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Γ-EXTENSIONS OF IMAGINARY QUADRATIC FIELDS

ROBERT GOLD

Let p be an odd rational prime and JEΌ = ^(V—m) a
quadratic imaginary number field. There is a unique Γ-
extension E of Eo for the prime p which is absolutely
abelian. For each positive integer n there is a subfield En

of E which is cyclic of degree pn over Eo and by Iwasawa
the exponent of p in the class number of En is of the form
μpn + λn + c for sufficiently large n. We here examine the
analytic formula for the class number of En and in the case
p = 3 give a simple condition implying that μ = 0. It follows
easily from this condition that there are infinitely many
imaginary quadratic fields which have /^-extensions for the
prime 3 with the invariants μ = 0 while λ ^ 1.

!• Analytic formula* Let & be the rationals, p an odd prime,
n an integer J> 0, and ζpn+i a primitive pn+1 root of unity. Let
Fn be the subfield of &{ζpn+i) of degree pn over the rationals so
that FJ& is cyclic, p is the unique ramified prime for the exten-
sion, and p is totally ramified. Let Eo — &(\/ — m), a quadratic im-
aginary field where (m, p) = 1 and let En — Fn.EQ1 the composite
field.

We attempt to study the order, en, to which p divides the class
number of En,

Kn =Ve"'h' (<pyh
f) = 1

by use of the classical analytic formula for an arbitrary number

field k:

( 1 ) Km (s - l)Us) =
mk\/\<

where, as usual, Rk is the regulator of k; mk, the order of the group
of roots of unity; Dk, the discriminant of k; and s and t, the number
of real and complex infinite primes of k.

We note the following sequence of lemmas:

LEMMA 1. mEn = mFn = 2 unless Eo = <&(]/ — 3) or &{λ/—l).

Proof. By degrees: [En: &\ = 2p\

Note that in the two excluded cases (p, mEn) = 1 if (p, m) = 1.
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LEMMV 2. DEn = DFn-D% and DF% = p ' ; ίn = (w +

(pn -

Proof. First statement is trivial, second is proved as follows.
Note that ζpn+ι is a distinguished element for the extension

+ι)/Fn in the relation its different bears to the different of the
extension [3]. The computation of the different of ^(ζpn+i)/Fn becomes
then an exercise in determinants. The result combined with the
well known different of ^(ζpn+i)/^ gives the expression above.

LEMMA 3. REn = RF%-2a some aeZ.

Proof. Fn is the maximal real subfield of En and the result is
then well known [1].

Now let k — En9 respectively Fn, in equation (1) and divide the
former by the latter. Taking into account the preceding lemmas
this simplifies to:

( 2 )
V\DE

On the other hand ζEn(s) — Π L(s, χ) where the product is taken over
all Dirichlet characters belonging to the extension EJ&. Since
g(EJ&) ^ %Ί2 + %ΊJ>* we can write ζEn(s) = Π L(s, χίχf), i = 0,1;
j — 0, ••-, pn — 1 where χ0, χl are the characters belonging to EQ[&
while χ\j , χf~λ are the characters belonging to FJ&. Hence
Gn(s) = Π i(β, Zf), i = 0, , p* - 1 and therefore ζEn(s)/ζFn(s) =
Π^(s,Zo%0^ i = 0, •• ,2>*-l Furthermore the χffc, fc = 0, •• , ^ ~ 1 - l
are the characters belonging to Fn_J& and therefore

Note in passing that χι is an even character and takes on the pnth
roots of unity as values. Comparing (2) and (3) we may write

, mi) -

Note that χ0 is primitive modulo rf = DEo = the conductor of
*, while χf, (i, p) = 1 is primitive modulo pn+ι = the conductor of

FJ&. It follows that χoχ;, (i, p) = 1 is primitive with modulus
w = φ % + 1 and is an odd character. It is well known then that
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< 5) L(l, χoχί) = ^ΞίMf) Σ
w ?ί*i

where τ(χoχ() is the classical Gauss sum and | τ(χoχ{) \—Vw. Comparing
now (4) and (5) and taking absolute values we see

I Π Σ Xoxi(k)k\
< J P ) 1 ( f c w ) l / Ϊ h_

Ξ*L£VL

Next we examine the sum appearing in (6).

But since

d-l )

Σ
a=0

- V V vUlr
- 2-i ΛoΛi \κ

0<k<w
- y1 P%γ~lyj

V v fYΆv ^

α=O

% + apn+ί

i + ap^.

)zί

Z.Zί(* + «

d~\

)iΣ

we have

We now make the following assumption for the sake of simplifying
notation and proofs: (A) pn+1 = l(d). It then follows that

Sj = pn+1 Σ χί (i) Σ χo(iα + α)
i a

Letting wk — Σ«=o oc^{a + A:) one can easily deduce that wQ = wίf

= wk, and wk = w0 + dYJlzlX^a). Then

χ ί K Z ( )
0 α=0

Σfχί(ί) + d'*Σ"χί(ί) Σ χ.(«
*=0 i=0 α=0

Σlχί(»)•«<; where α{ = Σ

Comparing this last result with (6) we see that

(7) Π Σ«Λί« = N ? ^

and again a { = ΣΪ=Ό Zo(α)

