields

(3.2) <(A + z)xz, xzy = <Axz, xy<x, xzy + z \<xs, xy\2 .

Subtraction of (3.2) from (3.1) gives us

(3.3) z(l - \<xz, xy\2) = <AxZJ x><x, xzy~<Axz, xzy .

From (3.3) it follows that ζxz, xy —> 1 as z —• oo to see this, divide
through by z and let z go to infinity. This, in turn, implies that

(3.4) xz > x as z > oo .

Again from (3.3) we may deduce that z (1 — | ζxβ, xy |2) —* 0 as z —> oo
use the continuity of both A and the inner product along with (3.4)
to show that the right-hand side of (3.3) goes to zero as z—>oo.
The lemma is proved.

For later convenience, the following notations are introduced:

DEFINITION 3.3. Let {x19 x2, , xr) be any finite set spanning
subspace M of Hubert space ^f. Let A be the compression to M of
some bounded operator on Sίf. (That is, A = PMAPM, where PM is
the orthogonal projection onto M.) By xz, we mean that unit vector
of M defined in Definition 3.1 relative to xr. That is,

( )xβ =
and

<£z, χry > o .

We then define the vectors xz in Λr£ίf, and xs in A'gef, for j =

1, 2, , r by the following equations:

(a) xz = xλ A x2 Λ Λ xr-i Λ xt ,
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and

(b) Xj = Xy. A x2 A "- A Xj , for each j = 1, 2, , r .

We shall have occasion to use the notion of an operator A having
power r on a vector α?, the definition of which follows now.

DEFINITION 3.4. Let A be a bounded linear operator on Hubert

space M. Let x be a unit vector of M and let xz be the unit vector

defined above (Definition 3.1). Then A is said to have power r on x

if

lim z r(l - (x9, x>2) = 0 .
Z-+oo

A simple restatement of Lemma 3.2, using the terminology of
Definition 3.4, is the proposition:

PROPOSITION 3.5. For any bounded linear operator A on 3ίf and
for any unit vector x e ^g ,̂ A has power one on x.

One important instance occurs where A has power r on x for all
integer values of r — 1, 2, . Specifically, we have

PROPOSITION 3.6. Suppose x is an eigenvector for A. Then A
has unbounded power on x. That is, for all r — 1, 2, , m, ,

sf (1 - Kxz, x>\2) > 0 .

Proof. Observe that for all z, xz = x whenever x is an eigen-
vector of A.

4. Induction hypothesis. In the following section, we shall
refer to and hence extend the induction hypothesis which we now
present.

Induction Hypothesis. Given a bounded linear operator A on
Given ^-dimensional subspaces M and N of <§ίf with Berger bases
{xlf x2, , %n} and {ylf y2, , yn), respectively. Let the o.n. set
{uu u2j , un} be defined by requiring of each u{ e sp [α?4 , y^, that

for arbitrary but fixed λ e (0, 1). Then

KCjiA)^ xσy + (l-λXCyίA)^, yσy = <jCd(A)ua, ua

for each j — 1, 2, , r — 1 , and for each σeQn j .
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REMARK 4.1. In the " earliest" possible case, j = 1, r = 2, the
induction hypothesis reduces to the classical Hausdorff-Toeplitz theorem
relative to the Berger bases for M and N. In what follows, we shall
prove that under certain restrictions on A, or on the subspaces M
and N, the induction hypothesis may be extended from the cases
j = 1, 2, , r—1 to the cases j — 1, 2, , r — 1, r.

REMARK 4.2. The fixed o.n. sets {#J, {y^ and {̂ } meet all the
conditions described above if the operator A is replaced by A + z,
where z is any complex scalar (i.e., z is a complex scalar multiple
of the identity operator).

5* A quasi-convexity result. We now extend our induction
hypothesis to a convexity result involving the operator A + z
(Theorem 5.2).

REMARK 5.1. Let F be some scalar-valued function on the unit
sphere of ££*, which has convex range. That is, for all λe(0, 1),
and for all x, y in §ίf such that ||a?|| = \\y\\ = 1, there exists u,
\\u\\ = 1 such that

(5.1) XF(x) + (l-\)F(y) = F(u) .

Now let pjβ, z) and pz(θ, z) be two complex valued functions of z,
whose values have the same argument Θ for each z; the common
argument, θ, necessarily depends on z. Then

(5.2)

λPl(0, z)F(x) + (l-λ)3>2(0, z)F(y) = (λPl(0, z) + (l-λ)pa(0, z))F{uz) ,

where uz is a unit vector depending on z.
To verify (5.2), divide both sides by XPiHβ, z) + (1 — X)p2(θ, z).

