ORTHODOX SEMIGROUPS

T. E. HALL

An orthodox semigroup is a regular semigroup in which the idempotents form a subsemigroup. The purpose of this paper is to give structure theorems for orthodox semigroups in terms of inverse semigroups and bands.

A different structure theorem for orthodox semigroups in terms of bands and inverse semigroups has already been given by Yamada in [12]; two questions posed in [12] will be answered in the negative. The present paper is the "further paper" mentioned by the author in the final paragraph of $\S1$ [5] and in the Acknowledgement of [5].

2. Preliminaries. We use wherever possible, and usually without comment, the notations of Clifford and Preston [2]; further, for each element a in any semigroup S we define $V(a) = \{x \in S: axa = a$ and $xax = x\}$, the set of inverses of a in S.

RESULT 1 (from Theorem 4.6 [2]). On any band B Green's relation \mathcal{J} is the finest semilattice congruence and each \mathcal{J} -class is a rectangular band.

Let $\phi: B \to Y$ be any homomorphism of B onto a semilattice Ysuch that $\phi \circ \phi^{-1} = \mathscr{J}$. By denoting (for all $e \in B$) J_e by E_{α} where $e\phi = \alpha \in Y$ we obtain B as a semilattice Y of the rectangular bands $\{E_{\alpha}: \alpha \in Y\}$, i.e., $B = \bigcup_{\alpha \in Y} E_{\alpha}$ and for all $\alpha, \beta \in Y$ $E_{\alpha} \cap E_{\beta} = \square$ if $\alpha \neq \beta$, and $E_{\alpha}E_{\beta} \subseteq E_{\alpha\beta}$. It is clear that $\{(e, \alpha) \in B \times Y: e\phi = \alpha\}$ is a subband of $B \times Y$ isomorphic to B.

RESULT 2 [9, Lemma 2.2]. Let ρ be a congruence on a regular semigroup S. Then each ρ -class which is an idempotent of S/ρ contains an idempotent of S.

RESULT 3 (from Theorem 13 [7]). Let ρ be any congruence contained in \mathcal{L} on any semigroup S. Then any elements a and b of S are \mathcal{L} -related in S if and only if a ρ and b ρ are \mathcal{L} -related in S/ ρ .

Henceforth we shall let S denote an arbitrary orthodox semigroup. The following result is part of [3, Theorem 3]; as noted in [4] it had previously been obtained by Schein [10]. **RESULT 4.** The relation $\mathscr{Y} = \{(x, y) \in S \times S: V(x) = V(y)\}$ is the finest inverse semigroup congruence on the orthodox semigroup S.

From [3, Remark 1] we see that the partition of S induced by \mathscr{Y} is $\{V(\mathbf{x}): \mathbf{x} \in S\}$. Denote the band of S by B. Then we also have from [3, Remark 1] that for any $e \in B$, $e\mathscr{Y} = J_e$ (where J_e is the \mathscr{J} -class of B containing e) whence, from Result 2, the semilattice of S/\mathscr{Y} is B/\mathscr{J} (\mathscr{J} being Green's relation \mathscr{J} on B).

For the remainder of this section \mathscr{L} and \mathscr{R} shall denote Green's relations \mathscr{L} and \mathscr{R} on B; as usual then L_x and R_x shall denote the \mathscr{L} -class and \mathscr{R} -class respectively of B containg an element x from B.

RESULT 5 [5, Lemma 1] or [12, Footnote 5]. For any element $a \in S$ and any element $a' \in V(a)$,

$$aV(a) = R_{aa'}$$
 and $V(a)a = L_{a'a}$.

RESULT 6 [5, Lemma 2] or [12, Lemma 5]. Take any elements a and b in S.

Then

$$a V(a)(a \mathscr{Y}) V(a)a = \{a\}$$

whence a = b if and only if the triple

$$(a V(a), a \mathscr{Y}, V(a)a) = (b V(b), b \mathscr{Y}, V(b)b)$$
.

Henceforth, we shall identify any one element set $\{x\}$ say, with that element x, as is usual.

We shall now present two constructions appearing in [5]; one is of a representation of S by transformations of sets and the other is of a "maximal" fundamental orthodox semigroup containing B as the band of all idempotents (a semigroup T is called *fundamental* if the only congruence contained in \mathcal{H} on T is the trivial congruence). This work has been generalized to regular semigroups in [6], where in fact the proofs and presentation are simpler than in [5]. For each result that we present we shall therefore refer to results in both [5] and [6].

