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ON THE BRAUER GROUP OF Z

ROBERT A. MORRIS

Two dimensional Amitsur cohomology is computed for
certain rings of quadratic algebraic integers. Together with
computations of Picard groups, this yields information on the
Brauer group B(S/Z)9 for S quadratic algebraic integers, with-
out resort to class field theory.

The classical Brauer group of central simple algebras over a field
[10, X, Sec. 5] has been generalized to the Brauer group B(R) of
central separable J2-algebras over a commutative ring R [2] One can
prove, using class field theory, that the Brauer group B(Z) of the
integers, is trivial. The proof is apparently well known but not in
the literature, although it does appear in the dissertation of Fossum

[9]
This paper is devoted to our attempt to establish this result using

only an exact sequence of Chase and Rosenberg [7, p. 76]. We are
able to show that if S is the integers of Q(Vm) for m = ± 3, — 1, 2,
or 5, the subgroup B(S/Z) of B(Z) consisting of elements split by S,
vanishes.

In § 2 we develop some technical results on norms which we use
in § 3 to show that the Amitsur cohomology group H2(S/Z, U) is zero
whenever S is the ring of integers of a quadratic extension of the
rationale. In §4 we use a Mayer-Vietoris sequence of algebraic K-
theory to show that the Picard group Vic(S(g)zS) — 0 for S the integers
of Q(τ/m), m = ± 3, — 1, 2, or 5. In § 5 we use this result and an
exact sequence of Chase and Rosenberg [7, p. 76] to show B(S/Z) =
0 for these rings.

Dobbs [8] has results relating B(S/Z) to H2(S/Z, U) which
together with the triviality of B{Z) imply our results.

§ 2* Norms* If £ is a commutative algebra over a commutative
ring R, Sn denotes S ® S & S, n times (here and throughout, &
means ®Λ), and e<: Sn —> Sn+1, i = 0, , n, is given by xQ ® ® xn_t

—* %o Θ ® χi-i ® 1 ® χi Θ " ' ® #»-i These maps satisfy ε ^ =
Sj+^i for i <; j . For any ring A, U(A) denotes the group of units of
A. All unexplained notation and terminology is an in [7].

THEOREM 2.0. Let M/K be a galois extension of commutative rings
[6], with group G, and let F be an additive functor on a full sub-
category <& of the category of commutative K-algebras, and suppose
M and M®κ M lie in ^. Then for any x in F(M), y = ^ginG Fg(x)

619



620 ROBERT A. MORRIS

lies in Ker(Fe0 —

Proof. By Theorem 3.1 of [6] there are orthogonal idempotents
e9 (g in (?), in M®KM with Σ A = 1 and β® 1 = Σ,(l ® flr(β)K In
the above notation this becomes: εx(s) = Σ*eo(ίKs))eα for all s in M.

Now Σ A = 1 implies that M(g)κM = Π(M<g)κM)eg as ϋΓ-algebras.
Thus, if π^ denotes the projection of the #th component, we have πgeι

= 7rffεoβr as maps 1 - 4 ( 1 ^ 1 ) ^ . Now 2/ = Σih m G Fh(x) is trivially
invariant under Fg so we obtain FπgFεL(y) = FπgFs0Fg(y) = FπgFε0(y)
for each # in G. By the additivity of F, this implies .Feo(2/) = 2^(2/)
as was to be shown.

Now let R be the ring of integers of an algebraic number field
K. Let M be a finite galois field extension of K with group G and
S its ring of integers and let M: K = n. For each i ;> 0 there is a
map nil U(Si+1)-+U(Si®R) given by

Now Si+1 is projective, hence faithfully flat as an S* ® i2 module.

By [7, Lemma 3.8] S* (g) R = Ker(Sΐ+1 ̂ ^ S ΐ + 1 ® θ s®i?Si+1), so applying
Thm. 2.0 to Mi+1/(M* (g)κ K)(here Mj = M®κ M- ®κ M) noting that
the natural map Sn-+Mn is injective for all n we see that the map
Ui indeed has its image in S* (g) R.

