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ORTHODOX SEMIGROUPS

T. E. HALL

An orthodox semigroup is a regular semigroup in which
the idempotents form a subsemigroup. The purpose of this
paper is to give structure theorems for orthodox semigroups
in terms of inverse semigroups and bands.

A different structure theorem for orthodox semigroups in terms
of bands and inverse semigroups has already been given by Yamada
in [12]; two questions posed in [12] will be answered in the negative.
The present paper is the "further paper" mentioned by the author
in the final paragraph of §1 [5] and in the Acknowledgement of [5].

2* Preliminaries* We use wherever possible, and usually with-
out comment, the notations of Clifford and Preston [2]; further, for
each element a in any semigroup S we define V(a) — {xεS: axa = a
and xax = x}, the set of inverses of a in S.

RESULT 1 (from Theorem 4.6 [2]). On any band B Green's rela-
tion ^f is the finest semilattice congruence and each ̂ -class is a re-
ctangular band.

Let φ: B-+Y be any homomorphism of B onto a semilattice Y
snch that φoφ~ι = ^ . By denoting (for all ee B) Je by Ea where
eφ — a e Y we obtain B as a semilattice Y of the rectangular bands
{Ea: a e Γ}, i.e., B = \JaBYEa and for all α, β e Y Ea Π Eβ = • if a Φ β,
aud EaEβ s Eaβ. It is clear that {(e, a)e B x Y: eφ = a} is a subband
of B x Y isomorphic to B.

RESULT 2 [9, Lemma 2.2]. Let p be a congruence on a regular
semigroup S. Then each p-class which is an idempotent of S/p con-
tains an idempotent of S.

RESULT 3 (from Theorem 13 [7]). Let p be any congruence
contained in £f on any semigroup S. Then any elements a and b
of S are ^f -related in S if and only if ap and bp are Sf-related in
S/p.

Henceforth we shall let S denote an arbitrary orthodox semigroup.
The following result is part of [3, Theorem 3]; as noted in [4]

it had previously been obtained by Schein [10].
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RESULT 4. The relation & = {(x, y)eS x S: V(x)=V(y)} is the
finest inverse semigroup congruence on the orthodox semigroup S.

From [3, Remark 1] we see that the partition of S induced by
& is {V(x):xe S}. Denote the band of S by B. Then we also have
from [3, Remark 1] that for any e e B, e^/ = Je (where Je is the
^^-class of B containing e) whence, from Result 2, the semilattice
of S/%s is B/^f (^ being Green's relation / on B).

For the remainder of this section S^ and & shall denote Green's
relations £f and & on J5; as usual then Lx and Ex shall denote the
i^-class and <% -class respectively of B containg an element x from B.

RESULT 5 [5, Lemma 1] or [12, Footnote 5]. For any element
a G S and any element a' e V(a),

aV(ά) = Raa, and V(a)a = Lα,α .

RESULT 6 [5, Lemma 2] or [12, Lemma 5]. Take any elements
a and b in S

Then

aV(a)(a%s)V(a)a = {α}

whence a = b if and only if the triple

(aV(a), a&, V{a)a) = (bV(b), b&, V(b)b) .

Henceforth, we shall identify any one element set {x} say, with
that element x, as is usual.

We shall now present two constructions appearing in [5]; one is
of a representation of S by transformations of sets and the other is
of a "maximal" fundamental orthodox semigroup containing B as the
band of all idempotents (a semigroup T is called fundamental if the
only congruence contained in Sίf on T is the trivial congruence). This
work has been generalized to regular semigroups in [6], where in
fact the proofs and presentation are simpler than in [5]. For each
result that we present we shall therefore refer to results in both [5]
and [6].

For each element a in S define a transformation pa e ^~Bι^> the
semigroup of all transformations of the set 2?/=Ŝ , by

V{x)xpa = V(xa)xa for all xe B

and define also a transformation λα in J7~Bl^ by xV(x)Xa = axV(ax) for
all xeB.

That pa and λα are transformations is shown in [5, Section 3]
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and also follows from [6, Remark 4]. Let (p, λ) be the mapping of
S into ^usr x^ΊsU (where ^Bf^ is the semigroup dual to ^Έi^)
which takes each a in S to (pa, λβ).

