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THE SINGULAR SUBMODULE OF A FINITELY
GENERATED MODULE SPLITS OFF

JOHN D. FUELBERTH AND MARK L. TEPLY

A characterization is given of the finitely generated non-
singular left i?-modules N such that Extβ (N, M) = 0 for
every singular left i?-module M. As a corollary, the rings
R, over which the singular submodule Z(A) is a direct
summand of every finitely generated left i^-module A, are
characterized. This characterization takes on a simplified
form whenever R is commutative. An example is given to
show that a ring R, over which the singular submodule Z(A)
is a direct summand of every left ϋί-module A, need not be
right semi-hereditary.

In this paper, all rings R are assumed to be associative with an
identity element, and, unless otherwise stated, all jβ-modules will be
unitary left R-modules.

A submodule B of an iϋ-module A is an essential submodule of
A if B Π C Φ 0 for all nonzero submodules C of A. A left ideal /
of R is essential in R if it is essential in R as a submodule of R.
If A is an i?-module, Z(A) = {a e A | (0: a) is essential in R} is the
singular submodule of A. A is called a singular module if Z(A) =
A; and A is a nonsingular module if Z(A) = 0. A submodule B of
A is closed in A if B has no proper essential extension in A. If A
is nonsingular, then a submodule B of A is a closed submodule of A
if and only if A/B is a nonsingular module. A simple î -module S
is nonsingular if and only if it is protective. For an ϋ?-module A,
Soc (A) denotes the sum of all simple submodules of A or 0 if A has
no simple submodules.

Motivated by a definition of Kaplansky [6], we say that an
iϋ-module N is UF if N is a nonsingular module and Ext^ (N, M) = 0
for all singular j?-modules M. An i?-module A is said to split if
Z(A) is a direct summand of A. As in [2], a ring R has the finitely
generated splitting property (FGSP) if every finitely generated R-
module splits.

We shall use the following result of Cateforis and Sandomierski
[2, Proposition 1.11], which is included here for completeness.

LEMMA 1. For any ring R, the following statements are equiva-
lent:

(a) R has FGSP.
(b) Z(R) = 0, and every finitely generated nonsingular R-module

is UF.
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An i?-module K is said to be almost finitely generated if K =
f / φ F , where U is a finitely generated i?-module and F = S o c ( F ) *
Then an .R-module N is called almost finitely related if there exists
an exact sequence of i?-modules

0 >K >F >N >0 ,

where F is a finitely generated free module and K is almost finitely
generated.

Before stating our main results, we prove several lemmas.

LEMMA 2. // N is an almost finitely related R-module and if

0 > K >F >N >0

is any exact sequence of E-modules with F a finitely generated free
module, then K is almost finitely generated.

Proof. Since N is almost finitely related, there exists an exact
sequence of iϋ-modules

0 >KL >F, >N >0 ,

where F1 is a finitely generated free module and Kλ is almost finitely
generated. By a result of Schanuel [9, p. 369], K0 Fγ ~ Kγ φ F.
Since Kt and F are almost finitely generated, then so is K@Fι~
Kλ@F. Therefore (KφFL)/Soc (Kφ Fλ) is finitely generated. Since

, K m FL

Soc {KφF,) Soc (K) © Soc (F,) Soc (K) Soc (F,)

then if/Soc (K) is also finitely generated.
Now we write K = Rxι + Rx2 + + Rxn + Soc (K), where

xifx2, --yXmeK. Let W = (Soc (K)) Π (Rx, + Rx, + + Rxn). Then
there exists an i?-module V such that Soc (K) = W 0 F. It follows
that if = (ifei + J? 2̂ + -f iϊίcTO) 0 F, and hence K is almost finitely
generated.

A finitely generated nonsingular JS-module iV is called finitely
generated torsion inducing (FGTI) if N has the following property:
If M is any finitely generated ϋί-module with MjZ(M) = N, then
Z(M) is finitely generated.

LEMMA 3. Let Z(R) = 0, and let 0 —> K —> î 7 - * N —* 0 6β αw

sequence of R-modules, where F is a finitely generated free module.
If N is nonsingular, ί/iew the following statements hold:

(a) // N is FGTI and if iζ/Soc (K) is a direct sum of countahly
generated modules, then N is almost finitely related.
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(b) If N is almost finitely related, then N is an FGTI module.