DEFINITION. The ΐth norm map, N{: U(Si+1) —> U(S*) is Cn{ where
C: S* <g) R~>S{ is the natural isomorphism. Ni is easily seen to be
an abelian group map.

LEMMMA 2.1. If Sji U(Si+1) -> U(Si+2) denote the maps defined at
the beginning of the section, then Ni+ιeό{x) = SjN^x) for 0 ̂  j < i + 1
and Ni+1εi+1(x) = xn, where n = M: K.

Proof. Clear

PROPOSITION 2.2. If dim. U(Si+1) —> U(Si+2) is the Amitsur cobound-
ary (given by dι(x) = Π£to(s(-1}i))> then Ni+ιtf{x) = [d*-W(α?)](α?»)(-ι)<+1.

Proof.

Ni+1d\x) = Ni+1 Π eάx™*) = Π Λr<+Π *

= [Π e i
0

by Lemma 2.1. The proposition then follows from the definition of
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COROLLARY 2.3 // for x in U(Sί+1) we have d\x) = 1, then {xny~l)

) . In particular, nH^S/R, U) = 0 for i ^ 1.

REMARK. The above are all closely parallel to results of Amitsur
[1, Thm. 2.10] who defines a norm map via determinants whenever S/R
is finitely generated and free. In the that case, our norm maps agree
with Amitsur's [1, Lemma 5.2].

We are primarily interested in two-cocycles:

COROLLARY 2.4. Let x in U(S3) have d\x) = 1. Then N'N^x) is
in U(R)ΛS.

Proof. By Corollary 2.3 with i = 2, xn = d\N\x)) and so N\xn)
= NW(Nz(x)) = [d'N'N'ix^N'ix^ by Proposition 2.2 with i = 1. Hence
d°[JNΓW2(aj)] = 1 in S ® £• Since S is protective, hence faithfully flat,
over iϋ, it follows from Lemma 3.8 of [7] that NλN2(x) is in R ls;
say NιN2(x) = r ls. A priori r is a unit in S, but not obviously so
in R. Let t be the inverse in S of r l s and let t satisfy the integral
equation xm + r ^ " 1 + + r in R[x]. So

0 = (ίw + n ^ " 1 + + rm)rmΛ = 1 + rxr + + rmrw.

Hence r is a unit in iί, completing the proof.

Henceforth we will suppress the superscripts on norm maps.

Finally we give a technical lemma of general application:

LEMMA 2.5. If R is any commutative ring and S a faithfully
flat R~algebra, thenv two cocycle x in U(SZ) lies in S ® S ® 1 if and
only if x is in 1 0 S ® 1. In this case x is a coboundary.

Proof. One implication is trivial.

If x is in S ® S ® 1 we may write x = e2(α) = α ® 1 for some α
in S ® £. Then 1 = <22O) = εo(^)ε1(^-1)ε2(^)ε3(αj~1). Since a? .= ε2(α), it is
clear that ε2(x) = εs(cc), so that

1 = eofaKiar1) = ε0ε2(α)ε1ε2(α~1) = ε3ε0(α)ε3ε1(α-1).

Since ε3 is a monomorphism, we have εo(α) = ε^α). As in the previous
result, an application of Lemma 3.8 of [7] shows that a is in 1 ® S so
that x = α ® 1 is in 1 ® S ® 1. We must have a = 1 ® u for some
unit u of S and S O # = 1 ® M ® 1 =
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3* The cohomology of quadratic integers* In this section we
use the results of the last section for explicit computations of co-
homology groups. In this section R = Z and S is the ring of integers
of a_quadratic field extension, K, of the rationale, Q. Thus K =
Qiλ/m) for a square free integer m. The computations naturally divide
themselves into the cases m = 2 or 3 and m = 1 (mod 4).

THEOREM 3.0. Let K = Q{Vm) with m = 2 or 3 {mod 4). / / S
denotes the ring of integers of Ky then H2{S/Z, U) = 0.