We define now an equivalence relation <2S on B by <%S — {(β, /) 6
B x B: eBe = fBf} and for each pair (e, /) e ^ we let T e , be the
set of all isomorphisms from eBe onto fBf; for each ae Te>f we define
further transformations a e ^B\<e and ΰ e ^ / ^ [6, Section 5] by

Lxa — L̂ α and Exΰ = Rxa for all x e eBe .

Further, let us consider the transformations pea and λ/OT1 (products
being taken in ^J^s/j? and &J7~B\# respectively) and let us put
(pea, Xfa~ι) — φ(a) say. Define now

RESULT 7.

( i ) The set W(B) is a subsemίgroup of J^BIS? X J7~BT&

(ii) Further , *PΓ(JB) is a fundamental orthodox semigroup whose
band of idempotents is isomorphic to B.

(iii) T%e mapping (p, λ) is α homomorphism of S into W(B) which
maps B isomorphically onto the band of idempotents of W(B).

(iv) The congruence (p, X)°(p, λ)"1 is the maximum congruence
contained in Sίf on S.

Result 7 can be obtained by the specialization to orthodox semi-
groups of the following results on regular semigroups from [6]:
Lemma 4, Theorem 7 and Theorem 18 (vii). Alternatively, except
for part (iii), Result 7 is contained in Theorems 1 and 5 of [5].

RESULT 8 [5, Theorem 2]. Take any elements a, beS. Then
a = b if and only if the triple

(λβ, α f , pa) = (λ6, b%/, pb) .

3* The structure theorems*

LEMMA 1. The mapping from S into W(B) x (S/3^) which maps
each element a in S to ((pa, λα), a^/) is an isomorphism.

Proof. From Results 4 and 7 (iii) we see that the mapping is a
homomorphism and from Result 8 we see that it is one-to-one.

Let now E be any band and define W{E) as above. Let {p\ λ')
be the homomorphism of E into W(E) which corresponds to the
homomorphism (p, λ) of S into W(B) above. From Result 7 (iii) (p', λ')
is an isomorphism from E onto the band of all idempotents of W(E).
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Let us denote the band of W(E) by E and for each e e E let us
denote e(p\ λ') simply by e. Let ^ denote the finest inverse semi-
group congruence on W(E), as given by Result 4.

Now let T be any inverse semigroup such that there is an idem-
potent-separating homomorphism ψ say, from T into W{E)\^/1 whose
range contains all the idempotents of W(E)l^/t\ if we let Y denote
the semilattice of T then from Result 2 ψ | Y maps Y isomorphically
onto the semilattice of W(E)/&Ί.

Let 3Ί* denote the natural homomorphism [2, Section 1.5] of
W(E) onto W(E)/^; then x%s* = x^ for any xe W(E).

Considering Green's relation ^f on E we have from §2 that

* IE) o &* IE)-1 = J" whence

and so we may index (Result 1) t h e ^F-classes of E wi th t h e elements

of Y as follows: for all e eE if e ^(ψ\ Y)"1 = aeY t h e n denote J-

by Ea.
Similarly, considering Green's relation ^J? on E and denoting (p'f

Γ)"1 by ξ we have ξoζ-1 = ^f whence we may index the
of E with the elements of Y as follows: for all e e E if

eξ = a e Y then denote Je by Ea. Clearly e e Ea implies ee Ea for all
eeE.

Define now Sλ = S^E, T, f) by

S, = {(x, t) e W(E) x T: x^ = tψ} .

THEOREM 1.

(i) The set Sx — S^E, T, ψ) is an orthodox subsemigroup of W{E) x
T, and conversely every orthodox semigroup is obtained in this way.

(ii) The band of Sί is isomorphic to E.
(iii) The maximum inverse semigroup homomorphic image of Sx

is isomorphic to T.
(iv) For each element xe W(E) let (xV(x), x3Ί, V{x)x) denote x.

Then

Si = {((#;, H, Lj), t): t e T, eeEtt-h fe Et-h} ,

where Rτ and Lj are the &-class and £f -class respectively of E
containing e and f respectively.

Proof.
(i) Take any elements (x, ί), (y, u) in Sx. Then

= (tψ)(uψ) =
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whence (x, t)(y, u) = (xy, tu) e S1 and Sλ is a subsemigroup of W(E) x
T. Now the set of inverses of (x, t) in W(E) x T is F(α) x {r1}
(where of course V(x) denotes the set of inverses of x in W(E))\ take
any (x\ t"1) e V(x) x {ί"1}. Then aj'^Ί and t~'ψ are both inverses of
%%/x = ίψ» in W{E)I^ whence aj'^Ί = r t y and V(x) x {ί"1} S &. In
particular SL is regular. Since W(E) x T is orthodox we now have
that Si is orthodox.