The fact that pjβ, z) and p2{θ, z) each factor as eiθ times positive
scalars, reveals the lefthand side of (5.2) as a convex combination of
F(x) and F(y).

THEOREM 5.2. (A quasi convexity theorem) Suppose the induction
hypothesis obtains for each j = 1, 2, , r— 1. Let M and N be r-
dimensional subspaces of έ%f with Berger bases {xlf α?2, , xr} and
{ynV2, m ,yr}> respectively. Then for every neighborhood Z7(°o) of
infinity, there exists a ze U(°°) such that

x., xzy + (l-\χCr(A+z)y,, yz> = ζCr(A+z)u,, uz>

where xz and yz are defined above (Definition 3.3) and
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Vk* = Ui Λ u2 A Λ w r -i Λ uz ,

where uz is a unit vector of sp[$z, yt].

Proof. Recall that xz is that unit vector such that

where ζxz, xry > 0. (Definition 3.3.) Thus, (A+z)xs is orthogonal to
spK, x2f •••, Xr-ih From the definition (2.1) of the inner product on

f, we have

(5.3) = X(A-\-z)x1 Λ Λ (A+z)xr^ A (A+z)xZf xt A Λ xr-i A

Similarly, we may write

(5.4) (l-χχCr(A+z)yz, yzy = (l-λ)<Cr_1(A+^)^_1, yr-X(A+z)yz, yzy.

We add (5.3) and (5.4) to obtain

(5.5)

We assert that for each neighborhood U(°°) of infinity, a zeU(oo)
may be found so that the (complex) arguments of the two monic
(i—l)st degree polynomials,

<Cr^{A+z)xr^lf xr^y and <Cr^(A+z)yr^ yt^

(see (2.8)), agree. In fact, their quotient, call it /, is an analytic
function in a neighborhood of infinity; moreover, f(z) converges to
one at infinity. By the open mapping theorem for analytic functions
(c.f. [2: pg 175], [7]), open neighborhoods (of analyticity) of infinity
will be sent by / to open neighborhoods of the positive number one.
Therefore, every neighborhood of infinity will be sent by / to open
neighborhoods of the positive number one. Thus, every neighborhood
of infinity contains a z such that f{z) > 0; moreover, f(z) is as near
to one as we please. That is, every neighborhood U(°°) of infinity
contains a z for which the arguments of

(5.6) ζCr^(A+z)xr^lfxr^ and <

are equal. Replace the symbols p^θ) and p2(6) in (5.2), Remark 5.1,
by the polynomials of (5.6), and replace F(x) and F(y) by ζ(A+z)xz, xzy
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and ((A + z)yz, yzy, to obtain the following equivalent expression for
the right hand side of (5.5):

(5.7)

a(z) b(z)

= [a(z) + b

where uz in sp [xz, yz] is a unit vector satisfying the equation

X(A+z)yM, yzy = <(A+z)uz,^ <(A+φ., xzy + g
a(z) + b(z) b(z) + b(z)

This, in turn, is equivalent to the equation

a(z) + b(z) a(z) + b(z)

for a(z) and b(z) defined in (5.7).
We note that the quotients a(z)/(a(z) + b{z)) and b(z)/(a(z) + b(z))

approach the values λ and (1 — λ), respectively as z—> ©o. (To see this,
divide numerators and denominators by 2r~1 and pass to the limit as
z —> °o.) Since ^z —• α;r and τ/z —> yr (Lemma 3.2) as z —> ^ , we have

(5.9) <Aw,, uzy > ζAur, ury as z > °° .

(Recall that ur is a unit vector of sp [xrf yr] satisfying the equation
λ<Aα;r, xry + (l-λ)<Aτ/r, i/r> = (Aur, wr>.)

We couple the statement of our induction hypothesis (see (2.8)
and Remark 4.2) with (5.7) to replace the left-hand factor of (5.7)
by the r— 1 degree polynomial

(5.10) <Cr_1(A + ̂ )^1Λ Λ M M , ̂ iΛ Λ V i > = ^ ^ ( A + z)^.-!, ^r_!> ,

where each unit vector u{ in sp [xi9 y^\, i — 1, 2, , r— 1 has the pro-
perty that