Proof. Let p = Vm. Then {1, p) constitutes a basis of S over Z
[12, Thm. 6-1-1]. For any x and y in Z, the nontrivial Q-automor-
phism takes x + yp to x — yp, so that N(x + yp) = (x + 2/l/m)(a? —
yλ/m) — x2 — my2.

Now S* is free over S*'"1 (acting on the first i — 1 factors) with
generators 15;-I ® 1 and ls<-i ® /O, so that JV(a? ® l + |/®iθ) = ( ^ 0 1
+ 2/ ® V/m)(a? ® 1 — 2/ ® l/m) = %2 — m /̂2 for α; and y in S*"1. For
convenience, we call sc ® 1 — 2/ ® ^ the conjugate of x ® l + 2/®|0 in

Suppose ί» in Z7(S3) is a two cocycle and let y — N(x) — α ® 1
with α and 6 in S. By Corollary 2.4, α2 - m62 = N(y) = ± 1 in S.
We treat the two cases separately, letting a = αx + α2ίo and 6 = δL +
δ2Jo with α<, δ« in Z.

Case 1. i\%) = 1. Here one easily sees that I T 1 = α <g) 1 —
the conjugate of ?/. Let Λί denote the ring homomorphism S® S—>S
defined by M(c (g)d) = cd for c and d in S. Then the unit of S, M(y)
— a + bp has inverse M(yrι) = a — bp. Explicitly

(1) M(y) = a + bp = at + mb2 + (α2 + 60 p

and

(2) M{y~ι) = a — bp = αx — m62 + (α2 — 60/O.

Now NM(y) is in Ϊ7(J£), so is ± 1. If NM(y) = 1 we see that
ΛfdΓ1) = Miy)"1 is the conjugate of M(τ/), that is M{y)~ι = (at + mb2)
— (α2 + 6i)/° Using equation (2) we then have 62 = α2 = 0. Thus y =
N(x) = α ^ l ® 1 + δi l <S> i° = εo(c) where c = ax + bxp is in U(S) since
2Γ1 = α ( g ) l - 6 ® | 0 = βoίαi - 6^).

Now by Corollary 2.3 x2 = <P(N(x)) = eP(εo(c)) = εoεo^ε^o^-^ε^oίc))
= e^oί^e^oίc^eseoίc) = ε2ε0(c) = eo(c) ® 1 = N(x) ® 1. On the other hand,
if we write c c ^ α ^ l + zS®/0 with ^ a n d 8̂ in S2, then cc2 = (a2 +
m/32) ® 1 + 2α/3 ® /o and equating coefficients gives 2α/3 = 0 and a2 +
m/32 = JV(a;) = α2 - m/92 Cby the definition of N). Hence mβ2 = 0. But
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since the natural map of S2 into K2 is injective, S2 is torsion free
with no nilpotents, so β = 0. Thus x = a 0 1 and so is a coboundary
by Lemma 2.5.

In Case 1 there remains the possibility that NM(y) = — 1. With
the notation of the previous subcase we see that M(y)~ι = — (αx + mδ2)
+ (α2 + bjp, the negative of the conjugate of M(y). Equation (2) here
leads to ax — bλ = 0 so that y = N(x) = α2io 0 1 + b2p 0 ^. Hence NN(x)
= αJ/08 + mδ2/?2 = φ w + w^δ2 = m{a\ + mδ2). By Corollary 2.4, this must
be ± Is. Since α2, δ2 and m are integers, this happens only if m =
± 1 . If m = 1, Z" is not a proper extension (and in any case m is
not congruent to 2 or 3 (mod 4)). We are thus, in Case 1, reduced
to considering the Gaussian integers and must consider solutions of
b\ — a\ — ± 1. Thus in this subcase, p = £. Returning to equation
(1), we have M(y) = — b2 + a2ί and we have assumed — 1 = NM(y) =
lo\ — a\ — (δ2 + α2)(δ2 — α2) in Z. The only solutions of this are b2 = 0
and α2 = ± 1. Thus by Corollary 2.3, x2 = d^Nix)) = dx(a2i 0 1 ) =
d^e^asi)) = δ0ε1(a2i)ε1ε1(a2~