Proof. To show (a), we need to show that K is almost finitely
generated. By hypothesis, Y = K/Soc (K) = 0 Σαe.v Ma, where each
Ma is a countably generated i?-module. First we show that Y is,
in fact, countably generated also. Let ^ = {αe Stf j Ma contains a
proper essential submodule}. Thus if a e S%? — έ$, then Ma is a
direct sum of singular simple i?-modules or zero. For each a e .&,
let La be a proper essential submodule of Ma. Define L = 0Σ«e jLa,
and let J be a submodule of K containing Soc (K) such that J/Soc (K) =
L. Since

Z(F/J) ~ Z((F/Soc (K))/(Jβoc (K))) 3 Y/L ~ K/J ,

then K/J is a singular module; but since Z(F/K) = 0, it follows that
Z(F/J) = K/J. By hypothesis, N is a FGTI module; hence

K/J = (Θ Σ*a*UMa/La)) Θ ( 0 Σ« e^- .Ma)

is a finitely generated iϋ-module. Therefore all but finitely many of
the Ma{aeSίf) must be 0, and hence K/3oc (K) is countably
generated.

Thus there exist x^ K (i = 1,2, •) such that if = Σί=i Λte* +
Soc (K). We will show that there exists a positive integer m such
that jfiΓ = ΣuZi R%i + Soc (K). If this were not the case, then for
each positive integer n, there exists a least positive integer k(n)
such that xk[n) & Rxι + Ex2 + + Rxn + Soc (K). By Zorn's lemma,
choose Kn maximal with respect to xk(n) g iίw and

i?,τL + Rx2 + . + ltoΛ + Soc (K) S-Kn Si K.

It follows that (Rxk(n) + Kn)/Kn is an essential, simple, nonprojective
submodule of K/Kn. Since if/iί^ is an essential extension of a
singular simple module, then K/Kn is also a singular module.

Define φ: K-^ @Σz^K/Kn: x ^Σ^φ^x), where <pn:K->K/Kn

is the natural map. If .τ e K, then x = ΣUi riχi £ Σΐ=i -K̂ * S ^ f°r

all n ^ t. Thus <pw(sc) = 0 for all n ^ ί, and hence <p is well-defined.
If H= ker >̂, then K/H~ im <p is not finitely generated (as φn{xk{n)) Φ 0
for each integer n). Moreover, since im^p is a submodule of the
singular module 0 Σ?=i K/Kn, then Jζ/ίί = i m φ is also a singular
module. Since K is a closed submodule of F, then Z(F/H) = K/H.
But then F/H does not have a finitely generated singular submodule,
and (F/H)/Z(F/H) = F/K ~ N. This contradicts the hypothesis that
iV is a FGTI module. Thus K = ΣΠi RXi + Soc (K) for some positive
integer m.

Now the argument used in the last paragraph of the proof of
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Lemma 2 shows that K is almost finitely generated. Therefore (a)
holds.

Now we prove (b). Let M be a finitely generated .R-module such
that M/Z(M) ~ N. Let y19 y2, , yn be a set of generators of M,
and let F be a free J?-module with basis uίf u2, •• ,MW. Then there
exists a commutative diagram with exact rows

0 > K >F > N >0

Ί
0 > Z{M) > M > M/Z(M) > 0 ,

where μ: F —> M via μ(Ui) = yt is an epimorphism and v is an iso-
morphism. Then λ must be an epimorphism. By the hypothesis and
Lemma 2, K— ί / 0 7, where U is a finitely generated iϋ-module
and F = S o c ( F ) . Since X(V) is isomorphic to a submodule of the
nonsingular, semi-simple module V and since Z(M) is singular, then
X(V) = 0. Thus Z{M) is an epimorphic image of the finitely generated
module U. Consequently, Z(M) is a finitely generated module.

REMARKS. (1) If R is a left hereditary ring, then any closed
submodule if of a finitely generated free module F is protective. So
it follows from [7, Theorem 1] that K/Soc(K) is a direct sum of
countably generated modules. Thus for a left hereditary ring R, a
finitely generated nonsingular jR-module N is FGTI if and only if
N is almost finitely related.