For each element a in S define a transformation $\rho_a \in \mathcal{T}_{B/\mathscr{L}}$, the semigroup of all transformations of the set B/\mathscr{L} , by

$$V(x)x\rho_a = V(xa)xa$$
 for all $x \in B$

and define also a transformation λ_a in $\mathscr{T}_{B/\mathscr{A}}$ by $xV(x)\lambda_a = axV(ax)$ for all $x \in B$.

That ρ_a and λ_a are transformations is shown in [5, Section 3]

and also follows from [6, Remark 4]. Let (ρ, λ) be the mapping of S into $\mathcal{T}_{B/\mathscr{D}} \times \mathcal{T}_{B/\mathscr{D}}^*$ (where $\mathcal{T}_{B/\mathscr{D}}^*$ is the semigroup dual to $\mathcal{T}_{B/\mathscr{D}}$) which takes each a in S to (ρ_a, λ_a) .

We define now an equivalence relation \mathscr{U} on B by $\mathscr{U} = \{(e, f) \in B \times B : eBe \cong fBf\}$ and for each pair $(e, f) \in \mathscr{U}$ we let T_{ef} be the set of all isomorphisms from eBe onto fBf; for each $\alpha \in T_{ef}$ we define further transformations $\overline{\alpha} \in \mathscr{I}_{B|\mathscr{L}}$ and $\overline{\overline{\alpha}} \in \mathscr{I}_{B|\mathscr{L}}$ [6, Section 5] by

$$L_x \overline{lpha} = L_{x lpha}$$
 and $R_x \overline{\overline{lpha}} = R_{x lpha}$ for all $x \in eBe$.

Further, let us consider the transformations $\rho_e \overline{\alpha}$ and $\lambda_f \overline{\alpha^{-1}}$ (products being taken in $\mathscr{P}_{\mathcal{F}_{B/\mathscr{P}}}$ and $\mathscr{P}_{\mathcal{F}_{B/\mathscr{P}}}$ respectively) and let us put $(\rho_e \overline{\alpha}, \lambda_f \overline{\alpha^{-1}}) = \phi(\alpha)$ say. Define now

$$W(B) = \bigcup_{(e,f) \in \mathscr{X}} \{(
ho_e \overline{lpha}, \lambda_f \overline{\overline{lpha^{-1}}}) \colon lpha \in T_{e,f}\}$$
.

RESULT 7.

(i) The set W(B) is a subsemigroup of $\mathscr{T}_{B/\mathscr{D}} \times \mathscr{T}_{B/\mathscr{A}}^*$.

(ii) Further, W(B) is a fundamental orthodox semigroup whose band of idempotents is isomorphic to B.

(iii) The mapping (ρ, λ) is a homomorphism of S into W(B) which maps B isomorphically onto the band of idempotents of W(B).

(iv) The congruence $(\rho, \lambda) \circ (\rho, \lambda)^{-1}$ is the maximum congruence contained in \mathcal{H} on S.

Result 7 can be obtained by the specialization to orthodox semigroups of the following results on regular semigroups from [6]: Lemma 4, Theorem 7 and Theorem 18 (vii). Alternatively, except for part (iii), Result 7 is contained in Theorems 1 and 5 of [5].

RESULT 8 [5, Theorem 2]. Take any elements $a, b \in S$. Then a = b if and only if the triple

$$(\lambda_{\alpha}, a \mathscr{Y}, \rho_a) = (\lambda_b, b \mathscr{Y}, \rho_b)$$
.

3. The structure theorems.

LEMMA 1. The mapping from S into $W(B) \times (S/\mathscr{D})$ which maps each element a in S to $((\rho_a, \lambda_a), a\mathscr{D})$ is an isomorphism.

Proof. From Results 4 and 7 (iii) we see that the mapping is a homomorphism and from Result 8 we see that it is one-to-one.

Let now E be any band and define W(E) as above. Let (ρ', λ') be the homomorphism of E into W(E) which corresponds to the homomorphism (ρ, λ) of S into W(B) above. From Result 7(iii) (ρ', λ') is an isomorphism from E onto the band of all idempotents of W(E).

