EVERY GENERALIZED PETERSEN GRAPH HAS A TAIT COLORING

Frank Castagna and Geert Prins

Abstract

Watkins has defined a family of graphs which he calls generalized Petersen graphs. He conjectures that all but the original Petersen graph have a Tait coloring, and proves the conjecture for a large number of these graphs. In this paper it is shown that the conjecture is indeed true.

Definitions. Let n and k be positive integers, $k \leqq n-1, n \neq$ $2 k$. The generalized Petersen graph $G(n, k)$ has $2 n$ vertices, denoted by $\left\{0,1,2, \cdots, n-1 ; 0^{\prime}, 1^{\prime}, 2^{\prime}, \cdots, \cdots,(n-1)^{\prime}\right\}$ and all edges of the form $(i, i+1),\left(i, i^{\prime}\right),\left(i^{\prime},(i+k)^{\prime}\right)$ for $0 \leqq i \leqq n-1$, where all numbers are read modulo n. $G(5,2)$ is the Petersen graph. See Watkins [2].

The sets of edges $\{(i, i+1)\}$ and $\left\{\left(i^{\prime},\left(i+k^{\prime}\right)\right\}\right.$ are called the outer and inner rims respectively and the edges (i, i^{\prime}) are called the spokes.

A Tait coloring of a trivalent graph is an edge-coloring in three colors such that each color is incident to each vertex. A 2 -factor of a graph is a bivalent spanning subgraph. A 2 -factor consists of disjoint circuits. A Tait cycle of a trivalent graph is a 2 -factor all of whose circuits have even length. A Tait cycle induces a Tait coloring and conversely.

The method that Watkins used in proving that many generalized Petersen graphs have a Tait coloring was to prove that certain color patterns on the spokes induce a Tait coloring. Our method for the remaining cases consists of the construction of 2 -factors and of proof that these 2 -factors are Tait cycles under appropriate conditions.

We restrict ourselves to the generalized Petersen graphs $G(n, k)$ with the properties:

$$
n \text { odd, } n \geqq 7,(n, k)=1, \text { and } 2<k<\frac{n-1}{2} .
$$

All other cases (and some special instances of the above) were dealt with by Watkins.

We construct three types of 2-factors. The first type is a Tait cycle when k is odd. The second type is a Tait cycle when k is even and $n \equiv 3(\bmod 4)$ and also when k is even and $n \equiv 1(\bmod 4)$ with k^{-1} even. (As $(n, k)=1$, we define k^{-1} as the unique positive integer $<n$, for which $k k^{-1} \equiv 1(\bmod n)$.) The third type takes care of the remaining graphs.

The principal tool in the proofs is the automorphism φ (henceforth fixed) of $G(n, k)$ defined by $\varphi(i)=n-i ; \varphi\left(i^{\prime}\right)=(n-i)$. In each case φ induces an automorphism (also called φ) of the constructed 2 -factor. To facilitate notation we write $n=2 m+1$.

Construction 1. The subgraph H of $G(n, k)$ has the following edges:
(a) On the outer rim: $(m+k, m+k+1),(m+k+1, m+\mathrm{k}+$ 2), $\cdots,(n-1,0),(0,1),(1,2), \cdots,(m-k, m-k+1)$, $(m-k+2, m-k+3),(m-k+4, m-k+5), \cdots$, ($m+k-2, m+k-1$).

The last line may be written as ($m-k+2 j, m-k+2 j+1$), $1 \leqq j \leqq k-1$.
(b) Spokes: $\left(m+k,(m+k)^{\prime}\right),\left(m-k+1,(m-k+1)^{\prime}\right),(m-$ $\left.k+2,(m-k+2)^{\prime}\right), \cdots\left(m+k-1,(m+k-1)^{\prime}\right)$.
(c) On the inner rim: $\left(i^{\prime},(i+k)^{\prime}\right), m+1 \leqq i \leqq n-1$
$\left(i^{\prime},(i-k)^{\prime}\right), k \leqq i \leqq m$.
Example. $\quad G(11,3)$

Figure 1
Clearly H is a 2 -factor, and $\varphi(H)=H$. If C_{0} is the circuit of H which contains 0 , then $\varphi\left(C_{0}\right)=C_{0}$. If C_{0} has odd length, then it must contain an odd number of edges of the form ($i,-i$) and ($i^{\prime},-i^{\prime}$). The only candidates are:
(A) $(m, m+1)$
(B) $\quad\left(\left(n-\frac{k}{2}\right)^{\prime},\left(\frac{k}{2}\right)^{\prime}\right)$
(C) $\quad\left(\left(\frac{n-k}{2}\right)^{\prime},\left(\frac{n+k}{2}\right)^{\prime}\right)$.

The edge (C) is not in H by our construction. Either the presence of (A) in H or the existence of edge (B) will imply that k is even. We conclude that if k is odd C_{0} has even length.

