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RESTRICTIONS OF BANACH FUNCTION SPACES

DONALD R. CHALICE

Let X be a compact Hausdorfs space. Let C(X) be the
space of continuous complex-valued functions on X and A be
a function algebra on X, that is a uniformly closed separat-
ing subalgebra of C(X) containing the constants. If F is a
closed subset of X we say that A interpolates on F if
A\F= C(F). By a positive measure μ we shall always mean
a positive regular bounded Borel measure on X. Let F be
a measurable subset of X. We say a subspace S of Lp(μ)
interpolates on F if S \ F = L*(F) — Lp(μF), where μF is the
restriction of μ to F. Let Hp(μ) be the closure of A in Lp(μ)
where 1 5Ξ p < oo, and let H°°(μ) = H\μ) Π L°°(μ) One ques-
tion we are concerned with here is whether interpolation of
the algebra is sufficient to imply interpolation of its as-
sociated iJp-spaces. We therefore begin by obtaining neces-
sary and sufficient conditions for a closed subspace of Lp(μ)
to have closed restriction in LP(F). These condition are
analogous to some obtained by Glicksberg for function
algebras. Using these results we obtain theorems about
interpolation of certain invariant subspaces, and then apply
them to ίZ^-spaces. In particular we show that when A ap-
proximates in modulus and μ is any measure which is not a
point-mass, Hp(μ) interpolates only on sets of measure zero.
(One sees that A interpolates only on sets of measure zero,
so our original question has a trivial answer for these alge-
bras.) For uniformly closed weak-star Dirichlet algebras
again the answer to our original question is affirmative.
Finally we provide an example of an algebra which inter-
polates such that H°°(μ) interpolates and the Hp(μ) do not
interpolate for 1 ^ p < oo. I am indebted to a paper of
Glicksberg for those techniques which inspired the present
effort. Below we show that these techniques apply to the Lp

situation and to other "similar" situations.

Glicksberg [3] has given necessary and sufficient conditions for

interpolation of a closed subspace of C(X). We show here that

analogous theorems hold for subspaces of LP(X). Let A c B be

Banach spaces. AL will denote all bounded linear functions funetion-

als on B which annihilate A

THEOREM 1.1. Let A, Aιy B all be Banach spaces with Ac: A1

and R: A^^—^B a nonzero bounded linear transformation. Then R(A)

is closed in B if and only if 3c 9 : || h - R(A)λ \\ ^ c \\ h* - AL \\

VheB*, where h* = R*h. It follows that c^l/\\R\\.

593



594 DONALD R. CHALICE

Proof. The map Rλ = R\A: A —»R(A) induces a map

T=ψoR*oφ: B*/R(A)L > A*/AL

where ψ: A*-* A*/A1 and φ: B*/R(Ay-+R(A)* are the natural iso-
metric isomorphisms. Further for g e 2?*, g — R(A)λ is taken to
<7* — A1 by T, so T is 1 — 1. Now the range of R1 is closed if and
only if the range of Bf is closed if and only if the range of T is
closed [1]. The latter fact is equivalent to: 3c 9 : || h - R(A)1 || ^
c || Λ* — A11| for all geB* by the open mapping theorem. Further,
|| ft* — A11| ^ || iϋ || || h — R(A)11| so applying the above inequality gives

The statement of the above theorem is slightly more general than
those of other similar theorems appearing the literature. The proof
is virtually the same as that in [3] albeit in a more general setting.
See also [2]. The next corollary follows as in [3].

COROLLARY 1.2. Let X be locally compact and A a uniformly
closed subspace of C0(X). Let F be a locally compact subset of X and
suppose A I Fa C0(F). Then

( i ) A I F is uniformly closed in C0(F) if and only if 3c 9 :
|| μ — (A IF)11| <* c || μ — A1 || V regular bounded Borel measure μ on
F.

(ii) AI F = CQ(F) if and only if 3c 9 : || μF\\^c \\ μF, || Vμ e A1.
We now apply 1.1 to get the analogous conclusion for subspaces

of ZΛspaces.

DEFINITION. Let μ be a fixed positive measure on X and F a
measurable subset of X. Set LP(F) = Lv{μF), 1 ^ p ^ °o where μF

is the restriction of μ to F. For feLq(F) let / be the function
which is / on F and 0 on ί7'. Note that if R is the restriction map
L*(X) -> L'(F), then / = /*. For a subspace S of LP(X), (S \ F)1 -
{g 6 L*{F) \g^S\ F). Clearly {/ | fe (S | F)1} aS1.