Let us denote the band of W(E) by \overline{E} and for each $e \in E$ let us denote $e(\rho', \lambda')$ simply by \overline{e} . Let \mathscr{Y}_1 denote the finest inverse semigroup congruence on W(E), as given by Result 4.

Now let T be any inverse semigroup such that there is an idempotent-separating homomorphism ψ say, from T into $W(E)/\mathscr{Y}_1$ whose range contains all the idempotents of $W(E)/\mathscr{Y}_1$; if we let Y denote the semilattice of T then from Result 2 $\psi | Y$ maps Y isomorphically onto the semilattice of $W(E)/\mathscr{Y}_1$.

Let \mathscr{Y}_1^{\sharp} denote the natural homomorphism [2, Section 1.5] of W(E) onto $W(E)/\mathscr{Y}_1$; then $x\mathscr{Y}_1^{\sharp} = x\mathscr{Y}_1$ for any $x \in W(E)$.

Considering Green's relation $\mathcal J$ on $\bar E$ we have from §2 that

$$\begin{aligned} (\mathscr{Y}_1^{\,\natural} | \, \overline{E}) \circ (\mathscr{Y}_1^{\,\natural} | \, \overline{E})^{-1} &= \mathscr{J} \quad \text{whence} \\ [(\mathscr{Y}_1^{\,\natural} | \, \overline{E})(\psi | \, Y)^{-1}] \circ [(\mathscr{Y}_1^{\,\natural} | \, \overline{E})(\psi | \, Y)^{-1}]^{-1} &= \mathscr{J} \end{aligned}$$

and so we may index (Result 1) the \mathscr{J} -classes of \overline{E} with the elements of Y as follows: for all $\overline{e} \in \overline{E}$ if $\overline{e} \mathscr{Y}_1^{\mathfrak{s}}(\psi \mid Y)^{-1} = \alpha \in Y$ then denote $J_{\overline{e}}$ by \overline{E}_{α} .

Similarly, considering Green's relation \mathscr{J} on E and denoting $(\rho', \lambda')(\mathscr{U}_1^{\natural} | \overline{E})(\psi | Y)^{-1}$ by ξ we have $\xi \circ \xi^{-1} = \mathscr{J}$ whence we may index the \mathscr{J} -classes of E with the elements of Y as follows: for all $e \in E$ if $e\xi = \alpha \in Y$ then denote J_e by E_{α} . Clearly $e \in E_{\alpha}$ implies $\overline{e} \in \overline{E}_{\alpha}$ for all $e \in E$.

Define now $S_1 = S_1(E, T, \psi)$ by

$$S_1 = \{(x, t) \in W(E) \times T: x \mathscr{Y}_1 = t\psi\}$$
.

THEOREM 1.

(i) The set $S_1 = S_1(E, T, \psi)$ is an orthodox subsemigroup of $W(E) \times T$, and conversely every orthodox semigroup is obtained in this way.

(ii) The band of S_1 is isomorphic to E.

(iii) The maximum inverse semigroup homomorphic image of S_1 is isomorphic to T.

(iv) For each element $x \in W(E)$ let $(xV(x), x\mathscr{Y}_1, V(x)x)$ denote x. Then

$$\mathbf{S}_{\scriptscriptstyle 1}=\{((R_{ar{e}},\,t\psi,\,L_{ar{f}}),\,t)\colon\,t\in T,\,ar{e}\inar{E}_{tt^{-1}},\,ar{f}\inar{E}_{t^{-1}t}\}$$
 ,

where $R_{\overline{i}}$ and $L_{\overline{f}}$ are the \mathscr{R} -class and \mathscr{L} -class respectively of \overline{E} containing \overline{e} and \overline{f} respectively.

Proof.

(i) Take any elements (x, t), (y, u) in S_1 . Then

$$(xy)\mathscr{Y}_{1}^{\natural} = (x\mathscr{Y}_{1}^{\natural})(y\mathscr{Y}_{1}^{\natural}) = (t\psi)(u\psi) = (tu)\psi$$

whence $(x, t)(y, u) = (xy, tu) \in S_1$ and S_1 is a subsemigroup of $W(E) \times T$. Now the set of inverses of (x, t) in $W(E) \times T$ is $V(x) \times \{t^{-1}\}$ (where of course V(x) denotes the set of inverses of x in W(E)); take any $(x', t^{-1}) \in V(x) \times \{t^{-1}\}$. Then $x' \mathscr{Y}_1$ and $t^{-1}\psi$ are both inverses of $x\mathscr{Y}_1 = t\psi$ in $W(E)/\mathscr{Y}_1$ whence $x' \mathscr{Y}_1 = t^{-1}\psi$ and $V(x) \times \{t^{-1}\} \subseteq S_1$. In particular S_1 is regular. Since $W(E) \times T$ is orthodox we now have that S_1 is orthodox.