This yields the simplified form

(5.11) <C

which is equivalent to (5.5) and to (5.7).
Notice that (A + z)uz is a certain linear combination of the

vectors xr and yr. This is so because u,e&j)[xz,y8] and (A+z) sends
#2 into sp [xr] and also sends /̂2 into sp [yr] by definition (Definitions
3.1 and 3.3). Thus, (A + z)ux is orthogonal to sp [u19 u2, , wr_J;
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orthogonality is guaranteed by the fact that

{xlf Xt, , xr) and {yl9 y2, , yr}

are Berger bases for M and N9 respectively (Definition 2.3). Accord-
ingly, we may write (5.11) as follows:

(5.12)

< )^i Λ Λ ur^ ΛWίΛΛ Λ wr-i Λ wβ> = < ) >

If we combine (5.12) with (5.5), we obtain the final equality

(5.13)

X(Cr(A+z)xM, xzy + (l-xχCr(A+z)yzyyzy = <βτ(A+z)uΛ, uzy .

Statement (5.13) above completes the proof of the theorem.

6* A convexity result for Wr,n(A). In this section, we combine
the quasi-con vexity result (Theorem 5.2) with the notion of A having
sufficient integer power on certain x (Definition 3.4) to obtain a con-
vexity theorem for A (Theorem 6.1). As a consequence, we obtain
our main convexity result (Theorem 6.2) which holds for arbitrary
but fixed linear operator A so long as the subspace M and N are
mutually orthogonal.

THEOREM 6.1. Let Maud N be r-dimensional subspaces of Hilbert

space έ%f having o.n. Berger bases {xu x2, •••, xr} and {y19 y2, •••, yr},

respectively. Suppose the bounded linear operator A, when restricted

to each of these subspaces has power r on xr and yr; that is,

( i ) lim a f ( l - |<a?,, <>| 2 ) - lim zr(l- |<y,, τ/r>]2) = 0 .
Z-*oo Z->oo

/ / an o.n. set {u19 u2, •••, ur} satisfies the equations

(ii) XζAxif Xi> + ( 1 - \χAyit %> = <Auif ^>, i = 1, 2, , r .

for arbitrary but fixed λe (0, 1), then necessarily,

(6.1) KCΛA)xr, xry + {l-X)<Cr{A)yr, yj> = <Cr{A)ur, ury

whenever

(iii) l i m ^ ( l ~ | < ^ , ^ > l 2 ) - 0
Z-+OO

where the unit vector uz satisfies the equation

(iv) X(Axz, xzy + (l-xχAyz, yzy = ζAuz, uzy .
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Proof. Consider the function

φ(z) = λ<Cr(A + «)fc, zzy + (l-\KCr(A + z)yz, yzy - <Cr(A + z)uM, uz>.

Now xz e sp [xί9 x2, , xr] must be of the form

x* = Σ G Λ + <®« » r X

for certain scalars α ly α2, , αr_χ. Thus

j β = a?i Λ Λ a?r-! Λ #2

= Σ α<(»i Λ Λ a?!-! Λ a?*) + <α?,, a?r>(a?1 Λ Λ %r-ι A xr)

= 0 + <X, α;r>$r ,

where each term in the summation involving al9 a2, , αr_x equals
zero due to repetitions of x4 in the Grassmann product

Xt A Λ xr~i A Xi .

We substitute ζxz, xryxr for xz into our expression for φ(z) to obtain

(6.2)

<p(z) = X<Cr{A+z)xri xr>az + (l-XKCr(A+z)yr, yr>fi*-<Cr(A+z)ur,ur>7z

where

(6.3) az = |<a?s, α;r>|2, /S, = |<^, yr}\2 and T, = | < ^ , ur>\2 .

If we substitute the explicit polynomial expressions for each of the
three inner products in (6.2) (see (2.8)), we obtain the following ex-
pression for <p(z):

(6.4)

Σ Σ
i=0 σ*Qrt

Our induction hypothesis allows us to replace (Cό(A)uay uσy in (6.4) by

Afo, xσy + (l-\KCd(A)ya, yσy ,

at least for the cases j = 1, 2, •••, , r — 1 , and for all σ e Q r > i .
Effecting this substitution, (6.4) yields the following form for <p(z):

Ψ{z) = zr[\(az-Ύz) + (i

(6.5) + ΣV^-T. ) +
l

Σ

XζCr(A)xr, xryaz

>—(constant term)



CONVEXITY PROPERTIES OF A GENERALIZED NUMERICAL RANGE 779

where for each j = 1, 2, , r— 1,

X, = λ Σ <Ci(A)α?., & > , and Γ, = (1-λ)

Assumptions ( i ) and (iii) together guarantee that for k = 1,2, ,r,
the quantities

zk(az - 7.) , and zk(βz - 7.)