(2) Suppose that N, F, and K are as in the hypothesis of
Lemma 3. If N is FGTI and Soc (K) is essential in ϋΓ, then K/Soc (K)
is finitely generated. So we can conclude the following result from
Lemma 3: If R is a nonsingular ring with essential socle, then a
finitely generated nonsingular FGTI module is almost finitely related.

(3) There seems to be some independent interest in determining
when the singular submodule of a finitely generated module is finitely
generated. Indeed, Pierce [8, p. 109] asks questions along this line.
Lemma 3 and the first of this remark shed some light in this
direction.

We shall use hd(N) to denote the protective homological dimen-
sion of an jR-module N.

We now need an obvious generalization of a result of Kaplansky,
[6, Theorem 1]:

LEMMA 4. If N is a UF R-module, then hd(N) ^ 1.

Proof. Let N be a UF iu-module, and let M be any jR-module.
The exact sequence
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0 > M > E(M) > E(M)/M > 0

induces the exact sequence

ExVR (N, E(M)/M) > Ext2

; (N, M) > Ext2, (N, E{M)) = 0 ,

where E(M) denotes the injective hull of M. Since N is UF we
have Ext}, (N, E(M)/M) = 0; and hence Ext^ΛΓ, M) = 0 by exactness.

We now give a characterization of UF modules.

THEOREM 1. Let Z(R) = 0, ami Zβί N be a finitely generated
R-module. Then N is UF if and only if the following conditions
are satisfied:

( i ) N is an almost finitely related, nonsingular module.
(i i) hd(N) ^ 1.
(iii) Torf (Romz(A, D), N) = 0, where A is any singular R-

module, D is any divisible Abelian group, and Z denotes the ring of
integers.

Proof. We develop a diagram (see (*)), which we use in both
directions of the proof. For any finitely generated iϋ-module N,
there is an exact sequence

0 >K >F >N >0 ,

where F is a finitely generated free i2-module. If D is any divisible
Abelian group and if A is any singular i?-module, then Hom^ (A, D)
is a right i?-module. Hence there is an exact sequence

0 > Torf (Hom^ (A, D), N) > Hom z (A, D) ®R K

> Hom z (A, D)(g)RF .

The exact sequence

Horn* (F, A) > Horn* (K, A) > ExVR (N, A) • 0

induces an exact sequence

0 > Hom z (Extk> (N, A), D) > Horn* (HomΛ (K, A), D)

> Hom z (Hom^ (F, A), D) .

It is well-known [1, p. 120] that there exists a homomorphism ψ and
an isomorphism β making the following diagram commutative:

0 —~> Tor? (Hom^ (A, D), N) > Horn^-(A, Ώ) ®R K > Hom^ (A, D) ®n F

0 ^—> Horn* (Extij (N, A), D) > Hom^ (HomΛ (if, A), D) > Hom^ (HomΛ (F, A), D) *
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"only if": Let N be a finitely generated UF J?-module. Then
there exists an exact sequence

0 >K >F >N >0

of left lu-modules, where F is a finitely generated free module. By
Lemma 4, if is a protective i?~module; thus K = 0 Σ « e Λ where
each Kn is countably generated by [7, Theorem 1]. Since

\±) y i/ΎP = ®y,ΛSoc (K) 0 Σ«ε^ Soc (iQ ^ ~ α β ' Soc (Ka)

then if/Soc (iΓ) is a direct sum of countably generated iϋ-modules.
Since a UF module is FGTI, then Lemma 3 (a) implies that N is
almost finitely related, i.e., (i) holds.

Lemma 4 implies that hd(N) ^ 1; so (ii) holds.
Now we show that (iii) holds. Let A, D, F, and K be chosen

as in (*). Then by (i), K= f/φ V, where U is finitely generated and
V— Soc (V). But for any nonsingular simple R-module S, Homβ (S, A) =
0 (as A is singular). Thus by [1, VI. Prop. 5.2], Hom^ (A, D) ®RS~
Homz (HomA> (S, A), D) = 0. Therefore Horn^ (A, D) ®R F = 0, and
Hom^^F, A) = 0. Hence there exist obvious isomorphisms σ and τ
making the diagram

• (A, D) (g)Λ J5Γ-^ Homz(A, D) (x)β i7

(HomΛ (iί, A), D) — > Hom^ (HomA, (Ϊ7, A), D)

commute, where î ' is the restriction of ^ in (*) to Homz (A, D) (x)Λ U.
By [1, VI Prop. 5.2] ^/ is an isomorphism; whence ψ is forced to
be an isomorphism also. By the commutativity of (*) and the fact that
Ext1,? (N, A) = 0, it is now easy to obtain Tor? (Hom^ (A, D), N) = 0.