Conversely, consider again the orthodox semigroup S of §2. Let \mathscr{Y}_2 be the finest inverse semigroup congruence on W(B). Then $S(\rho, \lambda)$ \mathscr{Y}_2^{\natural} is an inverse semigroup homomorphic image of S so

$$\mathscr{Y} \subseteq [(
ho, \lambda) \mathscr{Y}_2^{\natural}] \circ [(
ho, \lambda) \mathscr{Y}_2^{\natural}]^{-1}$$

Let θ be the unique homomorphism from S/\mathscr{Y} onto $S(\rho, \lambda)\mathscr{Y}_2^{\natural}$ such that $\mathscr{Y}^{\natural}\theta = (\rho, \lambda)\mathscr{Y}_2^{\natural}$ [2, Theorem 1.6].

The semilattices of S/\mathscr{Y} and $S(\rho, \lambda)\mathscr{Y}_2^{\natural}$ are $B\mathscr{Y}^{\natural}$ and $B(\rho, \lambda)\mathscr{Y}_2^{\natural}$ respectively (Result 2), and moreover (for \mathscr{J} on B)

$$(\mathscr{Y}^{\sharp}|B)\circ(\mathscr{Y}^{\sharp}|B)^{-1}=\mathscr{J}=[((\rho,\lambda)\mathscr{Y}_{2}^{\sharp})|B]\circ[((\rho,\lambda)\mathscr{Y}_{2}^{\sharp})|B]^{-1}$$

so θ maps $B\mathscr{Y}^{\sharp}$ one-to-one onto $B(\rho, \lambda)\mathscr{Y}_{2}^{\sharp}$. Thus $S_{1}(B, S/\mathscr{Y}, \theta)$ is defined, and further, for all $a \in S$, $((\rho_{a}, \lambda_{a}), a\mathscr{Y}) \in S_{1}(B, S/\mathscr{Y}, \theta)$ since $(a\mathscr{Y})\theta = a(\rho, \lambda)\mathscr{Y}_{2}^{\sharp} = (\rho_{a}, \lambda_{a})\mathscr{Y}_{2}$.

Take now any element $(x, a \mathscr{Y}) \in S_1(B, S/\mathscr{Y}, \theta)$, where $a \in S$. Then

$$x{\mathscr Y}_2=(a{\mathscr Y}) heta=a(
ho,\,\lambda){\mathscr Y}_2{}^{{\tt t}}=(
ho_a,\,\lambda_a){\mathscr Y}_2$$

whence $V(x) = V((\rho_a, \lambda_a))$ in W(B). Take any $a' \in V(a)$ in S. Then $(\rho_{a'}, \lambda_{a'}) \in V(x)$ in W(B) and from Result 7 (iii)

$$(\rho_{a'}, \lambda_{a'})x = (\rho_e, \lambda_e)$$
 and $x(\rho_{a'}, \lambda_{a'}) = (\rho_f, \lambda_f)$

for some idempotents $e, f \in S$. Then $(\rho_e, \lambda_e) \mathscr{R}(\rho_{a'}, \lambda_{a'}) \mathscr{L}(\rho_f, \lambda_f)$ in W(B) whence $e\mathscr{R}a'\mathscr{L}f$ in S (from Result 7 (iv), Result 3 and the result dual to Result 3). From [2, Theorem 2.18] there is an inverse b say, of a' in S, such that $e\mathscr{L}b\mathscr{R}f$ in S. Thus $(\rho_e, \lambda_e)\mathscr{L}(\rho_b, \lambda_b)\mathscr{R}(\rho_f, \lambda_f)$ in W(B); but also $(\rho_e, \lambda_e)\mathscr{L}x\mathscr{R}(\rho_f, \lambda_f)$ in W(B) and both x and (ρ_b, λ_b) are inverses of $(\rho_{a'}, \lambda_{a'})$ in W(B), so from [2, Theorem 2.18] $x = (\rho_b, \lambda_b)$. Note also that $b\mathscr{V} = a\mathscr{V}$ (since both are inverses of $a'\mathscr{V}$ in S/\mathscr{V}). Thus $(x, a\mathscr{V}) = ((\rho_b, \lambda_b), b\mathscr{V})$. With an observation above this gives that

$$S_1(B, S/\mathscr{Y}, heta) = \{((
ho_a, \lambda_a), a \mathscr{Y}) \in W(B) imes (S/\mathscr{Y}) \colon a \in S\}$$