Conversely, consider again the orthodox semigroup S of §2. Let
J^2 be the finest inverse semigroup congruence on W{B). Then S(p,
X) g-V is an inverse semigroup homomorphic image of S so

Let θ be the unique homomorphism from S/^f onto S(ft X)%/2* such
that ^ 0 = (p, λ ) ^ [2, Theorem 1.6].
The semilattices of S/^ and S(ρ, λ ) ^ are 5 ^ ^ and B(ρ, λ ) ^ res-
pectively (Result 2), and moreover (for ^ on B)

so ^ maps J5^^ one-to-one onto B(ρ, λ ) ^ . Thus ^ ( ΰ , S/ĝ , )̂ is
defined, and further, for all aeS, {{pa1 λα), a&) e S^B, S/^, θ) since
(a%/)θ = a(p, \)&f = (ρa, λα)^ 2.

Take now any element (x, a^/) e S^B, S/jϋ/, θ), where ae S.
Then

whence V(x) = V((ρa, λβ)) in PΓ(JB) Take any α' e F(α) in S.
Then (|θβ,, λα,) G V(x) in TF(JS) and from Result 7 (iii)

(pα', λ α > - (pe, λβ) and α;(jθβ,, λα,) = ( ^ , λ/)

for some idempotents e,feS. Then (ft, Xβ)&(pa>, Xa)£?(pf, Xf) in
TF(JB) whence e&a'^ff in S (from Result 7 (iv), Result 3 and
the result dual to Result 3). From [2, Theorem 2.18] there is an
inverse b say, of α' in S, such that e£?b&f in S. Thus (ft, \)J*f(pb,
Xb)^(pf, Xf) in TF(.B); but also (ft, Xβ)£fx&(pf, Xf) in TF(JB) and both
a? and (ft, Xb) are inverses of (ft,, Xa,) in TF(B), so from [2, Theorem
2.18] # = (ft, λ6). Note also that 6g^ = αg^ (since both are inverses
of ar^/ in S/^). Thus (a;, αg^) = ((ft, λ6), b^/). With an observation
above this gives that

, θ) = {((ft, λβ), a&) e W(B) x (S/g/): α e S } .

From Lemma 1 we have that S is isomorphic to S^B, S/^f, θ).
(ii) Take any idempotent (x, a) say, in S1 = S^l?, T, α/r). Then a?2 =

a?, α2 = a and a?^Ί = ατ/r whence x^/^{ψ\ Y)~ι = α and so a? 6 2?β. Con-
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versely, for any aeY and xeEa we have x^/f{f \ Y)"1 — a whence
x^/1 = aψ and (x, a) e Sx. Thus the band of idempotents of Sλ is {(x,
cήeE x Y: a e Y, x e Ea], which is clearly isomorphic to E (Section 2).

(iii) Let π2: S1 —• T be the function satisfying (x, t)π2 = t for all
(x,t)eSlf and let 3^3 denote the finest inverse semigroup congruence
on Sί Then π2 is a homomorphism onto T, an inverse semigroup,
whence ĝ 3 g Tẑ oπv1.

Since from the proof of (i) the set of inverses of any element (x,
t) in Sx is V(x) x {t"1} we have that

^ 3 = {((x, t), (y, t)) eS,x Sx: V(x) = V(y) in W(E)}. But for any (x, ί),
(l/, ΐ) in St we have OJ^. = tψ = J/^Ί whence F(aj) = 7(2/) in TΓCE?).
Thus π2oπ<rι S β̂> giving ^OTΓ"1 = ^ 3 and ^/g^ is isomorphic to