1ί~1)ε2ε1(a2'ί) = eoe1(a2i) (since εxεx = e^) and so x2

= ± 1 0 £ 0 1 . But ± 1 0 i 0 1 is not a square in £ 3 , else after apply-
ing the ring homomorphism α 0 60c—>αδc of S 3 to S, we would have
that ± i, and hence i, is a square in £.

Case 2. N(y) = — 1. Here y"1 = — a 0 1 + 6 0 ^ and we obtain

(3) M{y) = α + fy> = αx + mδ2 + (α2 + ftj^o

and

(4) M(yrι) — — a + bp = — • αx + mδ2 + (δi

Again NM(y) = ± 1 in Z. As in Case 1, NM(y) = 1 implies M{y~v)
= M(y)~1 is the conjugate of M{y), that is, M{y~ι) = (αt + m&2) — (α2 +.61)<o.
Comparing ceίϊicients with (4) gives at = bL = 0. By computations similar
to the second subcase of Case 1, we are reduced to considering only
m = — 1 , (S the Gaussian integers) and a\Λ- b\ = lin Z. This equation
has the solutions α2 = 0 and 62 = ± 1; α2 = ± 1, 62 = 0. δ2 — 0 and
a2 = ± 1 yields, parallel to Case 1, #2 = dι{N{x)) = dx(̂ /) = if(a2i 0 1 ) =
— α2(ί 0 £ 0 £) which again cannot be a square in S 3 .

In the subcase NM{y) = 1 there remains the possibility α2 = 0, b\
= 1. Then again by Corollary 2.3, x2 = dι{N{x)) = d 1^) = d1(δ2£ 0 £) =
δ2(l 0 £ 0 £)δ2(£ 0 1 0 £)δ2(£ 0 £ 0 £) = - δ2(l 0 1 0 1 ) = ± 1 ( 8 ) 1 0 1 .
That x is a coboundary then follows from Lemma 3.1 below, completing
the subcase NM(y) = 1.

The subcase NM(y) = — 1, by similar computations leads to δ2 =
α2 = 0. As in the first subcase of Case 1, an application of Corollary
2.3 and Lemma 2.5 shows that # is a coboundary, completing Case 2
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and the proof, except for the following Lemma.

LEMMA 3.1. Let S be the Gaussian integers and x in U(S3) a two
cocyle. If x2 = ±1 in S* then x is a coboundary.

Proof. Consider first x2 = 1 (x) 1 (x) 1. The following are eight solu-
tions in Ss: ± l(g)l(g)l, ± l(g)i(g)ΐ, ± i ®l(x)i , and ± i (g) ΐ (g) 1.
We claim this exhausts the solutions of the equation in S3. To see
this note that if K = Q(ί), then distinct solutions in S3 are also distinct
in K®QK (x)ρ K, since the natural map S (x) S (x) S —> K®Q K(g)Q K is
monic. Since K/Q is galois, K(x)QK®QK is isomorphic to a direct
product of copies of K. Comparing Q dimensions yields K(^)QK0QK
— KxKxKxK. Since the only solutions in K of x2 =. 1 are ± 1,
it follows that there are exactly 16 solutions in K®QK ®Q K.

Let Xi denote the eight above mentioned distinct solutions which
lie in S3 and let y = (l/2)(l(x)l(x)l - i <g)ί (g)l - i(x)l (x) i + l(g)i®i).
Then it can be seen that y2 = 1 and {xi9 x{y} are solutions of x2 = 1
in K®qK®Q K. We claim these are distinct and that the xty do not
lie in S. For both claims it suffices, since the x{ are in U(S3), to
show that y cannot lie in S3. This follows easily from the fact that
1 (x) 1 (x) 1, i (g) i (g) 1, i (g) 1 <g> i and 1 (g) ί (g) ί are linearly independent
over iΓ and that 1/2 does not lie in Z.

