DIAGONAL SIMILARITY OF IRREDUCIBLE MATRICES TO ROW STOCHASTIC MATRICES

D. J. HARTFIEL AND J. W. SPELLMANN

By using the Perron-Frobenius Theorem it is easily shown that if A is an irreducible matrix then there is a diagonal matrix D with positive main diagonal so that $DAD^{-1}=rS$ where r is a positive scalar and S a stochastic matrix. This paper gives a short proof of this result without direct appeal to the Perron-Frobenius Theorem.

Definitions and Notations. Let $n \ge 2$ be an integer. Let $N = \{1, 2, \dots, n\}$. An $n \times n$ nonnegative matrix A is said to be reducible if there is a permutation matrix P so that

 $PAP^{\scriptscriptstyle T}=egin{pmatrix} A_{\scriptscriptstyle 1} & 0 \ B & A_{\scriptscriptstyle 2} \end{pmatrix}$ where $A_{\scriptscriptstyle 1}$ and $A_{\scriptscriptstyle 2}$ are square. If A is not reducible we say that A is irreducible. By agreement each 1×1 matrix is irreducible.

Denote by

$$u(A) = \min_{M} \left[\max_{\substack{i \in M \\ i \notin M}} a_{ij} \right]$$

where the minimum is over all proper subsets of N.

$$r(A) = \max_{i \in N} \sum_{k \in N} a_{ik}$$
 , $p(A) = \min_{i \in N} \sum_{k \in N} a_{ik}$ $D = \{d = (d_1, d_2, \cdots, d_n) \mid ext{each } d_k > 0 ext{ and } \min_k d_k = 1\}$.

 $f(d) = \max_{i \ j \in N} |\sum_{k \in N} d_i a_{ik} d_k^{-1} - \sum_{k \in N} d_j a_{jk} d_k^{-1}|$ where each $d_k > 0$ and A is irreducible. Finally let S(A) denote the positive number so that $S(A) \cdot u(A) - r(A) = f(e)$ where $e = (1, 1, \dots, 1)$.

RESULTS.

LEMMA 1: $f(d) = f(\lambda \cdot d)$ for each $\lambda > 0$.

LEMMA 2. If $(d_1, d_2, \dots, d_n) \in D$, and $\max_{k \in N} d_k > [S(A)]^{n-1}$, then f(d) > f(e).

Proof. Reorder (d_i, d_2, \cdots, d_n) to $(d_{i_1}, d_{i_2}, \cdots, d_{i_n})$ so that $d_{i_1} \ge d_{i_2} \ge \cdots \ge d_{i_n}$. Let s denote the smallest integer so that $(d_{i_s}/d_{i_{s+1}}) > S(A)$. That there is such an s follows since $(d_{i_k}/d_{i_{k+1}}) \le S(A)$ for each $k \in \{1, 2, \cdots, n-1\}$ would imply that

$$d_{i_1} = rac{d_{i_1}}{d_{i_n}} = \prod_{k=1}^{n-1} \left(rac{d_{i_k}}{d_{i_{k+1}}}
ight) \leqq [S(A)]^{n-1}$$
 .

Let $M = \{d_{i_1}, d_{i_2}, \dots, d_{i_s}\}$. Note that $M \neq N$. Since A is irreducible there is an $a_{pq} = \max_{i \in M, j \notin M} a_{ij} > 0$. Then since $p \in M$ and $q \notin M$

$$rac{d_p}{d_q}>S(A), \; rac{d_{i_n}}{d_k}\leqq 1 \; ext{ for each } k\in N \; ,$$
 $\sum\limits_{k\in N}d_pa_{pk}d_k^{-1}>S(A)\cdot u(A) \; , \;\; ext{ and } \;\; \sum\limits_{k\in N}d_{i_n}a_{i_nk}d_k^{-1}\leqq r(A) \; .$

From this it follows that

$$f(d) \ge \left|\sum_{k \in N} d_p a_{pk} d_k^{-1} - \sum_{k \in N} d_{i_n} a_{i_n k} d_k^{-1} \right| > S(A) \cdot u(A) - r(A) = f(e)$$
 .

LEMMA 3. f achieves a minimum in D.

Proof. The proof follows from Lemma 2, the fact that f is continuous on the compact set $\{d \mid d \in D \text{ and } \max_k d_k \leq [S(A)]^{n-1}\}$, and $e \in D$.

THEOREM. The minimum of f in D is 0, i.e., $\min_{d_k>0} f(d)=0$.

