EVERY GENERALIZED PETERSEN GRAPH HAS A TAIT COLORING

FRANK CASTAGNA AND GEERT PRINS

Watkins has defined a family of graphs which he calls generalized Petersen graphs. He conjectures that all but the original Petersen graph have a Tait coloring, and proves the conjecture for a large number of these graphs. In this paper it is shown that the conjecture is indeed true.

DEFINITIONS. Let n and k be positive integers, $k \leq n-1$, $n \neq 2k$. The generalized Petersen graph G(n, k) has 2n vertices, denoted by $\{0, 1, 2, \dots, n-1; 0', 1', 2', \dots, (n-1)'\}$ and all edges of the form (i, i+1), (i, i'), (i', (i+k)') for $0 \leq i \leq n-1$, where all numbers are read modulo n. G(5, 2) is the Petersen graph. See Watkins [2].

The sets of edges $\{(i, i + 1)\}$ and $\{(i', (i + k)')\}$ are called the outer and inner rims respectively and the edges (i, i') are called the spokes.

A Tait coloring of a trivalent graph is an edge-coloring in three colors such that each color is incident to each vertex. A 2-factor of a graph is a bivalent spanning subgraph. A 2-factor consists of disjoint circuits. A Tait cycle of a trivalent graph is a 2-factor all of whose circuits have even length. A Tait cycle induces a Tait coloring and conversely.

The method that Watkins used in proving that many generalized Petersen graphs have a Tait coloring was to prove that certain color patterns on the spokes induce a Tait coloring. Our method for the remaining cases consists of the construction of 2-factors and of proof that these 2-factors are Tait cycles under appropriate conditions.

We restrict ourselves to the generalized Petersen graphs G(n, k) with the properties:

$$n ext{ odd}, n \geq 7$$
, $(n, k) = 1$, and $2 < k < rac{n-1}{2}$

All other cases (and some special instances of the above) were dealt with by Watkins.

We construct three types of 2-factors. The first type is a Tait cycle when k is odd. The second type is a Tait cycle when k is even and $n \equiv 3 \pmod{4}$ and also when k is even and $n \equiv 1 \pmod{4}$ with k^{-1} even. (As (n, k) = 1, we define k^{-1} as the unique positive integer < n, for which $kk^{-1} \equiv 1 \pmod{n}$.) The third type takes care of the remaining graphs.

The principal tool in the proofs is the automorphism φ (henceforth fixed) of G(n, k) defined by $\varphi(i) = n - i$; $\varphi(i') = (n - i)$. In each case φ induces an automorphism (also called φ) of the constructed 2-factor. To facilitate notation we write n = 2m + 1.

CONSTRUCTION 1. The subgraph H of G(n, k) has the following edges:

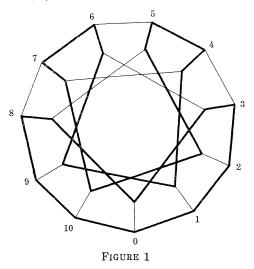
(a) On the outer rim: $(m + k, m + k + 1), (m + k + 1, m + k + 2), \dots, (n - 1, 0), (0, 1), (1, 2), \dots, (m - k, m - k + 1), (m - k + 2, m - k + 3), (m - k + 4, m - k + 5), \dots, (m + k - 2, m + k - 1).$ The last line may be written as (m - k + 2j, m - k + 2j + 1),

The last line may be written as (m - n + 2j, m - n + 2j + 1), $1 \leq j \leq k - 1$.

(b) Spokes: $(m + k, (m + k)'), (m - k + 1, (m - k + 1)'), (m - k + 2, (m - k + 2)'), \dots (m + k - 1, (m + k - 1)').$

(c) On the inner rim: $(i', (i+k)'), m+1 \leq i \leq n-1$ $(i', (i-k)'), k \leq i \leq m.$

EXAMPLE. G(11, 3)



Clearly *H* is a 2-factor, and $\varphi(H) = H$. If C_0 is the circuit of *H* which contains 0, then $\varphi(C_0) = C_0$. If C_0 has odd length, then it must contain an odd number of edges of the form (i, -i) and (i', -i'). The only candidates are:

(A)
$$(m, m + 1)$$

(B) $\left(\left(n - \frac{k}{2}\right)', \left(\frac{k}{2}\right)'\right)$
(C) $\left(\left(\frac{n-k}{2}\right)', \left(\frac{n+k}{2}\right)'\right)$.