Thus the Xi exhaust the solutions in S3 of x2 = 1. Now among
these solutions a simple computation shows that the only cocycles are
1 (x) 1 (x) 1 and — 1 (x) 1 ® 1 and these are, respectively dι(l (g) 1) and
cZx(—1 <g> 1). Similarly among the solutions of x2 = — 1 (x) 1 (x) 1 only
±ί(x) l (x) l , ±v(x)ί(x)ί, ±. 1 (8) i ® 1 and 1 (g) 1 (g) i lie in S3 (the
remaining eight comprise the multiples of these by the element y given
above and again cannot lie in S). The only cocycles are ± l(g)i(g)l
and these are coboundaries of 1 (x) i and i (g) 1 respectively. Thus the
lemma, and so Theorem 3.0, is proved.

THEOREM 3.2. Let K = Q{V±k + 1). // S denotes the integers of
K, then H2(S/Z, U) = 0.

Proof. Let p = (1 + τ/4& + l)/2. Then {1, p} is a basis of S over
Z[12, Thm. 6-1-1]. The nontrivial Q-automorphism of K, since it must
preserve the roots of x2 = 4& + 1, takes i/4Λ + 1 to — τ/4A; + 1 and
so takes a + bρ to a + δ((l - τ/4F+~T)/2) = α + 6(1 — p). Hence, N(x)
= a2 - b2p2 + ab + &V- Since p2 = p + k, we have JSΓ(») = α2 - δ2fc + ab.

As in the previous theorem, the structure of Sl as S^-algebra is
analogous to the ring structure on S. That is ls* and lβ*-ι (x) p are a
basis and N(a (x) 1 + 6 (x) ̂ ) = α2 + αδ - 62fc for α, 6 in S'"1.

Computations closely paralleling those of the previous theorem show
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that if x is a two cocycle in U(SZ) then x is in S2 (g) 1 and so by
Lemma 2.5 is a coboundary. As before the computation divides itself
into two cases, NN(x) = 1 or NN(x) = — 1. Various subcases lead
either to the desired result or to an equation in integers of the form
2 = α2 — 4k. Since a square integer is never congruent modulo four
to two, the theorem is proved.

4. Pic(S(5<)S). Let R be an integral domain whose quotient
field, K, has characteristic not 2. Let S be an integral quadratic exten-
sion of R, that is, S = iZf̂ o] where the minimal polynomial of p over R
is p(a?) = x2 + ax + b. Let ^ be the second (and distinct) root of p(x).
Note that S is an integral domain with quotient field K(p), and that p
is in S as a consequence of the familiar formula p + p = — a. The
main theorem of this section characterizes the Picard group [5, Ch.
II, Sec. 4] Pic(S ® Λ S) of rank one protective S®RS modules in terms
of the units of S and of S/(p — p)/S. Henceforth ® means (g)Λ and
S' denotes S/(p - ρ)S.

LEMMA 4.0. S(g) S = S xs, S. That is, in the notation of [3, IX
Sec. 5, p. 478], there are maps h19h2 making

W\ c h l . e

i
S >S'

a cartesian square (here the unlabelled maps are the natural projec-
tions).

Proof. By assumption, S is free over R on 1 and p, so S (x) S is
free oh 1 and 1 (x) p when regarded as an S module on the first factor.
For 8 and t in S, define hx{s ® l + ί ® / θ ) = s + ί / θ and h2(s (x) 1 + t (x) p)
= s + tp. Then hλ(a) — h2(a) = ί(^ — jθ) for any a — s(g)l + t(g)pm
S(g) S. Conversely, suppose st = s2 (mod(^ - ρ)S), i.e., s1 — s2 = s3(ρ
— p) for some s3 in S. Then taking y — s3 and x = s1 — sBp gives sx

= x + yp = h,(x (g) 1 + 7/ (g) ̂ o) and 8i = x + yp = h2(x (g) 1 + ?/ (x) ̂ ) . Thus
{(s!,s2) in S x S|s !^s 2 (mod(|O — ^)S)} = {(λi(α), fea(α))|α is in S(x)S}.
Since S is an integral domain, it follows that a—* (h^a), h2{a)) is a
monomorphism of S (x) S into S x S so the square (1) satisfies the de-
finition of cartesian.