Proof. We first prove the theorem for positive matrices. Suppose A>0 and f achieves its minimum at $d^{\scriptscriptstyle 0}=(d^{\scriptscriptstyle 0}_{\scriptscriptstyle 1},\,d^{\scriptscriptstyle 0}_{\scriptscriptstyle 2},\,\cdots,\,d^{\scriptscriptstyle 0}_{\scriptscriptstyle n})\in D$. Further suppose $f(d^{\scriptscriptstyle 0})>0$. Let $D_{\scriptscriptstyle 0}=$ diagonal $(d^{\scriptscriptstyle 0}_{\scriptscriptstyle 1},\,d^{\scriptscriptstyle 0}_{\scriptscriptstyle 2},\,\cdots,\,d^{\scriptscriptstyle 0}_{\scriptscriptstyle n})$. Let $D_{\scriptscriptstyle 0}AD^{\scriptscriptstyle -1}_{\scriptscriptstyle 0}=B$. If P is a permutation matrix then $(PD_{\scriptscriptstyle 0}P^{\scriptscriptstyle T})PAP^{\scriptscriptstyle T}(PD^{\scriptscriptstyle -1}P^{\scriptscriptstyle T})=PBP^{\scriptscriptstyle T}$. Hence we may assume that

$$\sum\limits_{k\in N}b_{1k}\geq\sum\limits_{k\in N}b_{2k}\geq\cdots\geq\sum\limits_{k\in N}b_{nk}$$
 .

Let

$$M_{\scriptscriptstyle 1} = \left\{i \, \Big| \sum\limits_{k \in \mathcal{N}} b_{ik} = \sum\limits_{k \in \mathcal{N}} b_{ik}
ight\} \qquad M_{\scriptscriptstyle 2} = \left\{i \, \Big| \sum\limits_{k \in \mathcal{N}} b_{ik} = \sum\limits_{k \in \mathcal{N}} b_{nk}
ight\}$$
 .

Let

$$d_k = egin{cases} 1 - arepsilon & k \in M_1 \ (1 - arepsilon)^{-1} & k \in M_2 \ 1 & ext{otherwise} \ . \end{cases}$$

Consider DBD^{-1} and let $g(\varepsilon)$ $= \sum_{k \in \mathbb{N}} d_i b_{ik} d_k^{-1} - \sum_{k \in \mathbb{N}} d_i b_{ik} d_k^{-1} \qquad i \in M_1, \ j \in M_2.$

Then

$$g'(0) = -\sum\limits_{k \in M_1 top k \in M_2} b_{ik} - 2\sum\limits_{k \in M_2} b_{ik} - 2\sum\limits_{k \in M_1} b_{jk} - \sum\limits_{k \in M_1 top k \in M_2} b_{jk} < 0$$
 .

Hence for sufficiently small ε ,

$$f_A[d_1d_1^0, d_2d_2^0, \cdots, d_nd_n^0] < f(d^0)$$
.

However, this contradicts f having its minimum at d^0 . Therefore, if A>0, $\min_{d_k>0} \int_{k\in N} f(d) = 0$.

Now suppose A is irreducible. For each positive integer k, let $A_k = A + (1/k)J$ where J is the $n \times n$ matrix of ones so that $\lim_{m \to \infty} A_m = A$. For each A_m there is a diagonal matrix $D_m = \text{diag.}(d_1^m, d_2^m, \cdots, d_n^m)$, $(d_1^m, d_2^m, \cdots, d_n^m) \in D$, so that $D_m A_m D_m^{-1}$ has equal row sums. Further

$$1 \leq d_k^m \leq [S(A_m)]^{n-1}$$
 for each $k \in N$.

The $S(A_m)$'s are easily seen to be bounded, and hence the D_m 's are bounded having a limit point D. Let $\{D_m\}$ denote a subsequence of $\{D_m\}$ so that $\lim_{m\to\infty}D_{m'}=D$. Then $\lim_{m\to\infty}D_{m'}A_{m'}D_{m'}^{-1}=DAD^{-1}$ which has all its row sums equal. Hence $\min_{d_k>0}\lim_{k\in N}f(d)=0$.

COROLLARY. If A is an irreducible matrix then there is a diagonal matrix D with positive main diagonal so that $DAD^{-1} = rS$ where S is a row stochastic matrix and r a positive number.

We also include the following corollary to Lemma 2.

COROLLARY. If A is irreducible with Perron eigenvector $x = (x_1, x_2, \dots, x_n)$ then $\max_{i \in J} x_i / x_j \leq [S(A)]^{n-1} = ((2r(A) - p(A)/u(A))^{n-1})$.

We include this bound as the bound involves the quantity u(A) which to our knowledge is new.

REFERENCE

1. F. R. Gantmacher, *The Theory of Matrices*, Chelsea Publishing Co. New York, N. Y. (1969).

Received December 4, 1970 and in revised form May 6, 1971.

TEXAS A & M UNIVERSITY