The edge (C) is not in H by our construction. Either the presence of (A) in H or the existence of edge (B) will imply that k is even. We conclude that if k is odd C_0 has even length.

Let $m - k + 2 \leq i \leq m + k - 1$. Then either i', i, i + 1, (i + 1)'or i', i, i - 1, (i - 1)' are 4 consecutive vertices on a circuit of H. We call such sets 4-sets. If every point of a circuit is on a 4-set, then the circuit has even length.

Now consider a vertex i', $m + k < i \leq n - 1$ or $0 \leq i < m - k + 1$, which is not on C_0 . The circuit of H which contains i' passes consecutively through the the vertices i', (i + k)', $(i + 2k)' \cdots (i + rk)'$, (i + (r + 1)k)', where i + rk < m - k + 1, i + (r + 1)k > m - k + 1, $r \ge 0$. The vertex (i + (r+1)k)' is on a 4-set, and also $i + (r+1)k \le i$ m, hence the circuit continues through the vertices i + (r + 1)k, i + i $(r+1)k \pm 1, (i+(r+1)k \pm 1)', (i+rk \pm 1)' \cdots (i \pm 1)'$. The circuit continues to $(i \pm 1 - k)'$ and by an identical argument eventually returns and hits i' or (i + 2)' or (i - 2)'. In the first case the circuit is complete and it is easily seen that it has even length. The other two cases lead to a contradiction; for assume (w.l.o.g) that the circuit is on (i', (i+1)', (i+2)'). Then by the above argument the circuit will eventually hit either (i + 1)' again or else (i + 3)'. But the first case is impossible, because H is bivalent. Hence the circuit contains (i+3)' and further $(i+4)' \cdots (m-k+1)'$, but this contradicts our assumption, as (m - k + 1)' is on C₀.

CONSTRUCTION 2. H has the following edges:

(a) On the outer rim: $(n-1, 0), (0, 1), (2, 3), \dots, (2j, 2j + 1) \dots$ (n-3, n-2).

(b) Spokes: all, except (0, 0').

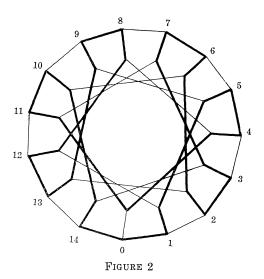
(c) On the inner rim: $(0', k'), (2k', 3k'), \dots (2jk', (2j+1)k'), \dots, ((n-1)k', 0').$

(For the sake of clarity we have written ck' instead of the formally more correct (ck)'.)

EXAMPLE. G(15, 4). See Figure 2.

Again, one checks easily that H is a 2-factor and that $\varphi(H) = H$. Looking at the edges (A), (B), and (C) of Construction 1, we note that (C) is not an edge if k is even. If edge (A) occurs, then m = (n - 1)2 is even and $n \equiv 1 \pmod{4}$. If edge (B) occurs, and we write $k/2 \equiv jk \pmod{n}, j < n$, then j is odd by our construction. But then $k \equiv 2jk \pmod{n} \Rightarrow (2j - 1) \equiv 0 \pmod{n} \Rightarrow n = 2j - 1 \Rightarrow n \equiv 1 \pmod{4}$.

Hence if $n \equiv 3 \pmod{4}$ and k is even none of the lines (A), (B), and (C) occur, and we may conclude by the argument used in Construction 1 that the circuits through 0 and 0' have even length. All



the points of every other circuit belong to a 4-set, and hence also have even length. Therefore H if a Tait cycle if $n \equiv 3 \pmod{4}$ and k is even.

If $n \equiv 1 \pmod{4}$ and k and k^{-1} are both even, then the edge $((k + 1)', 1') = (1', (k + 1)') = (k^{-1}k', (k^{-1} + 1)k')$ exists in H, and so does the edge (-1', -(k + 1)'). We then obtain the circuit:

$$0', k', k, k + 1, (k + 1)', 1', 1, 0, -1, -1', - (k + 1)', -(k + 1), -k, -k', 0'$$

which has length 14 and contains both 0 and 0'.

We conclude that in this case H is again a Tait cycle.