From Lemma 1 we have that S is isomorphic to $S_1(B, S/\mathcal{Y}, \theta)$.

(ii) Take any idempotent (x, α) say, in $S_1 = S_1(E, T, \psi)$. Then $x^2 = x$, $\alpha^2 = \alpha$ and $x \mathscr{Y}_1 = \alpha \psi$ whence $x \mathscr{Y}_1^{\flat}(\psi \mid Y)^{-1} = \alpha$ and so $x \in \overline{E}_{\alpha}$. Con-

versely, for any $\alpha \in Y$ and $x \in \overline{E}_{\alpha}$ we have $x \mathscr{Y}_1^{\natural}(\psi \mid Y)^{-1} = \alpha$ whence $x \mathscr{Y}_1 = \alpha \psi$ and $(x, \alpha) \in S_1$. Thus the band of idempotents of S_1 is $\{(x, \alpha) \in \overline{E} \times Y : \alpha \in Y, x \in \overline{E}_{\alpha}\}$, which is clearly isomorphic to \overline{E} (Section 2).

(iii) Let $\pi_2: S_1 \to T$ be the function satisfying $(x, t)\pi_2 = t$ for all $(x, t) \in S_1$, and let \mathscr{Y}_3 denote the finest inverse semigroup congruence on S_1 . Then π_2 is a homomorphism onto T, an inverse semigroup, whence $\mathscr{Y}_3 \subseteq \pi_2 \circ \pi_2^{-1}$.

Since from the proof of (i) the set of inverses of any element (x, t) in S_1 is $V(x) \times \{t^{-1}\}$ we have that

 $\mathscr{Y}_3 = \{((x, t), (y, t)) \in S_1 \times S_1: V(x) = V(y) \text{ in } W(E)\}.$ But for any (x, t), (y, t) in S_1 we have $x\mathscr{Y}_1 = t\psi = y\mathscr{Y}_1$ whence V(x) = V(y) in W(E). Thus $\pi_2 \circ \pi_2^{-1} \subseteq \mathscr{Y}_3$, giving $\pi_2 \circ \pi_2^{-1} = \mathscr{Y}_3$ and S_1/\mathscr{Y}_3 is isomorphic to $S_1\pi_2 = T.$

(iv) We note that it is Result 6 which enables us to let $(xV(x), x\mathscr{Y}_1, V(x)x)$ denote x, for each $x \in W(E)$.

Take any element $(x, t) \in S_i$. Considering Green's relations \mathscr{R} and \mathscr{L} on \overline{E} we have

$$(x, t) = ((x V(x), x \mathscr{Y}_1, V(x)x), t) = ((R_{xx'}, t\psi, L_{x'x}), t)$$

for any $x' \in V(x)$, from Result 5. Now $t^{-1}\psi = (t\psi)^{-1}$ and $x'\mathscr{Y}_1 = (x\mathscr{Y}_1)^{-1} = (t\psi)^{-1}$ so

$$(xx')\mathscr{Y}_{1}^{\natural} = (x\mathscr{Y}_{1}^{\natural})(x'\mathscr{Y}_{1}^{\natural}) = (t\psi)(t\psi)^{-1} = (t\psi)(t^{-1}\psi) = (tt^{-1})\psi$$

giving that $(xx')\mathscr{Y}_1^{\natural}(\psi \mid Y)^{-1} = tt^{-1}$ and $xx' \in \overline{E}_{tt^{-1}}$. Similary $x'x \in \overline{E}_{t^{-1}t}$ and so

$$S_1 \subseteq \{((R_{\overline{i}}, t\psi, L_{\overline{j}}), t): t \in T, \ \overline{e} \in \overline{E}_{tt^{-1}}, \ \overline{f} \in \overline{E}_{t^{-1}t}\}$$