We reduce our concern now to the power of p occurring in each
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member of (7). By results of Iwasawa (p, hFJ — (p, hFn__) — 1 while
for sufficiently large n: oτdp(hEJ = μpn + Xn + c, ordp (hEn_) = μpn~~ι-\-
X{n - 1) + c ([2]). Therefore

( 8 ) ordp Π *"Σ~ W ( i ) = μΨ(P%) + λ .
0<3<Pn+1 i=0

It is clear that at e %? and hence ΣCo"1"1 α*Zί(Ό * s a n integer in
<^(ζpn). In fact, t l Σ &iXl(i) is simply the absolute norm of this
integer. Hence

μψ{pn) + x = ordp ^rq Γ Σ ^ZiW
\ *=0

(9)
= ord, Σ, Σ

t=0

Here ί) is the unique prime of &(ζpn) dividing p.

We now rewrite Σ^Zi(^) i n terms of an integral basis of
Let g be a primitive root modulo pn+ι, i.e. (/ generates
Then Σf^ 1 " 1 α Ziίi) = Σ?ipo*+1)"1 <*gtMg') where 0 < gs < pn+1 and gs =
gs(pn+1). Then ^ = χ^g) is a primitive pnth root of unity and

yjfpΛ + l ) — ! ©(pΛ + 1)—l

Σ Zi(flr')a.. = ' Σ rα. ,
s=0 s=0

n~λ

Since 1, η, •••, ψ^-1 form a ^T-basis for the integers of <^(ζpn) we
may rewrite this last sum, using identities of the form 1 + rfn~
. . . + ^(p-i)p—! = o, as

s = 0 s=0 i — 0

where 0<ί<pw~1 and ί-s^" 1 ). It follows from (9) then that

φ(Pn)~ l p—2

(10) μφ{pn) + λ = ordp Σ Vs Σ (ααβ + ί p* ~ α ^ ( »)+t+iP»)
s=0 ί=0

For sufficiently large τ& the left member of (10) is ^ φ{pn) if
and only if μ > 0. However the right member is greater than φ(pn)
if and only if pφ{pn) = (p) divides the algebraic integer in brackets-
Since this integer is written in terms of an integral basis it is
divisible by (p) if and only if the coefficients of r]s is divisible by p
for every s. Hence μ > 0 if and only if p divides

(11) Σ (<xg,+ipn - ocgψ{pn)+t+ip%) s = 0, 1, , φ(pn) - 1 .

!2 Special case of p = 3* If we specialize to p — 3, s — 0 we
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may proceed in the following manner. For p = 3, s = 0 equation (11)
reads

( 1 2 ) (Xgo + Q^gn — #fir(3W) ~ ^03» + ?>ί3Λ) '

Clearly #0 = 1, gz« = 3%+1 — 1; while for appropriate choice of # we
have ^(3n) = 3^ + 1 (resp. 2.3π + 1) and gφ{3n)+zn = 2-371 - 1 (resp 3" - 1).
Hence (12) reads, letting M(m) = Σα=oZo (#),

M(0) + M(3*+1) - M(3n) - ikΓ(2 3w - 2)
( (resp. M(0) + M(Sn+ι - 2) - M(2 3̂ ) - M(3% - 2))

Clearly M(0) = 0 and recalling that (A) Sn+1 = 1 (d) we see that
M(3n+ι - 2) = M(d - 1) = 0 as well. Since χo(-l) = - 1 we have
the trivial but useful identity M(m) = Λf(M — m — 1), kd — m— 1 > 0.
By this it follows that ikΓ(2 3n-2) = M(M + l-3 % -2)-Af( fcd-3 % - l ) =
M{Zn) (resp. ikf(3% - 2) = ΛΓ(2 3W)). Hence (13) reduces to -2M(Sn)
(resp. -2M(2 3W)) and so μ > 0 if and only if M(3W) = 0 (3) (resp.
M(2-3n) = 0 (3)).

Again by (A): M(2 3") = M(kd + 1 - 3") = M(3n - 2) - M(Sn) -
χo(3n) — %o(3n — 1). Since both congruences above must be satisfied it
follows that μ > 0 if and only if χo(3%) + χo(3* - 1) = 0 (3). Multiply-
ing by χo(3) Φ 0 we have [χo(3 ) + χo(3 - 1)] - χo(3) - χo(l) - χo(2).
Hence we may finally state in the language of Iwasawa

THEOREM. Let E^ — \J En be the absolutely abelian Γ-extension

for the prime 3 of &(]/ — m); (m, 3) = 1. If 2 does not split in
then the invariant μ equals 0.

EXAMPLE 1. Eo = ^ ( i / ^ δ ) . Since χo(3) = +1, 3 splits in
^)!^ and it is easy to see from the structure of the genus

field for EJE0 that λ ^ 1. On the other hand, χo(2) = 0 and there-
fore μ = 0. Obviously all &{V-m) for m Ξ 7,10 (12) behave in
this manner.

EXAMPLE 2. Eo = &(~\/—23). This field has class number 3 and
is therefore of some interest. Unfortunately χo(2) = 1, but we may
use the remark above that μ > 0 if and only if Λf(3n) Ξ 0 (3). By
(A): Λf(3w) = ikf^-1) - Af(8) in this case. But Λf(8) = 4 ^ 0 (3) and
so again μ = 0.
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