Let $m-k+2 \leqq i \leqq m+k-1$. Then either $i^{\prime}, i, i+1,(i+1)^{\prime}$ or $i^{\prime}, i, i-1,(i-1)^{\prime}$ are 4 consecutive vertices on a circuit of H. We call such sets 4 -sets. If every point of a circuit is on a 4 -set, then the circuit has even length.

Now consider a vertex $i^{\prime}, m+k<i \leqq n-1$ or $0 \leqq i<m-k+1$, which is not on C_{0}. The circuit of H which contains i^{\prime} passes consecutively through the the vertices $i^{\prime},(i+k)^{\prime},(i+2 k)^{\prime} \cdots(i+r k)^{\prime}$, $(i+(r+1) k)^{\prime}$, where $i+r k<m-k+1, i+(r+1) k>m-k+1$, $r \geqq 0$. The vertex $(i+(r+1) k)^{\prime}$ is on a 4 -set, and also $i+(r+1) k \leqq$ m, hence the circuit continues through the vertices $i+(r+1) k, i+$ $(r+1) k \pm 1,(i+(r+1) k \pm 1)^{\prime},(i+r k \pm 1)^{\prime} \cdots(i \pm 1)^{\prime}$. The circuit continues to $(i \pm 1-k)^{\prime}$ and by an identical argument eventually returns and hits i^{\prime} or $(i+2)^{\prime}$ or $(i-2)^{\prime}$. In the first case the circuit is complete and it is easily seen that it has even length. The other two cases lead to a contradiction; for assume (w.l.o.g) that the circuit is on $\left(i^{\prime},(i+1)^{\prime},(i+2)^{\prime}\right)$. Then by the above argument the circuit will eventually hit either $(i+1)^{\prime}$ again or else $(i+3)^{\prime}$. But the first case is impossible, because H is bivalent. Hence the circuit contains $(i+3)^{\prime}$ and further $(i+4)^{\prime} \cdots(m-k+1)^{\prime}$, but this contradicts our assumption, as $(m-k+1)^{\prime}$ is on C_{0}.

Construction 2. H has the following edges:
(a) On the outer rim: $(n-1,0),(0,1),(2,3), \cdots,(2 j, 2 j+1) \cdots$ ($n-3, n-2$).
(b) Spokes: all, except $\left(0,0^{\prime}\right)$.
(c) On the inner rim: $\left(0^{\prime}, k^{\prime}\right),\left(2 k^{\prime}, 3 k^{\prime}\right), \cdots\left(2 j k^{\prime},(2 j+1) k^{\prime}\right), \cdots$, $\left((n-1) k^{\prime}, 0^{\prime}\right)$.
(For the sake of clarity we have written $c k^{\prime}$ instead of the formally more correct ($c k)^{\prime}$.)

Example. $\quad G(15,4)$. See Figure 2.
Again, one checks easily that H is a 2-factor and that $\varphi(H)=H$. Looking at the edges $(A),(B)$, and (C) of Construction 1 , we note that (C) is not an edge if k is even. If edge (A) occurs, then $m=$ $(n-1 /) 2$ is even and $n \equiv 1(\bmod 4)$. If edge (B) occurs, and we write $k / 2 \equiv j k(\bmod n), j<n$, then j is odd by our construction. But then $k \equiv 2 j k(\bmod n) \Rightarrow(2 j-1) \equiv 0(\bmod n) \Rightarrow n=2 j-1 \Rightarrow n \equiv 1(\bmod 4)$.

Hence if $n \equiv 3(\bmod 4)$ and k is even none of the lines $(A),(B)$, and (C) occur, and we may conclude by the argument used in Construction 1 that the circuits through 0 and 0^{\prime} have even length. All

Figure 2
the points of every other circuit belong to a 4 -set, and hence also have even length. Therefore H if a Tait cycle if $n \equiv 3(\bmod 4)$ and k is even.

If $n \equiv 1(\bmod 4)$ and k and k^{-1} are both even, then the edge $\left((k+1)^{\prime}, 1^{\prime}\right)=\left(1^{\prime},(k+1)^{\prime}\right)=\left(k^{-1} k^{\prime},\left(k^{-1}+1\right) k^{\prime}\right)$ exists in H, and so does the edge $\left(-1^{\prime},-(k+1)^{\prime}\right)$. We then obtain the circuit:

$$
\begin{aligned}
& 0^{\prime}, k^{\prime}, k, k+1,(k+1)^{\prime}, 1^{\prime}, 1,0,-1,-1^{\prime} \\
& \quad-(k+1)^{\prime},-(k+1),-k,-k^{\prime}, 0^{\prime}
\end{aligned}
$$