tend to zero as z —• ©o. (Write α, — 7, = (1—%) — (1—<O, and
& - Ύ . = (1-7 . )-(1- f t ) . )

We then constrain the growth of s in accordance with Theorem
5.2, so that φ(z) = 0 as z —> ©o. Prom hypothesis ( i ) , αz and &—>1
as 2—>oo; from hypothesis (iii), 72—>1 as 2-->oo. Thus, we may
conclude that the "constant" term of φ(z) (see (6.5)), which tends
to

X<Cr{A)xri xry + (l-xχCr(A)yr, yr> - <Cr(A)ur, ur> ,

approaches the value zero. The proof of the theorem is done.
We now present our main result which, as a corollary to Theorem

6.1, holds for all bounded linear operators A on έ%f, and all r =
1.2, * ,w, provided the w-dimensional subspaces M and N are
orthogonal.

THEOREM 6.2. Let M and N be n-dimensional subspaces of
such that M is orthogonal to N. Then for any bounded linear oper-
ator A, and for any λe(0, 1), there exists an n-dimensional subspace
Uλ in M + N such that for each r = 1, 2, , n,

XEr(AM) + (l-\)Er(AN) = Er{AUλ) .

Note that Uλ does not depend on r.

Proof. Let

and

^ = { l / i , 2/2, ••*, 2 / r , •••, Vn}

be o.n. bases of M and JV, respectively, which triangularize the com-
pression operators A: M—*M and A: N—>N. That is, let xn be an
eigenvector for the (finitedimensional) compression of A to M. Choose
#„_! as a unit eigenvector of A restricted to the orthogonal comple-
ment of xn in M; consequently, A(xn^) esp [x^19 xn]. Similarly, α?n_s

is a unit eigenvector of A restricted to the orthogonal complement
of sp [xn-u xn]y and so on, until for each j = 1, 2, , ^,
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(6.6a) A(xj) e sp [xjy xj+1, , xn] .

By the same reasoning on N, {y19 y2, *m,yn} is an o.n. basis of N
such that

(6.6b) A(y3) e sp [yjf yj+1, , yn] .

Due to the orthogonality of M and N, gf and & are Berger bases.
Moreover, corresponding r-element subsets {xσω, xσW, , %<,&} and
{Vσωt Vow, ••*, Vo{τ)} for each σeQn>r, are Berger bases for their
respective linear spans, which we denote as follows:

Nσ = sp[τ/ σ ( 1 ) , y σ { 2 } , . . . , y σ { r ) ]

for each σ e ζ>w,r.

Note that xσ(r) and yff(r) are eigenvectors for (the compression of) A
on the spaces Mσ and Nσ, respectively: This follows from (6.6a) and
(6.6b). Thus, A has unbounded power on xσ{r) and yσ(r) when restricted
to Mσ and Nσ (Proposition 3.6). Consequently, for xz and yz of Defini-
tion 3.3 (see also Lemma 3.2), 1 - |<χ, #σ ( r )>|2 = 1 - \(yz, yσW>\2 = 0,
since xz = xσ{r) and ?/z = yσ{r). Moreover, the uz defined in hypothesis
(iv) of Theorem 6.1, can be chosen to equal uσ(r), where

X<Axσir), xσ(r)y + (l-xχAyσir), yσ(r)> = (Auσ{rh nσ{r)y .

This implies that zk [1 — \(uz, ^σ(r)>|2] = 0 so that all hypothesis of
Theorem 6.1 are fulfilled by each of the orthogonal subspaces Mσ and
Nσ as σ runs over Qn,r. Therefore, we may write for each σ € Qn,rf

that

(6.7) X<Cr{A)xσ, xσy + ( l-λ)<C r (A)^, yj) = <Cr(A)u,f uσ> ,

where {u19 u2, •••, ury •••, un} is an o.n. set satisfying the equations

λ<A^, x{> + (l-\χAyi9 y>> = <Auiy ut>, i = 1, 2, , n .

If we sum each side of (6.7) over all σeQnr (see Proposition 2.2 and
(2.6)), we obtain

XEr(AM) + (l-X)Er(AN) = Er(AUλ) ,

where Uλ = sp [ulf u2, , ur, , un]. The theorem is proved.

REMARK. It is an open question as to whether Wr n(A) ks always
convex. It may be conjectured that if 2r > dim Sίf, then convexity
is automatic since, in this case, every vector of Λr£έf is automatical-
ly decomposable. (See Remarks following Proposition 2.2.)
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