REMARK. Let R be the ring of integers of an algebraic number
field, if, with class number 1, and S the integers of a quadratic exten-
sion, L of K. S is finitely generated protective over R (cf. 12, p. 158).
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If {xi3ψi} is a projective coordinate system, the map f:S—>R given
by f(x) = Σφi{x, Xi) is a split Λ-module epimorphism, so that S =
R10 ker F. Since R is a PID, ker / is free and a simple rank argu-
ment (e.g. passing to L) shows kerf=R p for some p in £ § L.
Clearly such a p must satisfy a quadratic monic polynomial over R,
so that S is quadratic over R in the above sense.

THEOREM 4.1. Let S = R[p] be a commutative integral quadratic
extension of an integral domain R, let p be the conjugate of p and let
S' — SJ(p — p)S. Then the following sequence is exact:

0->U(S®S)~* U(S) x U(S) — U(S') -> Pic(S <g) S) -> Pic S x Pic S
— PicS'.

Proof. In view of Lemma 4.0 the above sequence is given by
Theorem 5.3 [3, IX Sec. 5, p. 481].

REMARKS. The maps of the above sequence are those of the Mayer-
Vietoris sequence of [3, VII Sec. 4]. In particular, U(S(g)S)--> U(S)
x U(S) is given by u —> (h^u), h2{u)~ι) where hi are the maps in Lemma
4.0, and U(S) x U(S) — U(S') is given by (s, t) -> π(s)π(t) where π: S
—* S' is the natural projection. Clearly the image of U(S) x U(S) ->
C7(S') is the same as the image of π restricted to U(S).

COROLLARY 4.2. With R and S as in Theorem 4.1, Pic(S® S) =
0 if and only if Pic S = 0 αwd ίfce natural projection U(S) —> ί7(S') is

Proof. The j?-algebra map εx: S —> S (x) S given by $ —* a? (x) 1 is
Pic εi Pic M

split by the map M:x®y—>xy. Hence Pic S > Pic(S(x)S) >PiciS
is identity, so that Picβi is a monomorphism, i.e., Pic S g Pic(S(x)S).
The corollary is then immediate from Theorem 4.1 and remarks following
it.

Now let K = Q(Λ/m) be a quadratic field extension of the rationals,
and S be its ring of integers. As in § 3, S = Z[ρ] where p = Vm or
(1 + τ/m)/2 according to whether m Ξ 2 or 3 or m Ξ 1 (mod 4). We
can easily compute SΊ

LEMMA 4.3. Ifm = l (mod 4), £/*,ew S'=Z/mZ.

Proof. Let m = 4& + 1 so that p + 2k = (i/m)^, and write # +
yp — x — 2ky + y(p + 2k) = x — 2ky + yVmp — x — 2ky + ̂ ( ^ — />) where
a?, 2/ lie in Z. Hence x + yp=x — 2&τ/ (mod (p — ̂ )S). Moreover, m =
VmVm — (p — py = 0 (mod S(p — p)). Thus if, for an integer α, α
denotes the coset of a mod m, we see that x + yp —• a? — 2% is a ring
map of S onto Z/mZ whose kernel, J = {x + yp\x — 2ky = am} is con-
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tained in (p — p)S. Conversely, since p — p = i/m = — 1 — 2p we have
p — p —> — 1 — 4& = — m, so that (<o — ^ S is contained in / . Thus
S' s

LEMMA 4.4. Ifm^l (mod 4) ίfam Sf ~ T = Z/2mZ + Z/2Z(Vm)
(where this ring has the obvious multiplication).