= Γ.
(iv) We note that it is Result 6 which enables us to let (xV(x),

Ί, V(x)x) denote x, for each xe W{E).
Take any element (x, t) e Sλ. Considering Green's relations &

and i f on S we have

(x, t) = ((xV(x), x^ί9 V(x)x), t) = ((Λ../f tf, Lx,x), t)

for any xr e V(x), from Result 5. Now t~ιψ = (ίψ)-1 and

giving that {xx')ny*(ψ\ Y)~ι = ^ - 1 and xx'eEtt-i. Similary x'xeEt-ιt

and so

Sx s {((Λϊf ί̂ , L7), t): ί e Γ, e"6B t ri, / e ^ - i j

Conversely take any te Tand any eeEtt-ι a,ndfeEt-ιt; then e^ =
{tt~ι)ψ and/J^! = (t~ιt)ψ. Consider ((R-, tψ, Lj), t). Take any element
xe W(E) such that x^ = tψ. Then (exf)^* = ( e ^ X α ^ ί / ^ ) =
[(tί"1)^](ί^)[(*"1*)ψ] = ί^ Take any xf e V(x) and put exf = /̂ and
/α?'e = i/f. Then ?/'e F(?/)[1O, Theorem 1.10], whence y'%s = (if)"1 =
ί"1^. Thus (yy')&Ί = (έί~1)Ψ giving i/]/' 6 S«-i and similarly T/'̂ / G Et-it.
Now e, 2/2/' € Ett-i, a rectangular band, so

yy' z=z (exf)(fx'e) = eyy'e = e

and similarly τ/'2/ = /- Thus

((Rh tf, Lj), t) = (d/F(τ/), »3/lf V(y)y), t) - (», ί) e S1 .

Therefore

ψ , L 7 ) , t):teT,ee Ett-h fe Et_h} .
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REMARK 1. Let Z denote the semilattice of S/ίf and index the
^-classes of B with the elements of Z in the natural way. For
each element aeS let (aV(z),a%/, V(a)a) denote a and consider the
& and ^-classes of B. Then the method used to prove (iv) also
gives that

S = {(Re, v, Lf) e (B/&) x (S/&) x (B/^f): v e S/&, e e Evv-ι

and /e-Ev-iJ .

COROLLARY 1 (to the proof). Consider the arbitrary band E and
any inverse semigroup U. Then there exists an orthodox semigroup
whose band is E and whose maximum inverse semigroup image is
isomorphic to U if and only if there is a homomorphism from U into
W(E)\^/X which maps the idempotents of U one-to-one onto the idem-
potents of

Let us now define a subset S2 = S2(E, Γ, ψ) of (E/&) x T x
by

S2 = {(R§, t,Lf):tGT,ee Ett-i and / e Et-it) .

Take any element (Re,t,Lf) in £»a. Then eeEn-ι and feEt-it

whence ((R-e, tψ, Lj), t) e Slf where R-e and Lj are the ^-class and
.5^-class respectively of E containing e and / respectively. Clearly
now we may define a mapping Ψ of S2 into St by

(Re, t, Lf)Ψ = ((Rh tψ, L7), t)

for any element (i?e, t, Lf) e Sz. It is also clear that Ψ is one-to-one
and it is routine to show that Ψ is onto S^ Thus Ψ is a one-to-one
correspondence between S2 and Si

Let us denote by juxtaposition the unique multiplication on S2

which makes Ψ an isomorphism from S2 onto Sj then for any elements
(Re, t, Lf) and (Rg, u, Lh) in S2

(Ref t, Lf)(Rg, u, Lh) = [(Rβ, t, Lf)Ψ(Rβ, u, Lh)¥]W~l .

From Result 6 and Theorem 1 (iv) ((R-e, tψ, Lj), t) denotes the ele-
ment (R-(tψ)Lj, t) of £x; thus

(Re, t, Lf)Ψ = (R-e(tψ)L7, t)

for any element (Re, t, Lf) in S2.
For each idempotent x e W{E) let x denote x(p', λ')"1; then i = x

for all x e E and % = e for all e e E. Then for any elements (Re, t, Lf)
and (Rg, u, Lh) in S2
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(Re, t, Lf)(Rg, u, Lh) = (ife,, tu, Lzrz)

where (in W(E))R~e(uψ)L? = x, Rg(uψ)Lι = y, xy = z and z' e
this is because (ίw)*̂  = (a?y)̂ Ί = 2JΊ and

(ife, ίw, A^y = ((#„', ( W , JW, tu) = (z, tu) = (xy, tu) .

We restate these facts in the next theorem.

