PACIFIC JOURNAL OF MATHEMATICS
Vol. 40, No. 1, 1972

EXTREME MARKOV OPERATORS AND THE
ORBITS OF RYFF

RAY C. SHIFLETT

Let X be the unit interval with the Lebesgue structure
and let m be Lebesgue measure. A Markov operator with
invariant measure m is an operator 7 on L.(X, m) such that
Tl1=1 and S Tfdm = gfdm for all f in L(X,m). If fisa
measure-preserving transformation on X, then df = fof defines
a Markov operator. Each such § is an extreme point in the
convex set of Markov operators.

Let 2(f) be the set of all g L,(X, m) such that Tf =g
for some Markov operator 7. This convex set is called the
orbit of f. The extreme points of 2(f) are equimeasurable
to f and arise from Markov operators of the form 93*. This
paper shows the connection between extreme points of the set
of Markov operators and the extreme points of 2(f). The set
of Markov operators which carry f to a given extreme point
of 2(f) is shown to contain an extreme Markov operator. The
Markov operators of the from §3* are shown to be extreme
when @ is invertible. It is also shown that not all extreme
operators factor into 45* and that there are 6 and ¢ such that
#5* is not extreme.

This paper deals with the problem of extreme points in the convex
set of Markov operators and how they relate to the extreme points of
orbits of elements from L, as defined by J. V. Ryff. The author would
like to express his gratitude to Professor J. V. Ryff for discussing this
work with the author and to the referee for his helpful comments.

A Markov operator, with Lebesgue measure invariant, is an oper-
ator T defined on L.(X, m) (X = [0, 1] and m is Lebesgue measure)
which satisfies:

(1) T is a positive operator

2 Ti1=1

3) gxfdm - SXde'm,.

The norm of T, in the L.. norm, is one. T may be extended to L,
such that ||T|, = 1 and, using the Riesz convexity theorem, 7' may be
extended uniquely to L, as a contraction mapping foreach p, 1 < p < .
Therefore, T is defined on the Hilbert space L, and the adjoint, T,
is well defined.

If 0: X— X is a measure-preserving transformation, that is, if @
is measurable and m(0—'4) = m(A) for every measurable A, then the
operator defined by f = fof is an extreme point in the set of Markov
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operators. If T is extreme, then T* is extreme. James R. Brown
proved that the set of operators induced by invertible measure-pre-
serving transformations was dense in the set of Markov operators in
the weak operator topology on L,, 1 < p < «. He also proved that the
set of Markov operators is the closed convex hull of the set of opera-
tors induced by invertible measure-preserving transformations in the
strong operator topology [1].

There are examples of self-adjoint, extreme Markov operators which
are not induced by a measure-preserving transformation. R. G. Douglas
[3] and J. Lindenstrauss [5] gave, independently, the only known char-
acterization of the extreme points of the set of Markov operators.

J. V. Ryff gave the following definition.

DEFINITION. The orbit of f e L,, 2(f), is the set of ge L, where
g = Tf for some Markov operator T.

Ryft’s work, [6, 7, 8], with these orbits suggests a possible con-
nection between the extreme points of the set of Markov operators and
the extreme points of Q2(f). The first theorem makes this connection
explicit. Theorems 2, 3, and 4 give further clarification of this rela-
tionship. Theorems 5 and 6 show the limitation of this approach.

THEOREM 1. If M;, is the set of Markov operators which map f
to g and if g is an extreme point of Q(f), then M,, contains an extreme
point of the convex set of Markov operators.

Proof. Let tT, + (1 — ¢)T, be in M,;, where T, and T, are Markov
operators and 0 <t <1. ThentT.f + (1 —¢)T.f =g. Therefore, T,f =
T.f = g since g is given as extreme. Thus M;, is an extremal subset
of the set of Markov operators.

The set of Markov operators is compact in the weak opsrator
topology [1]. Now let < T, > be a net in M;, which converges to T
in the strong operator topogy; that is, T,f converges to Tf for every
fin L,. Thus Tf = g since T,f = g for every a. Therefore, T € M,,.
This proves that M,, is closed in the strong operator topology. A
convex set has the same closure in the weak operator topology as in the
strong operator topology. Thus M, is a closed, compact, convex, ex-
tremal subset of the set of Markov operators, which is a convex subset
of a locally convex topological vector space. Thus M,, contains an
extreme Markov operator, see page 67; [9].