THEOREM 1.3. Lβ£ S be a closed subspace of LP(X), 1 ^ p < <χ>,
JP α measurable subset of X. Then:

( i ) S\F is closed in LP(F) if and only if

( 1 ) ICB: \\g - {S\FY\\ t^c\\g - S^W VgeL'(F);

( i i ) S\F= LP(F) if and only if

( 2 ) ZeS'.\\g\F\\9<c\\g\F'\\t VgeS±.

If F has positive measure it follows that c ^ 1. If p = <χ> then the
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"only if9' parts of ( i ) and ( i i ) hold for geLι(E) and L1(X)f]S1

respectively.

Proof. ( i ) follows by applying 1.1 to the restriction map R.
As | | Λ | | ^ 1 , we have c ̂  1. If S\F=LP(F), then (1) becomes
\\g\\^c\\g - Sλ\\ V geLq(F). In part icular if geS1,

\\g\F\\£c\\£\F-g\\ = c\\g\F'\\.

This shows the "only if" part of ( i i) . For the "i f" part of (ii)
we shall use a concavity property of the #-norm; namely, if a, β ̂  0,
a + β ^ l 9 then | | / | | , ^ a\\f\ F\\q + β\\f\ F'\\q. Now taking

ge(S\F)L, and applying ( 2 ) to g shows t h a t (S\F)λ = 0, so S\F

is dense in LP(F). Thus we need only show t h a t S\F is closed.

Here (1) reduces to ||g\\q ^ c'\\ g - SL \\q V ge 2/CF). But if 0 e L

and feeS1, then || g - h\\q ̂  α | | for- h) \ F\\q + /9|| h\ F'\\v it a,β

and α: + β ^ 1. Now choose n so t h a t c/w + c2/n ^ 1 and let a —

/3 = c2/n. Then

after applying ( 2 ) . Thus setting & = n/c gives S I J P is closed and
thus S\F= LP(F). The latter part of the conclusion is clear from
the above arguments.

COROLLARY 1.4. // S is a closed subspace of LP(X), 1 ̂  p < °°
and S^-lFaiSlF)1 then S\F is closed in LP(F).

Proof. (S\~F)LczSx so in fact SL\F= (S\ F)1. Taking ge Lq{F),

and he S1 we have

\\g - S ^ \ \ q ^ \\g - S - \ F \ \ q = \\g - ( S \ F y \ \ q

and (1) applies.

2* Restrictions of invariant subspaces* Let X be a topological
space and μ a positive measure on X. Throughout this section A
will be a subalgebra of L"(μ)f and S will be a closed subspace of
LP(X) for some 1 ̂  p < oo. We assume that S is invariant under
multiplication by elements of A. A separates in modulus (SM) if
V e > 0, E, F disjoint closed sets in X, 3 / G A such that \f\ <e
a.e., on E and 11 — | / | | < e a.e., on F. Call / a separating function.
A boundedly separates in modulus (BSM) if 3 i k f 9 : V ε > 0 , E, F

disjoint closed sets, 3 a separating function feA with ||/||««<Λf.
We say that A boundedly separates in modulus by invertible func-
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tions (BSMI) if A is BSM and the bounded separating functions can
be chosen to be invertible. If A is a function algebra on X and the
a.e., condition can be left out of the above then we say that A is
BSM or BSMI on X. For example, if A approximates in modulus
then A is BSM on X and if A is logmodular then A is BSMI on X.
If A is weak-star-Dirichlet [7] then A may not even be BSM, but
H°° must be BSMI because log V = L2 where V is the set of in-
vertible elements in H°°. This includes the case where μ is a unique
representing measure on X, or more generally, is "minimal" in the
sense of [7, pg. 238]. Thus BSM, etc., "localize" the separation
properties to the support of the measure in question.

THEOREM 2.1. Let F be a mesurable set in X. If A is BSM
then S\F — LP(F) if and only ifgeS1=^g\F=0. In particular,
this holds if A approximates in modulus.