Proof. In this case p — V~m and p — p = 2 ι/m. Let ~ and / X

denote reduction mod 2m and 2 respectively. Then for &, y in Z, x
+ yp—>x + yλ/m is a ring map whose kernel is {2ma + 2δp|α, 6 are
in Z). Since 2ma + 2bp = 2\/m{λ/ma + 6) = (^ — ^)(i/mα + 6), this
kernel is just (^ — ^)S and the lemma is proved.

Now S' is finite in either case; It follows from Proposition 5 of
[5, Ch. 2, Sec. 5, No. 4] that any semi-local ring has trivial Picard
group, hence Pic(S') = 0 under the hypotheses of Lemmas 4.3 or 4.4.
Suppose that Pic S = 0 and let π: U(S) —• U(S') denote the map induced
by the projection S —> £\ Then employing the remarks following Theo-
rem 4.1 the exact sequence of that theorem becomes in this case

(2) O - I m π - U(S') — Pic(S(g) S) — 0.

THEOREM 4.5. Let K = Q(i/m) be a quadratic extension of the
rational numbers, Q, with m a square free integer. If S denotes the
integers of K, then Pic(£> (x) S) — 0 for m — ± 3, — 1, 2, and 5 but for
no other value of m.

Proof. For the given values of m, S is a euclidean domain [12,
Propn. 6-4-1] hence a PID, or equivalently [cf. 5, Sec. 5, No. 7] PicS
= 0. Referring to Lemmas 4.3 and 4.4 we may easily verify the fol-
lowing table by direct calculation

m S' U(S')
2 ZβZ + Z/2ZVΎ {± 1, ± 1 + V~2)
3 Z\2Z + Z/2zλ/T {± 1, ±2 + V 3 }
5 ZfrZ {1,2,3,4}

where denotes the coset mod 4,6, or 5 respectively.
Now by the Dirichlet units theorem [12, Sec. 6-3], U(S)_= {±e{\i

in Z) where the fundamental unit, ε, is 1 + i/~2~, 2 + τ/ΊΓ, or (1 +
l/ΊΓ)/2 respectively [11, "Tables"]. Referring to Lemmas 4.3 and 4Λ
for the definition of π we find in case m - 2 that π(e) = ϊ + V 2j
τr(~ e) = - 1 - V~2 = - 1 + τ/Ύ in S'. In all cases π(- 1) = - 1
and τr(l) = 1. Since TΓ is (the restriction of) a ring map, we see_that
π is onto when m = 2. Similarly when m = 3, π(ε) — 2 + V 3 and
τr(-~ ε) = - 2 - VΎ = - 2 + V7"^ and when m = 5 7r(ε) = - 2 = 3
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which generates the cyclic group of units of S' = Z/5Z. Thus also in
these cases π is onto.

If m = - 3 then U{Sr) = U(Z/SZ) = {± 1}. TΓ is again onto because
it is the restriction of a ring map. If m = — 1 then Z7(S') = {1, l/— 1}.
By definition 7r(i/— 1) = i/— 1 so that the fact that π is the restriction
of a ring map again implies π is onto. That Pic(S (x) S) = 0 for the
given m now follows from Corollary 4.2.

Now suppose m is not one of the listed integers. By Corollary
4.2 we need only consider integers m for which S is a PID. If m ^
— 5, the Units Theorem shows U(S) = ± 1. Now S' contains Z/mZ
or Z/2mZ according to whether m = 1 (mod 4) or not. Let m =
— pxp2 pr with p< distinct primes, and consider first m = 1 (mod 4).
Then Z/mZ = ZjpxZ x x ZjprZ with p,; odd primes. There being
only two units in S, if TΓ is to be onto we must clearly have r = 1
and pr — 3, so π is not onto. Similarly, if — 5 < m = 3 (mod 4), Z/2mZ
= UΓ/2Z x JZ/^Z x x Z/prZ which has the same units as Z/mZ and,
as above π is not onto. If m = 2 we take pt = 2, so that Z/2mZ —
Z/4Z x Z / ^ ^ x x Z/prZ. Again, if π is to be onto there can be
no factors other than p19 since Z/4Z has 2 units, so that for no m fg
— 5 can 7Γ be onto.