THEOREM 2. Let S2 = S2(E, T, ψ) be the subset of (E/&) x T x
^) given by

S2 = {(Re, t, Lf): te T, ee Ett-i and f e Et-ιt} and let a multiplica-
tion on S2 be given by (for any elements (Re, t, Lf) and (Rg, u, Lh) in
S2)

(Re, t, Lf)(R9, u, Lh) = (RZ7Ί tu, Lz%)

where (for the & and Sf -classes of E we have) R-e(tψ)Lj = x, R-g(uψ)Lι =
y, xy = z and zf e V(x)(all in W(E)). Then S2(E9 T, ψ) is a semigroup
isomorphic to S^E, T, ψ).

4+ Some counter-examples*
4.1. Let T denote the bicyclic semigroup [2, Section 1.12]. We

shall construct a band B which is an ω-chain of rectangular bands
and such that there is no orthodox semigroup S with band B and
with T as a homomorphic image.

Let Y be the semilattice of T; then Y is an co-chain. For each
α e Y let Eα be a rectangular band such that, for all α, β e Y, if α Φ
β then EαV[Ep=Z\2Jidi\Eα\Φ\Eβ\. Put B = \Jα&γEα and, following
Clifford [1] extend the multiplications of the bands {Eα: α e Y) to a
multiplication for B as follows: for any e, f e B, where eeEα and
f eEβ say, define

ίe if α < β

ef = <ef as in Eα if α = β

[f if α > β.

Note that if α > β then ef = fe = f. It is routine to show that this
multiplication is associative (alternatively see [8]) and that then the
band B is an ω-chain Y of the rectangular bands {Eα: αe Y}. Also,
if eeEα and / e Eβ (α, β e Y) then eBe = {e} U (Ur<« Eγ) whence eBe
is isomorphic to fBf if and only if α — β. From [5, Main Theorem]
any orthodox semigroup, S say, with band B is a union of groups.
But any homomorphic image of a semigroup which is a union of
groups is also a union of groups; thus T is not the maximum inverse
semigroup homomorphic image of S.
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REMARK 2. The band B just defined is one of a class of bands
called, by the author, almost commutative bands; a band E is called
almost commutative if, for any e,feE,JeΦ Jf implies ef = fe. It is
easily shown (See [8])) that a band E is almost commutative if and
only if, for e,feE,Je> Jf implies e > f (where Je > Jf means that
E'eE1 z> E'fE1 [2, Section 2.1] and e > f means that ef = fe = f Φ
e[2y Section 1 8]). A determination of the structure of almost com-
mutative bands in terms of semilattices is given in [8].

REMARK 3. The band B and inverse semigroup T above answer
in the negative the first question posed on page 269 [12]. We now
briefly give alternative examples of a different nature. Let E consist
of the matrices

/0 0 0\ /I 0 0\ /0 0 0\ /0 0 0\ /I 0

0 0 0 1 , J O 0 0 1 , J O 1 O J , | θ 1 1 ) , ( θ 1 0

\θ 0 0/ \0 0 0/ \0 0 0/ \0 0 0/ \0 0 l)

and let T1 consist of the matrices

0 0\ (1 0\ (0 1\ (0 0\ /0 0\ (1 0\ (0 1

o or [o o)' [o or [I or [o lr [o ir u o,
Under matrix multiplication E is a band, T1 is an inverse semigroup
with semilattice isomorphic to E/^, and there is no orthodox
semigroup S say, with band E and such that S/^s is isomorphic
to I;.

4.2. We now give two non-isomorphic orthodox semigroups St

and S2 whose bands are isomorphic and whose maximum inverse
semigroup homomorphic images are isomorphic. This answers the
second question on page 269 [12] in the negative. The referee has
pointed out that this question has also been essentially answered in
the last remark of Yamada [13].

Let S1 consist of the matrices

1 0\ (1 0\ (1 0\ (1 0

o o/' [I or \o 1)' [l - l
and let Ss consist of the matrices

/I 0 0\ /I 0 0\ /I 0 0\

ίo o oj, l i o o), jo l oj,
\0 0 0/ \θ 0 0/ \0 0 1/
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Under matrix multiplication Ŝ  and S2 are orthodox semigroups.
The bands of Si and S2 are both two-element left zero semigroups

with an identity adjoined and the maximum inverse semigroup homo-
morphic images are both two-element groups with a zero adjoined.
But £έf is a congruence on S2 and not on S19 so St and S2 are not
isomorphic.
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