Conversely take any $t \in T$ and any $\overline{e} \in \overline{E}_{tt^{-1}}$ and $\overline{f} \in \overline{E}_{t^{-1}t}$; then $\overline{e}\mathscr{Y}_1 = (tt^{-1})\psi$ and $\overline{f}\mathscr{Y}_1 = (t^{-1}t)\psi$. Consider $((R_{\overline{e}}, t\psi, L_{\overline{f}}), t)$. Take any element $x \in W(E)$ such that $x\mathscr{Y}_1 = t\psi$. Then $(\overline{e}x\overline{f})\mathscr{Y}_1^{\mathfrak{g}} = (\overline{e}\mathscr{Y}_1^{\mathfrak{g}})(\overline{f}\mathscr{Y}_1^{\mathfrak{g}}) = [(tt^{-1})\psi](t\psi)[(t^{-1}t)\psi] = t\psi$. Take any $x' \in V(x)$ and put $\overline{e}x\overline{f} = y$ and $\overline{f}x'\overline{e} = y'$. Then $y' \in V(y)$ [10, Theorem 1.10], whence $y'\mathscr{Y} = (t\psi)^{-1} = t^{-1}\psi$. Thus $(yy')\mathscr{Y}_1 = (tt^{-1})\psi$ giving $yy' \in \overline{E}_{tt^{-1}}$ and similarly $y'y \in \overline{E}_{t^{-1}t}$. Now $\overline{e}, yy' \in \overline{E}_{tt^{-1}}$, a rectangular band, so

$$yy' = (\overline{e}x\overline{f})(\overline{f}x'\overline{e}) = \overline{e}yy'\overline{e} = \overline{e}$$

and similarly $y'y = \overline{f}$. Thus

$$((R_{\overline{\epsilon}}, t\psi, L_{\overline{f}}), t) = ((yV(y), y\mathscr{Y}_1, V(y)y), t) = (y, t) \in S_1$$
.

Therefore

$$S_1 = \{((R_{\overline{e}}, t\psi, L_{\overline{f}}), t): t \in T, \ \overline{e} \in \overline{E}_{tt^{-1}}, \ \overline{f} \in \overline{E}_{t_1t}\}$$
.

REMARK 1. Let Z denote the semilattice of S/\mathscr{V} and index the \mathscr{J} -classes of B with the elements of Z in the natural way. For each element $a \in S$ let $(aV(a), a\mathscr{V}, V(a)a)$ denote a and consider the \mathscr{R} and \mathscr{L} -classes of B. Then the method used to prove (iv) also gives that

$$S = \{(R_e, v, L_f) \in (B/\mathscr{R}) \times (S/\mathscr{Y}) \times (B/\mathscr{L}) \colon v \in S/\mathscr{Y}, e \in E_{vv-1} \ ext{and} \ f \in E_{v-1v}\}$$
.

COROLLARY 1 (to the proof). Consider the arbitrary band E and any inverse semigroup U. Then there exists an orthodox semigroup whose band is E and whose maximum inverse semigroup image is isomorphic to U if and only if there is a homomorphism from U into $W(E)/\mathscr{V}_1$ which maps the idempotents of U one-to-one onto the idempotents of $W(E)/\mathscr{V}_1$.

Let us now define a subset $S_2 = S_2(E, T, \psi)$ of $(E/\mathscr{R}) \times T \times (E/\mathscr{L})$ by

$$S_2 = \{(R_e, t, L_f): t \in T, e \in E_{tt^{-1}} \text{ and } f \in E_{t^{-1}t}\}$$
.

Take any element (R_e, t, L_f) in S_2 . Then $\bar{e} \in \bar{E}_{tt^{-1}}$ and $\bar{f} \in \bar{E}_{t^{-1}t}$ whence $((R_{\bar{e}}, t\psi, L_{\bar{f}}), t) \in S_1$, where $R_{\bar{e}}$ and $L_{\bar{f}}$ are the \mathscr{R} -class and \mathscr{L} -class respectively of \bar{E} containing \bar{e} and \bar{f} respectively. Clearly now we may define a mapping Ψ of S_2 into S_1 by

$$(R_{e}, t, L_{f})\Psi = ((R_{\overline{e}}, t\psi, L_{\overline{f}}), t)$$

for any element $(R_e, t, L_f) \in S_2$. It is also clear that Ψ is one-to-one and it is routine to show that Ψ is onto S_1 . Thus Ψ is a one-to-one correspondence between S_2 and S_1 .