Consider now m > 5. For any unit a + bp in S we have that the
norm

N(a + δ/o) = (α + bρ)(a + bp)

is a unit in Z, so

± 1 = (a + bp)(a + bp) = (α + 6/o)2(mod(|O - ^ S ) .

Squaring shows that for any unit v in S' = S/(p — p)S we have v4 =
1. Now the Units Theorem shows that U(S) is the direct product of
the cyclic group < — 1 > of order two, generated by — 1 with an in-
finite cyclic group < ε > for some unit ε, called the fundamental unit.
It then follows that Im π e U(S') is a group of exponent dividing four,
generated by two elements, one, namely π(— 1), of order at most two.
In particular Im π has at most eight elements.

Suppose first that m = 2px pr with pi distinct odd primes. Then
S' 2 Z/2mZ = Z/4Z x Z/ptZ x x Z/prZ. If this ring is to have at
most eight units we must clearly have Pi <£ 5. Indeed m = 6 or m =
10 are the only possibilities, since m = 30 produces more than eight
units. However, if m = 6 or 10, S is not a PID [11, "Tables"] so
by Corollary 4.2 we can not have Pic(S (x) S) = 0. Thus in all possible
remaining cases, n — 2k implies π is not onto and again Corollary 4.2
shows Pic(S <g)S)Φθ.

Consider next m == 3 (mod 4) and write m = p1 pr as the product
of distinct odd primes. Then
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S' a Z/2mZ = Z/2Z x JZ/p^ x x Z/prZ.

In order to have at most eight units we must have each Pi ^ 7. But
some Pi — 7 would entail a unit of order three which can not happen.
Since m > 5, we see that π is onto possibly only if m — 15. But
in this case S is not a PID [11, ''Tables'7] so again we can not have
Pic(S <g) S) = 0.

Finally there remains the case m Ξ 1 (mod 4). If m = p ^ pr,
then the units of S = Z\mZ — Z\pxZ x x ZjprZ are the same as
those of ZβmZ — Z\2Z x Z/p^x x Z/prZ so the same argument as
above for m = 3 shows that Pic(S (x) S) = 0 only for the listed values
of m = 1 (mod 4), completing the proof.

5* B(S/Z). All notation is as in [7].

THEOREM 5.0. Let K = Q{Vm) with m a square free integer and
Q the rationale. Let S be the ring of integers of K. Then the split
Brauer group B(S/Z) is zero when m — — 3, — 1,2, 3 or 5.

Proof. In each case S is euclidean [12, Propn. 6-4-1] hence a PID.
Thus as remarked in § 4, Pic S = 0, so that H°(S/R, Pic), being a sub-
group of Pic S, is zero. By Theorem 4.3, Pic(S (x) S) = 0, hence
H^S/Z, Pic), which is a homomorphic image of a subgroup of Pic(S(x)S),
is zero. It then follows from Theorem 7.6 of [7] that B(SJZ) ~
H2{SjZ, U) and the result follows from Theorems 3.0 and 3.2.

Using the global class field theory, one can prove that in fact
B(S/Z) SB(Z) - 0 [9]. Dobbs [8] has exploited this fact to obtain
an improvement of our Theorems 3.0 and 3.2. Of course the conclu-
sion of Theorem 4.5 is more than is needed to show B(S/Z) — 0. It
would suffice to prove directly that H^S/Z, Pic) = 0 or that the map
Hι{SjZ, Pic) -> H3(S/Z, U) given in Theorem 7.6 of [7] is a monomor-
phism. However, Hι{SjZ, Pic) does not seem amenable to computation
at the present time.
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