"if": Let A, D, F, K be as in (*). Since hd(N) ^ 1 and N is
almost finitely related, then K is an almost finitely generated pro-
jective i?-module. By the argument used in the preceding paragraph,
y is an isomorphism in (*). From the commutativity of (*) and the fact
that Torf (Hom;ί (A, D), N) = 0, we now obtain Homx (Ext;, (N, A), D) =
0. Since D is any divisible Abelian group, then Ext1,. (N, A) = 0 for
every singular module A. Thus N is a UF module.

As a corollary, we have the following result for left hereditary
rings:

COROLLARY 1. Let R be a left hereditary ring whose maximal
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quotient ring RQ (see [3], [11]) is R-flat. Then the following state-
ments are equivalent for any finitely generated nonsingular R-
module N:

(a) N is a UF module.
(b) N is almost finitely related.
(c) N is a FGTI module.

Proof. The equivalence of (b) and (c) is clear from Remark (1)
following Lemma 3. The equivalence of (a) and (b) will follow
immediately from Theorem 1 if we show that the ring hypothesis
implies every nonsingular i?-module is R-Ά&t. But this follows from
[11, Cor. 2.5] and [11, Theorem 2.1].

An immediate consequence of Lemma 1 and Theorem 1 is the
following characterization of FGSP:

COROLLARY 2. A ring R has FGSP if and only if the following
statements hold:

(a) Z(R) = 0.
(b) Every finitely generated nonsingular R-module is almost

finitely related.
(c) hd(N)^l for every finitely generated nonsingular R-module N.
(d) Torf (Homz (A, D), N) = 0, where N is any finitely generated

nonsingular R-module, D is any divisible Abelian group, and Z
denotes the ring of integers.

Combining Corollaries 1 and 2, the reader can easily see that a
left hereditary ring R, whose maximal left quotient ring RQ is flat,
has FGSP if and only if every finitely generated nonsingular i?-modu!e
is almost finitely related. We shall see in Corollary 6 that Corollary
2 also takes on a particularly nice form whenever R is a commutative
ring.

A submodule K of an jζ-module M is said to be an almost sum-
mand of M if K = U 0 V, where U is a direct summand of M and
F = S o c ( F ) . The next theorem gives a relationship between UF
jK-modules and almost summands of free i?-modules.

THEOREM 2. Let Z{R) = 0, and let N ~ F/K be a finitely gener-
ated nonsingular R-module, τvhere F is a finitely generated free R-
module. If K is an almost summand of F, then N is UF. More-
over, if N is R-flat, then the converse holds.

Proof. To prove the first statement, it suffices to show that
any homomorphism /: K —> A can be lifted to a homomorphism
g: F —> A, where A is any singular module. Now K— ί 7 φ F , where
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F = U@W for some submodule W of F and F = S o c ( F ) . Since
Z(A) = A and Z(K) = 0, then /(Soc (#)) = 0. If xeKf]W,it follows
from the direct sum decompositions that xe Soc (K), and hence /(«) =
0. So the desired lifting of / is given by g(u + w) — f(u) for all
ue U and all we W.

Now assume N is an jβ-flat ΪZF module. By Theorem 1, K =
UφV, where U is finitely generated and V = Soc(F) is protective.
Then there is an exact sequence

0 > K/U > F/U > F/K > 0

with K/U and F/K R-ϋaA. Thus F/U is also #-flat. But F/U is
finitely related (see [5, p. 459]) and therefore protective by [5, p. 459].
Consequently U is a direct summand of F, and K = U 0 V is an
almost summand of F.

The following corollary is an immediate consequence of Lemma 1
and Theorem 2.