Let us denote by juxtaposition the unique multiplication on S_2 which makes Ψ an isomorphism from S_2 onto S_1 ; then for any elements (R_e, t, L_f) and (R_g, u, L_h) in S_2

$$(R_{e}, t, L_{f})(R_{g}, u, L_{h}) = [(R_{e}, t, L_{f})\Psi(R_{g}, u, L_{h})\Psi]\Psi^{-1}$$

From Result 6 and Theorem 1 (iv) $((R_{\bar{e}}, t\psi, L_{\bar{f}}), t)$ denotes the element $(R_{\bar{e}}(t\psi)L_{\bar{f}}, t)$ of S_1 ; thus

$$(R_{\epsilon}, t, L_{f})\Psi = (R_{\overline{\epsilon}}(t\psi)L_{\overline{f}}, t)$$

for any element (R_e, t, L_f) in S_2 .

For each idempotent $x \in W(E)$ let \tilde{x} denote $x(\rho', \lambda')^{-1}$; then $\overline{\tilde{x}} = x$ for all $x \in \overline{E}$ and $\overline{\tilde{e}} = e$ for all $e \in E$. Then for any elements (R_e, t, L_f) and (R_g, u, L_h) in S_2

$$(R_e, t, L_f)(R_g, u, L_h) = (R_{\widetilde{zz'}}, tu, L_{\widetilde{z'z}})$$

where (in W(E)) $R_{\bar{\epsilon}}(u\psi)L_{\bar{f}} = x$, $R_{\bar{\epsilon}}(u\psi)L_{\bar{h}} = y$, xy = z and $z' \in V(z)$; this is because $(tu)\psi = (xy)\mathscr{Y}_1 = z\mathscr{Y}_1$ and

$$(R_{zz'}, tu, L_{z'z})\Psi = ((R_{zz'}, (tu)\psi, L_{z'z}), tu) = (z, tu) = (xy, tu)$$

We restate these facts in the next theorem.

THEOREM 2. Let $S_2 = S_2(E, T, \psi)$ be the subset of $(E/\mathscr{R}) \times T \times (E/\mathscr{L})$ given by

 $S_2 = \{(R_e, t, L_f): t \in T, e \in E_{tt^{-1}} and f \in E_{t^{-1}t}\} and let a multiplication on <math>S_2$ be given by (for any elements (R_e, t, L_f) and (R_g, u, L_h) in S_2)

$$(R_{e}, t, L_{f})(R_{g}, u, L_{h}) = (R_{\widetilde{zz'}}, tu, L_{\widetilde{z'z}})$$

where (for the \mathscr{R} and \mathscr{L} -classes of \overline{E} we have) $R_{\overline{i}}(t\psi)L_{\overline{j}} = x$, $R_{\overline{j}}(u\psi)L_{\overline{i}} = y$, xy = z and $z' \in V(x)$ (all in W(E)). Then $S_2(E, T, \psi)$ is a semigroup isomorphic to $S_1(E, T, \psi)$.

4. Some counter-examples.

4.1. Let T denote the bicyclic semigroup [2, Section 1.12]. We shall construct a band B which is an ω -chain of rectangular bands and such that there is no orthodox semigroup S with band B and with T as a homomorphic image.

Let Y be the semilattice of T; then Y is an ω -chain. For each $\alpha \in Y$ let E_{α} be a rectangular band such that, for all $\alpha, \beta \in Y$, if $\alpha \neq \beta$ then $E_{\alpha} \cap E_{\beta} = \Box$ and $|E_{\alpha}| \neq |E_{\beta}|$. Put $B = \bigcup_{\alpha \in Y} E_{\alpha}$ and, following Clifford [1] extend the multiplications of the bands $\{E_{\alpha}: \alpha \in Y\}$ to a multiplication for B as follows: for any $e, f \in B$, where $e \in E_{\alpha}$ and $f \in E_{\beta}$ say, define

$$ef = egin{cases} ef \ ef \ as \ in \ E_lpha \ if \ lpha = eta \ f \ if \ lpha > eta. \end{cases}$$