Ryff characterized the extreme points of Q(f) as those elements
which are equimeasurable to f [6]. These arise from Markov operators
which may be written as (9) o (6)* where 6 and ¢ are measure-pre-
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serving transformations. Let I, bz the characteristic function of the
set A.

THEOREM 2. If 0 and o are measure-preserving transformations
with 6 tnvertible then T = 06* 1s extreme.

Proof. 6 is an invertible measure-preserving transformation if and
only if # is unitary [1]. @ is unitary if and only if § and #* are iso-
metries. Thus 6~ = 0*. Therefore, 06* = (60~")*. Since 667, =
I,(07'0) and m((6~'c)"'B) = m(B), the operator 0G* is the adjoint of
that opsrator induced by the measure-preserving transformation 67'¢
and is therefore extreme.

THEOREM 3. If 0 and o are measure-preserving transformations,
then there is an f e L, such that 06*f is extreme in Q2(f).

Proof. Let A be given with m(A) > 0 and lef f be the charac-
teristic function 07'4. Any g which is extreme in 2(f) must be equi-
measurable to f and is, therefore, essentially a characterictic function of
a set B with m(B) = m(A). Let C be a measurable set, then (I, 6*f) =
(61, f) = (@1, 61,) = (I, I). Thus 6*f = I,. Therefore, 06*f =
01, = I,-0, which is the characteristic function of 74 with m(0~'A) =
m(A).

It is well known that any Markov operator which carries charac-
teristic functions to characteristic functions is extreme. The next
theorem is a partial result to a conjecture suggested by the above fact
and Theorem 3. The conjecture is that given an extreme Markov
operator there is some measurable set B such that 0 < m(B) < 1 and
such that TI, is extreme in Q2(I,). This would say that TI, = I, for
some A with m(A4) = m(B).

THEOREM 4. If T s extreme then there is a set B such that
0 < m(B) <1 and such that TI, = I, + F where m(4) >0 and FF =0
on A.

Proof. Suppose for every B, with 0 < m(B) < 1, it is true that
0 < TI, <1 [m]-almost everywhere. Then 1 = TI_, > 0 [m]-almost
everywhere. But — B is measurable with g < m(—B) <1 so that
0 < TI_, <1 [m]-almost everywhere. Thus, forevery B, 0 < T, <1
[m]-almost everywhere. This implies that (I,, TI;) > 0 for every A
and B with m(4) >0 and m(B) > 0. By Theorem 2, [2], T is not
extreme.

After the discovery that the extreme points of 2(f) were given



204 RAY C. SHIFLETT

by 86*f, the conjecture was made that the extreme points of the set
of Markov operators are characterized by those operators which factor
into 86*. The last two results of this paper answer this conjecture
completely.

J. R. Brown proved that p(A x B) = (I,, TI;) gives a one to one
correspondence between the set of doubly stochastic measures and
Markov operators [1]. The notation p, will be used to denote the
measure associated with 4. The measure for ¢* is denoted by zF and
for 6* by p. The next technical result is needed for the last two
theorems.

PROPOSITION.  ft,(A X B)=t(A x 07'B) and pt;(A x B)y=p(0"A x B).

Proof.
to(A X B) = (L 0I1,) = (69*1.47 6I) = (0*L,, 6*1,00)
= (I, 06*I,00) = (A x ¢7'B) .
The other equality is established in a similar manner.

THEOREM 5. There are extreme Markov operators which are not
of the form 05*.

Proof. Let T be defined by
TI, = 1/2)Lr s if B [0, 1/3] and
TI; = Lyss—ws + 1/2)I; it BC[1/8,1].

Let 2 be the associated doubly stochastic measure. It is easily
seen that 1/3 of the mass of g is uniformly distributed over the sets

{(x, »):y = 1/2)(@ — 1/3)} N ([1/3, 1] x [0, 1/3]) ,

{(@, )1y =2} N ([1/3, 1] x [1/3, 1]) and

{(v, w):y =22+ 1/3} N ([0, 1/3] x [1/3,1]) .
By Theorem 2, [2], ¢ is extreme. It can be shown that 7 = T* [4].