which has length 14 and contains both 0 and 0^{\prime}.
We conclude that in this case H is again a Tait cycle.
Construction 3. For this construction we assume $n \equiv 1(\bmod 4)$, k even, k^{-1} odd and $>n / 2$. This last assumption is no real restriction, because if k^{-1} is odd and $<n / 2$, then Construction 1 gives a Tait cycle for $G\left(n, k^{-1}\right)$ and Watkins has shown that $G(n, k)$ and $G\left(n, k^{-1}\right)$ are isomorphic. Finally we need to assume $k>2$; this restriction was not needed in Constructions 1 and 2.
H has the following edges:
On the outer rim: $(-1,0),(0,1),(2,3), \cdots,(k-4, k-3),(k-2$, $k-1),(k-1, k),(k+1, k+2), \cdots(n-k-2, n-k-1),(n-k, n-$ $k+1),(n-k+1, n-k+2),(n-k+3, n-k+4), \cdots,(n-3, n-2)$.

Spokes: all except $\left(0^{\prime} 0^{\prime}\right),\left(k-1,(k-1)^{\prime}\right),\left(n-k+1,(n-k+1)^{\prime}\right)$.
On the inner rim: $\quad\left(0^{\prime}, k^{\prime}\right),\left(2 k^{\prime}, 3 k^{\prime}\right), \cdots,\left(\left(n-k^{-1}\right) k^{\prime},\left(n-k^{-1}+\right.\right.$ 1) $\left.\left.k^{\prime}\right),\left(\left(n-k^{-1}+1\right) k^{\prime},\left(n-k^{-1}+2\right) k^{\prime}\right),\left(\left(n-k^{-1}+3\right) k^{\prime},\left(n-k^{-1}+4\right) k^{\prime}\right)\right)$, $\cdots,\left(\left(k^{-1}-2\right) k^{\prime},\left(k^{-1}-1\right) k^{\prime}\right),\left(\left(k^{-1}-1\right) k^{\prime}, k^{-1} k^{\prime}\right),\left(\left(k^{-1}+1\right) k^{\prime},\left(k^{-1}+2\right) k^{\prime}\right)$, $\cdots,\left((n-1) k^{\prime}, 0^{\prime}\right)$.

Example. $\quad G(17,4)$

Figure 3
H is a 2 -factor, as long as $n-k^{-1}+1<k^{-1}-1$, which assures that the constructed edges on the inner rim cover all vertices of the inner rim. But this condition holds whenever $k^{-1}>(n+1 / 2)$ or altenatively when $k^{-1}>(n / 2)$, and $k>2$. It is clear that $\varphi(H)=H$.

Since $n \equiv 1(\bmod 4), m$ is even and $(m, m+1)$ is not an edge of H. As $(n-k /) 2$ is not an integer H does not have an edge $((n-k) / 2)^{\prime}$, $\left.(n+k) / 2)^{\prime}\right)$. Finally, since $n-k^{-1}+1 \leqq(n-1) / 2=m<m+1=$ $(n+1) / 2 \leqq k^{-1}-1$, and m is even, H does not contain the edge $\left(m k^{\prime},(m+1) k^{\prime}\right)=\left(-k^{\prime} / 2, k^{\prime} / 2\right)$. As before we conclude that the circuits containing 0 and 0^{\prime} have even length. The circuit containing 0 also contains $n-1,(n-1)^{\prime},(k-1)^{\prime}$ and $1,1^{\prime},(n-k+1)^{\prime}$, while the circuit containing 0^{\prime} also contains $k^{\prime}, k, k-1, k-2,(k-2)^{\prime}$ and $(n-k)^{\prime}, n-k, n-k+1, n-k+2,(n-k+2)^{\prime}$. Hence the other circuits only contain vertices of 4 -sets and every circuit of H has even length.

We note that our constructions are not mutually exclusive. For example, Construction 1 also produces a Tait cycle, when k is even, and the largest positive integer q such that $q k<n$ is an odd number.

We conclude with a new conjecture. G. N. Robertson [1] has shown that $G(n, 2)$ is Hamiltonian unless $n \equiv 5(\bmod 6)$. As $G(n, 2) \cong$ $G(n,(n+1) / 2) \cong G(n,(n-1) / 2) \cong G(n, n-2)$ (see [2]), none of these graphs has a Hamiltonian if $n \equiv 5(\bmod 6)$. We conjecture that all other generalized Petersen graphs are Hamiltonian. In all examples that we have worked out $G(n, k)$ possesses a Hamiltonian H with $\varphi(H)=H$, but our three constructions are Hamiltonians only in a minority of cases.

References

1. G. N. Robertson, Graphs under Girth, Valency, and Connectivity Constraints (Dissertation), University of Waterloo, Waterloo, Ontario, Canada, 1968.
2. Mark E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combinatorial Theory, 6 (1969), 152-164.

Received June 16, 1970 and in revised form August 20, 1970.
Wayne State University