Note that if $\alpha > \beta$ then ef = fe = f. It is routine to show that this multiplication is associative (alternatively see [8]) and that then the band B is an ω -chain Y of the rectangular bands $\{E_{\alpha}: \alpha \in Y\}$. Also, if $e \in E_{\alpha}$ and $f \in E_{\beta}$ $(\alpha, \beta \in Y)$ then $eBe = \{e\} \cup (\bigcup_{\gamma < \alpha} E_{\gamma})$ whence eBe is isomorphic to fBf if and only if $\alpha = \beta$. From [5, Main Theorem] any orthodox semigroup, S say, with band B is a union of groups. But any homomorphic image of a semigroup which is a union of groups is also a union of groups; thus T is not the maximum inverse semigroup homomorphic image of S.

684

REMARK 2. The band B just defined is one of a class of bands called, by the author, almost commutative bands; a band E is called *almost commutative* if, for any $e, f \in E, J_e \neq J_f$ implies ef = fe. It is easily shown (See [8])) that a band E is almost commutative if and only if, for $e, f \in E, J_e > J_f$ implies e > f (where $J_e > J_f$ means that $E^{i}eE^{i} \supset E^{i}fE^{i}$ [2, Section 2.1] and e > f means that $ef = fe = f \neq$ e[2, Section 1.8]). A determination of the structure of almost commutative bands in terms of semilattices is given in [8].

REMARK 3. The band B and inverse semigroup T above answer in the negative the first question posed on page 269 [12]. We now briefly give alternative examples of a different nature. Let E consist of the matrices

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and let T_1 consist of the matrices

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Under matrix multiplication E is a band, T_1 is an inverse semigroup with semilattice isomorphic to E/\mathscr{J} , and there is no orthodox semigroup S say, with band E and such that S/\mathscr{J} is isomorphic to T_1 .

4.2. We now give two non-isomorphic orthodox semigroups S_1 and S_2 whose bands are isomorphic and whose maximum inverse semigroup homomorphic images are isomorphic. This answers the second question on page 269 [12] in the negative. The referee has pointed out that this question has also been essentially answered in the last remark of Yamada [13].

Let S_1 consist of the matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$$

and let S_2 consist of the matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Under matrix multiplication S_1 and S_2 are orthodox semigroups.

The bands of S_1 and S_2 are both two-element left zero semigroups with an identity adjoined and the maximum inverse semigroup homomorphic images are both two-element groups with a zero adjoined. But \mathscr{H} is a congruence on S_2 and not on S_1 , so S_1 and S_2 are not isomorphic.

References

1. A. H. Clifford, Naturally totally ordered commutative semigroups, Amer. J. Math., **76** (1954), 631-646.

2. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vols. I and II, Amer. Math. Soc., Providence, R. I., 1961 and 1967.

3. T. E. Hall, On regular semigroups whose idempotents form a subsemigroup, Bull. Austral. Math. Soc., 1 (1969), 195-208.

4. _____, On regular semigroups whose idempotents form a subsemigroup: Addenda, Bull. Austral. Math. Soc., 3 (1970), 287-288.

5. _____, On orthodox semigroups and uniform and antiuniform bands, J. Algebra, **16** (1970), 204-217.

6. ____, On regular semigroups, J. Algebra, (to appear).

7. _____, Congruences and Green's relations on regular semigroups, Glasgow Math. J., (to appear).

8. ____, Almost commutative bands, Glasgow Math. J., (to appear).

9. G. Lallement, Congruences et équivalences de Green sur un demi-groupe régulier,
C. R. Acad. Sci. Paris, Série A, 262 (1966), 613-616.

10. B. M. Schein, On the theory of generalized groups and generalized heaps, (Russian), Theory of semigroups and appl. I (Russian), 286-324, (Izdat. Saratov. Univ., Saratov, 1965).

11. M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math., **21** (1967), 371-392.

12. _____, On a regular semigroup in which the idempotents form a band, Pacific J. Math., **33** (1970), 261-272.

13. _____, Construction of inversive semigroups, Mem. Fac. Lit. & Sci., Shimane Univ., Nat. Sci., 4 (1971), 1-9.

Received February 12, 1971 and in revised form August 2, 1971. This research was supported by a Nuffield Travelling Fellowship. The author thanks the referee for references [1] and [13] and for suggesting several improvements.

UNIVERSITY OF STIRLING

SCOTLAND