Proof. 1.4 implies the "if" part. Conversely, suppose S\F=LP(F).
Then 3 c such that ge S1 =- || g | F\\q ^ c || g | F'\\q. Choose ε > 0.
Find Kn c o m p a c t c F c Vn open such that μ(Vn~ Kn) < 1/n. We
can assume that the Kn are monotone. Suppose M is the bounding
constant for the separating functions in A. Find keA such that
|| k ||co ^ M and || k \ - 11 < ε on Kn and | k \ < ε on V'n a.e. Then for
fixed geS1,

(l-ε)\\g\Kn\\q^\\kg\Kn\\q^\\kg\F\\q^c\\kg\F'\q

\F'O Vn\\q + c ε\\g\\q.

Letting ε—>0, we have ||flr|ίΓn||ff ^ cM\\g\F' Π Vn\\q. Letting n—>co,
we have g\F = 0.

COROLLARY 2.2. Let A be BSM. Suppose that F{ are mesurable
subsets of X and Fo = UΓ=i Ft. If S\Fi = L*{F%) for i = 1, 2,
then S\F0 = LP(FQ).

Proof. Let g e S1. Then g \ F{ = 0 a.e. for i = 1, 2, and thus
g IFQ = 0 a.e.

THEOREM 2.3. Lei F be a closed subset of X. If A is BSMI
then S\F is closed in LP(F) if and only if ge S1 =>g\ Fe (S\F)1.

Proof. "If." Apply Corollary 1.4. Here it is not necessary that
F be closed.

"Only if." Find Vn open=)F such that μ(Vn~F)< 1/n. Then
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3 M > 0 and kn invertible in A such that || kn IU ^ M, | 1 — | kn || < ε
a.e. on F and \kn\ <e a.e. on Vή Now 3 c such that 1.3 (1) holds
so geS^WglF- (S\Fy\\g^c\\g\F' \\q. The same holds for kng.
Thus

Now since jfcβ are invertible, kn(S\F)λ = (Sli*7)1. Thus

Letting ε ~> 0 and n —* °o gives # | F e (S | F)L.

COROLLARY 2 4 Leέ A δβ BSMI. Suppose Ft are closed subsets
of X and F = UΓ=i ί7*. If S\Ft is closed in LP{F%) for each i, then
S\F is closed in LP(F).

Proof. Take geS1. Then g | Ft e (S | i^)1, and by the dominated
convergence theorem, it follows that g\ Fe (S \ F)L.

Using the above theorem we also encounter the following phe-
nomenon which is different from that which usually occurs in the
function algebra setting.

COROLLARY 2.5. Let F be a closed subset of X, and let A be
BSMI. Then S\F is closed in LP(F) =>S\F' is closed in LV{F'). In
particular this happens if A is logmodular.

Proof. Let g e S1. Then g\Fe(S\ F)1. Hence

thus g\F'e(S\F*)L

9 so S\F' is closed.
The above is explained by the following "splitting lemma" which

was pointed out to me by K.B. Laursen.

LEMMA 2.6. Let S be α closed subspαce of Lp(μ), l ^ p < °°,

and let F be a measurable subset of X. Then S = S | F φ S | F' if

and only if geSL ^g

REMARKS. The following illustrates 2.5. Let X be the union of
two disjoint disks, μ = mx + m2 where m1 and m2 are the Lebesgue
measures on the two circles comprising the boundary of X% and let
A be the algebra of functions continuous on X and analytic on the
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interior of X. Then H\m^ + Lι{m^ splits and neither F nor F'
have measure 0.

Also it is easy to find examples of closed subspaces of U{—1,1)
which are proper and interpolate on (—1,0] and (0,1). For example,
let S be the set of functions / in Z/(-l, 1) such that f(x) = f(-x)
a.e.

3* Interpolation of iP-spaces and function algebras* Through-
out this section unless it is otherwise stated, we assume that A is a
function algebra on a compact space X, μ is a representing measure
for A which is not a point-mass and I is the corresponding maximal
ideal.

PROPOSITION 3.1. If I is SM in L~(μ) then the only open sets on
which Hp(μ) interpolates for some 1 ̂  p ^ °o are those of measure 0.

Proof. If Hp interpolates on V open and μ(V) > 0 then find K
compact in V of positive measure. Find a sequence in / whose moduli
converge to 1 on K and 0 on V. This contradicts 1.3 (ii).

PROPOSITION 3.2. If / is BSM in L°°(μ) then the only measurable
sets on which Hp(μ) interpolates for some 1 ̂  p ^ °° are those of
measure 0.