COROLLARY 3. If Z(R) — 0 and if every closed submodule of a
finitely generated free R-module F is an almost summand of F, then
R has FGSP. Moreover, if every (finitely generated) nonsingular
R-module is flat, then the converse holds.

The next corollary is a partial generalization of [11, Corollary
2.7]

COROLLARY 4. If R is a right semi-hereditary ring having a
maximal left quotient ring Q (see (3], [11]), which is a two-sided
quotient ring of R, then the following statements are equivalent:

(a) R has FGSP.
(b) Z(R) — 0, and every closed submodule of a finitely generated

free R-module F is an almost summand of F.

Proof. By Corollary 3, we need to show that if R has FGSP,
then every nonsingular i?-module is flat. Since Z(R) = 0 by Lemma
1 and since Q is two-sided, then every finitely generated nonsingular
12-module is torsionless by [3, Theorem 1.1]. However R is right
semi-hereditary; hence every torsionless JK-module is flat by [5,
Theorem 4.1].

COROLLARY 5. Let R be a commutative ring with Z(R) = 0.
Let N ~ F/K, where F is a finitely generated free R-module. Then
N is UF if and only if N is a nonsingular module and K is an
almost summand of F.
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Proof. By Theorem 2, it suffices to show that any UF R-
module is i?-flat. But this follows from the proof of the corollary to
[2, Proposition 1.11].

Pierce [8, p. 109] asks when a finitely generated module over a
commutative regular ring splits. Corollary 5 sheds some light in
this direction. Moreover, since the hypothesis, "R is a commutative
ring with Z(R) = 0," is used only to establish that nonsingular
modules are flat, the conclusion of Corollary 5 holds true for any
regular ring R. Corollary 5 also generalizes [10, Theorem 3.3],
which deals with the structure of rings for which cyclic modules
split.

In [2] Cateforis and Sandomierski have suggested the question
of determining all commutative rings with FGSP. The final corollary
extends [10, Theorem 3.3] to give an answer to this question.

COROLLARY 6. // R is a commutative ring, then the following
statements are equivalent:

(a) R has FGSP.
(b) Z(R) — 0, and every closed submodule of a finitely generated

free R-module F is an almost summand of F.
(c) R is semi-hereditary, and every finitely generated non-

singular module is almost finitely related.

Proof. The equivalence of (a) and (b) follows from Lemma 1
and Corollary 5. In view of the corollary to [2, Proposition 1.11],
(c) is an immediate consequence of (a) and (b). Assuming (c), the
last two sequences in the proof of Corollary 4 show that all non-
singular modules are flat. Hence (b) follows by a slight modification
of the argument used in the last part of the proof of Theorem 2.

The authors conjecture that a ring R has FGSP if and only if
Z(R) = 0 and every closed submodule of a finitely generated free
module F is an almost summand of F.

In view of the preceding corollaries and the corollary to [2,
Proposition 1.11], the reader might conjecture that the messy "Tor
condition" in Corollary 2 (d) can be replaced by the nicer condition,
66R is right semi-hereditary," or by the stronger condition, "all non-
singular ϋ?-modules are flat." However, the following example shows
that a ring R with FGSP need not be right semi-hereditary.

EXAMPLE. Let F be a field, and let T be the F-subalgebra of
n~=i^ i n ) generated by © Σ ; = 1 F H ) and the identity of Πn=iF ( w ),
where F{n) ~ F for all n. Let I = 0 Σ?=i F[n\ and let S - T/I. If
R is the ring of all 2 x 2 matrices of the form
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la b\
Λ na9beS;ceT
0 cj

then Chase [4, Proposition 3.1] has shown that R is a left semi-
hereditary ring, which is not a right semi-hereditary ring. Hence
Z(R) = 0, and it is straight forward to check that the only proper
essential left ideal of R is the maximal left ideal

J —
'a b

0 c
α, be S; eel

Thus if A is any singular i2-module, then A is a direct sum of
copies of the simple module R/J. It follows that each singular
module is injective, and hence every iϋ-module splits. Thus R has
FGSP, but R is not right semi-hereditary.

Added in proof. K. R. Goodearl has constructed an example
(unpublished) which shows that the conjecture following Corollary 6 is
not true.
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