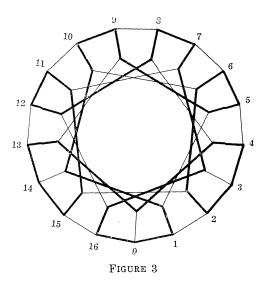
CONSTRUCTION 3. For this construction we assume $n \equiv 1 \pmod{4}$, k even, k^{-1} odd and > n/2. This last assumption is no real restriction, because if k^{-1} is odd and < n/2, then Construction 1 gives a Tait cycle for $G(n, k^{-1})$ and Watkins has shown that G(n, k) and $G(n, k^{-1})$ are isomorphic. Finally we need to assume k > 2; this restriction was not needed in Constructions 1 and 2.

H has the following edges:

On the outer rim: $(-1, 0), (0, 1), (2, 3), \dots, (k - 4, k - 3), (k - 2, k - 1), (k - 1, k), (k + 1, k + 2), \dots (n - k - 2, n - k - 1), (n - k, n - k + 1), (n - k + 1, n - k + 2), (n - k + 3, n - k + 4), \dots, (n - 3, n - 2).$ Spokes: all except (0'0'), (k - 1, (k - 1)'), (n - k + 1, (n - k + 1)').

On the inner rim: $(0', k'), (2k', 3k'), \dots, ((n - k^{-1})k', (n - k^{-1} + 1)k'), ((n - k^{-1} + 1)k'), ((n - k^{-1} + 2)k'), ((n - k^{-1} + 3)k', (n - k^{-1} + 4)k')), \dots, ((k^{-1} - 2)k', (k^{-1} - 1)k'), ((k^{-1} - 1)k', k^{-1}k'), ((k^{-1} + 1)k', (k^{-1} + 2)k'), \dots, ((n - 1)k', 0').$

EXAMPLE. G(17, 4)



H is a 2-factor, as long as $n - k^{-1} + 1 < k^{-1} - 1$, which assures that the constructed edges on the inner rim cover all vertices of the inner rim. But this condition holds whenever $k^{-1} > (n + 1/2)$ or altenatively when $k^{-1} > (n/2)$, and k > 2. It is clear that $\varphi(H) = H$.

Since $n \equiv 1 \pmod{4}$, *m* is even and (m, m + 1) is not an edge of *H*. As (n - k/)2 is not an integer *H* does not have an edge ((n - k)/2)', (n + k)/2)'. Finally, since $n - k^{-1} + 1 \leq (n - 1)/2 = m < m + 1 = (n + 1)/2 \leq k^{-1} - 1$, and *m* is even, *H* does not contain the edge (mk', (m + 1)k') = (-k'/2, k'/2). As before we conclude that the circuits containing 0 and 0' have even length. The circuit containing 0 also contains n - 1, (n - 1)', (k - 1)' and 1, 1', (n - k + 1)', while the circuit containing 0' also contains k', k, k - 1, k - 2, (k - 2)' and (n - k)', n - k, n - k + 1, n - k + 2, (n - k + 2)'. Hence the other circuits only contain vertices of 4-sets and every circuit of *H* has even length.

We note that our constructions are not mutually exclusive. For example, Construction 1 also produces a Tait cycle, when k is even, and the largest positive integer q such that qk < n is an odd number.

We conclude with a new conjecture. G. N. Robertson [1] has shown that G(n, 2) is Hamiltonian unless $n \equiv 5 \pmod{6}$. As $G(n, 2) \cong$ $G(n, (n + 1)/2) \cong G(n, (n - 1)/2) \cong G(n, n - 2)$ (see [2]), none of these graphs has a Hamiltonian if $n \equiv 5 \pmod{6}$. We conjecture that all other generalized Petersen graphs are Hamiltonian. In all examples that we have worked out G(n, k) possesses a Hamiltonian H with $\varphi(H) = H$, but our three constructions are Hamiltonians only in a minority of cases.

References

 G. N. Robertson, Graphs under Girth, Valency, and Connectivity Constraints (Dissertation), University of Waterloo, Waterloo, Ontario, Canada, 1968.
 Mark E. Watkins, A theorem on Tait colorings with an application to the generalized Petersen graphs, J. Combinatorial Theory, 6 (1969), 152-164.

Received June 16, 1970 and in revised form August 20, 1970.

WAYNE STATE UNIVERSITY