Proof. Suppose Hp interpolates on a set F of positive measure.
We may assume that F is closed. Since μ is assumed to not be a
point-mass Fr has positive measure. We can therefore choose Kn

compact and monotone in F' so that μ(Kn) -* μ{Ff). Find fn in I
which are uniformly bounded such that 11 /»| — 1 | < 1/n on F and
|/n| < l/n on Kn. This contradicts 1.3 (ii).

We wish to study the relation between interpolation of the
algebra A and its associated iP-spaces. As was pointed out in the
introduction, if A approximates in modulus then the situation is
trivial. For if F is a closed set on which A interpolates then be-
cause F is an intersect of peak sets, we must have that μ(F) = 0
by the dominated convergence theorem. So interpolation of the Hp-
space follows vacuously. More generally we have the following.

PROPOSITION 3.3. Let A be BSM on X, and F a closed subset of
X. If A interpolates on F then Hp(μ) interpolate on F for any
measure μ, and any 1 ̂  p < °o.

Proof. g±Hp=>gdμ±A=>gdμF = 0=>g\F=0 a.e., μ=>Hp

interpolates on F.
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PROPOSITION 3.4. If μ is a representing measure for A, and A
is BSM in L°°(μ), then Hp(μ) interpolates only on sets of measure 0
if 1 ̂  P ̂  °° •

Proof. Suppose for some p, HP\F = LP{F). Let AQ be the ideal
determined by μ. Then A^d(Hp)L so by 2.1., geA0=*g\F = 0 a.e.
But if fe Hp, then / — \fdμ is a point wise a.e. limit of a sequence of

elements of Ao and thus / = \fdμ a.e. on F, so that all Hp functions

are constant a.e. on F. Thus LP(F) — constants and thus μF is a point-
mass at some point x. But μ must be continuous, for 3 g e I such
that g(x) Φ 0 and applying 2.1 gives μ{x] = 0.

PROPOSITION 3.5. Let A be BSMI on X, and F a closed subset of
X. If A\F is dosed then Hp(μ) restricted to F is closed for any
measure μ, and any 1 ̂  p < ̂ o.

Proof, g lHp=>g dμ 1 A=>g dμFe(A\F)λ=>g dμFe(Hp)L=>Hp

restricted to F is closed by 2.3.

REMARKS. Both 3.3 and 3.5 hold because F is an intersect of
peak sets. By the above it is easy to construct examples in which
the Hp spaces interpolate on sets of positive measure (where μ is not
a representing measure). For another example, let A be the disk
algebra on the unit disk, and let μ — 1/2 dθ + 1/2 dQ where δ0 is the
poin-mass at 0. As yet we have boon unable to construct examples
which are not of this discrete type when μ is a represeting measure.

We now construct examples in which the algebra and H°° inter-
polate but in which none of the iP-spaces, 1 ̂  p < co, interpolate.
Let {rn} be a nonnegative interpolating sequence in the open unit
disk converging to 1. Then F — {rJ (J {1} is an interpolating sequence
for the disk algebra on the unit disk [6]. Let μn be the Poisson
measures for rn on the unit circle. Choose a sequence an ^ 0 such
that Σ~=i ocnμn<lj2dθ (*). Consider the positive measure μ =
Σ?=i an(δn — £θ + dθ where δn is the point-mass at rn. Then μ re-
presents 0 for the disk algebra and we claim that H°°(μ) interpolates
on F while Hp(μ) 1 t^P < °° do not interpolate on F. To see this
we need the following.

LEMMA 3.6. Hp{μ) = Hp \ F U T where Hp is the usual Hp-space
for the disk algebra (1 ̂  p ^ °o) on the closed unit disk.

Proof. If fe Hp(dθ) then lfneA 9 : Λ — / in Lp(dθ). If / de-
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notes the harmonic extension of / to Hp, then

J |Λ ~f\pdμ £ (1 + Σ2αy(l + r,)/(l - r,))j \fn - f\ dθ >0 .