Suppose T = A6*. By the proposition, p(B x A) = (I,, TI,-0) =

(TIy, Lio0) = ((1/2)Lops ey Laco) = (1/2)14([2B + (1/3)] x A) for every
Bc[0,1/3] and A measurable. Also p¢(B x A) = m(BN6'A) and
therefore,

@) m(B N 0-4) = (12)m(2B + (1/3)] N (6~ 4) .

By the proposition, #f(A x B) = p(0™*A x B). Similar manipula-
tions as those yielding (1) will yield

2) m(B N o~ 4) = (1/2m@ AN [2B + (1/3)])
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for B < [0,1/3] and A measurable.

Let C =2B + (1/8) < [1/3,1]. Then p¥(A x C) = p[67'A x C] =
(IA°9, TIC):(IA°0, I(l/Z)(C—(llS)))+(1/2(IA°07 IC)=m((1/2)[C—(1/3)] n 0—1A)‘*'
1/2ym(C N ~*A). Therefore,

3) m([2B + (1/3)] N 67'A) = m(B N 67A) + (1/2)m([2B
+ (1/3)]c67'4) .
Equations (1) and (3) yield

(4) m(12B + (1/3)] N 0~'A4) = m([2B + (1/3)] N 64)

for all measurable B C [0, 1/3] and all measurable A. Equations (2)
and (4) yield
(5) (1/2)m([2B + (1/3)] N 67 4) = m(B N o' A)
for B [0,1/3] and all A. Then (5) and (1) give

m(BNoA) = m(BnN 674)
for all measurable B c [0, 1/3] and all measurable A. Since every
C c [1/3, 1] is the image of some B [0, 1/3] under 2B + (1/3), for any

measurable A and C, ¢#,(A x C) = p,(A x C). Thus ¢, = ¢, and 0 = o.
Thus, if T = 66*, it must be that T = §0*. However,

(I[o,ua], TI[o,us]) = (1/2)(I[o,us]y I[lla,l]) =0.

Then (I,y2, 99*1{0,1/31) = (9*1[0,1,3], 5*1[0,1131) = Xx(g*-[[o,l/s])zdm = 0. Then

0*Io,5 = 0 [m]-almost everywhere. This says that (1, 8*I ) = 0,
which is a contradiction. Thus 7 is not of the form 85*.

THEOREM 6. There are operators T = 06* which are not extreme.

Proof. Let o(x) = 2x(mod 1) and 0(x) = 3x if ¢ [0, 1/3] and 4(x) =
1/2)(8x — 1) if xe[1/3,1]. For any

feL, G*f) @) = 1/2)f(®/2) + 1/2)f((x + 1)/2) .
Thus

A X B) = (L TL) = (L, 1L + (L/2)Ls1)
= )| LELEom@s)

[o,1/

)| LEL(E - D2

+ 2| L@ Gymd)

[0,1/3

+ @) | D@L (G~ D2md) .

[1/3,
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If Bc [0, 1/2], this equality will yield
1A x B) = 1/2ym(A N (1/3)[2BU 4B + 1)]) .

If Bc[1/2,1], p(A x B) = (1/2)m(A N (1/3)[2B — 1) U (4B — 1)]). So,
for A < [0,1/3] and B C [0, 1/2], (A x B) = (1/2)m[A N (2B)/3]. Then
1/6 of the mass of ¢ is distributed uniformly on y = (8/2)x in [0, 1/3] x
[0, 1/2].

Similar manipulations show that the 1/3 of the mass is on y =
3/4)(x — (1/4)) in [1/3,1] x [0,1/2] and 1/6 on ¥y = (3/2)x + (1/2) in
[0, 1/3] x [1/2, 1] and 1/3 on y = (3/4)x + (1/4) in [1/3, 1] x [1/2, 1]. By
Theorem 1, [2], this T is not extreme.

Theorem 5 does not answer the more general conjecture, which
the author made, that every extreme Markov operator factors into a
product of operators induced by measure preserving transformations and
the adjoints of such operators. The author has not been able to answer
this question. It is easy to show that this conjecture could be stated
as every extreme Markov operator T may be writtenas T = T,T,---T,
where T; = 0,6+« (6, or o, may be the identity transformation). Theo-
rem 6 shows this property can not characterize the extreme points.
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