So Hp\F[j TczHp(dμ). Conversely, if fneA and / „ - > / in Lp(μ),
then /»->/ in Lp(dθ), so / | TeHp(dθ) and therefore extends to # =

f \ T i n i P . S o g\F U TeHp(μ) a n d g\T = f \ T . B u t s i n c e t h e

functions in ίP(μ) are determined by their values on T, we have
/ = ge HP\F U T, and we are done for 1 ̂  p < °o. Now

Π L~(dμ) = [H2\Fl)T]n L~(μ)

= [H\dθ) n 2/ (<W)ί | F U T = ίf~ | F U Γ ,

and this completes the proof.
Now observe that if fe Hp(dμ), then

O |*^ [(1 + O/(l - rn)\ j I /1dθ

so that 3 c 9 : the growth condition \f(rn) \p g c(l + rΛ)/(l — rn) is
satisfied. Thus if we choose a (nonnegative) sequence {xn} such that
xζ(l - rn)/(l + O -> oo and such that Σxζ(l + r%)aj(l - rn) < oo, we
obtain an element of Lp(μF) which is not the restriction of a function
from Hp(dμ). Such a sequence can be found for example by finding
βn ^ 0 to satisfy (*) and setting an = βl and xn = {βn)~Up.

Since iJ°° interpolates on JF, we see that H°°(dμ) interpolates on
F by 3.6.

Thus one may ask for conditions that will force interpolation of
iP-spaces to follow from interpolation of the algebra. The following
is one such condition.

THEOREM 3.7 Let A be a function algebra on X, μ a represen-
ting measure for A, and Ao the corresponding maximal ideal. Sup-
pose that Hp(μ) = Ha{μ) Π Lp(μ), a ^ p. If Ao is weak-star dense in
Ha{μ)L, then interpolation of A on a closed set F implies interpola-
tion of Hp(μ) on F for all a ^ p < oo with integer conjugates q.

Proof. The conclusion deals only with 1 ̂  a ^ p ^ 2. Suppose
l<a and A\F=C(F). Then 3 c a : | | ^ | | ^ c | | ^ | | for every

μe A1. Now choose g e Ao. Then gqdμ e AL so \ \g \qdμ ^ c 1 \g\qdμ

or (*) \\g\F\\q^cιlq\\g\F'\\q. Since Ao is dense in Hp(μ)L also, we

have (*) holds for every geHp(μ)L and thus Hp(μ) interpolates on F.
Suppose a=l. For g 1_ H\μ) we have || g\ F\\q < cι'q \\ g\ F'\\q for

q = 2, 3, •••, and thus letting q —> oo we have ]| g\ F\\oo ^ || g\ F'W*
so that -ff1^) a l s o interpolates on F.
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COROLLARY 3.8. If A is a function algebra which is weak-star-
Dirichlet in L°°(μ) then A interpolates only on sets of μ measure 0.

Proof. A satisfies the hypotheses of 3.7 [7] and thus Hι inter-
polates on F. But H1 is invariant under H°° which is BSMI so that
F has μ measure 0 by 3.4.

It is also clear from 3.4 that when A is weak-star-Dirichlet, Hp

interpolate only on sets of measure 0 for 1 ̂  p ^ o°. Using the in-
variant subspace theorem we have the following.

THEOREM 3.9. Let A be weak-star'-Dirichlet. If F is closed and
Hp(μ) restricted to F is closed for some 1 ̂  p < <*>, then μ(F) = 0,
or μ{F') = 0.

Proof. Since Hp is invariant under H°° which is BSMI, applying

2.3 and 2.6 we have Hp = i P ^ P φ H * X F ' . NOW if F has positive

measure, then Hp \ F is a simply invariant subspace of Lp and by the

invariant subspace theorem [7, 4.16], Hp \ F = qHp where | q | = 1 a.e.

But g e i ϊ ^ 7 so we have μ(F') = 0.

The example preceding 3.7 is clearly not weak-star-Dirichlet be-
cause the measure μ is not minimal. In addition we have the fol-
lowing.

COROLLARY 3.10. In the example preceding 3.7, Ao is not weak-
star dense in Hι{μ)L.

Proof. We only need to verify that Hp(μ) z> H'iμ) Π Lp(μ). But
i f fe H ι ( β ) ΓΊ L p ( μ ) t h e n f \ T = g \ T w h e r e

flr G iΓ(ίW) Π Lp(^) = Hp{dθ) .

So as ^ [ ί 7 U TeHp(μ), and £ and / agree on T, we have

/ = ^ | F U TeHp(μ) .

Finally we remark that 1.3 should hold for function spaces whose
duals restrict in some sense and whose norm satisfies the concavity
condition. We hope to consider such examples at a later date.
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