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ON REMOVING COINCIDENCES OF TWO MAPS

WHEN ONLY ONE, RATHER THAN BOTH,

OF THEM MAY BE DEFORMED BY

A HOMOTOPY

ROBIN B. S. BROOKS

It is known that if /, g: X —> Y are maps of a topological
space X into a topological manifold Y, and that / and g can
be deformed by homotopies to maps / ' and g1 which are coin-
cidence-free, then / may be deformed by a homotopy to a map
f" such that fn and g are coincidence-free. This result is
generalized as follows:

If /, g: X—» Y are maps of a topological space X into a
topological manifold Y and f and g' are homotopic to / and
g respectively, then for any homotopy {gt} from g to g\ there
is a homotopy {ft} from f such that the set of coincidences of
ft and gι-t is the same for all t e [0,1].

Some applications of this result to fixed point theory and
root theory are indicated.

A coincidence of two maps / , g: X~> Y of topological spaces is a
point xeX such that f(x) = g(x). Denote the set of all such points
by Γ(f, g). It may be possible to deform both / and g by homotopies
to maps / ' and gf such that Γ{f, g') is empty, but still impossible to
deform just / to a map / " such that Γ(/" , g) is empty. This is the
case, for example, when X = Y is the unit interval, g is the identity,
and / is arbitrary. However, Fuller [4] has shown that when Y is
a manifold, the ability to free / and g of coincidences by deforming
both / and g is equivalent to being able to free / and g by deforming
just / . The purpose of this paper is to generalize Fuller's result by
showing that (in that case where 7 is a manifold) any change in the
coincidence set Γ(f, g) that may be effected by deforming both / and
g can also be effected by deforming just / . Precisely, we establish
the following theorem.

THEOREM 1. Suppose f', g: X—+ Y maps of a topological space X
into a topological manifold Y, and let / ' and gr be homotopic to f and
g respectively. Then there is a map f" homotopic to / ' , and therefore
to / , such that Γ(f", g) = Γ(f, g'). In fact, given any homotopy
{gt \te 1} from g to gf, there is a homotopy {ft\te 1} beginning at f such
that Γ(ft, g^t) = Γ{f\ g') for all tel.

Here / denotes the closed unit interval.

45



46 ROBIN B. S. BROOKS

This theorem (with a weaker hypothesis on Y) is proved in §2.
The main tool used in its proof is the theory of numerable bundle pairs.
This theory is reviewed in the first section of the paper. The last
section of the paper is devoted to tracing out some of the consequences
of the theorem. In particular, we show that when Y is a manifold
the local fixed point theory as well as the global theory can be regarded
as a special case of the local coincidence theory, and similarly for the
local study of roots (study of equations of the form f(x) — α, where a
is a given point in Y).

!• Bundle theory• The following treatment is largely an adapta-
tion to the relative case of terminology and results that may be found
in [5].

A bundle pair (p: E —• B, pQ: EQ —• B) over a space B is a pair of
maps such that Eod E and p0 — p \ Eo. Two such pairs (p: E —• B,
p0: Eo —> B) and (pf: E' —> B, p'Q: EΌ —> B) are ίsomorphic over B if there

is an homeomorphism h: Ef —> E such that pr — poh, and h(E'Q) = Eo.
The bundle pair (pf p0) is locally trivial iff there is an open cover

{Ua\aeA} of B and a family

{(ha: jr\Ua) ~>Uax Fa, hoa: p^(Ua) - Ua x FOa) \aeA}

of pairs of homomorphisms such that hOa — ha | p^ι(Ua) and 7Γaoha(e) = p(e)
for every ae A and e e p~ι(Ua). Here πa: Ua x Fa—+ Ua is the indicated
projection. The cover {Ua\aeA} is called a trivializing cover.

An open covering {Ua\ae A} of a space B is numerable if it is
locally finite and has a partition of unity subordinate to it. A bundle
pair is numerable if it has a numerable trivializing cover. Every locally
trivial bundle pair over a paracompact space is numerable.

A bundle pair (pf: Ef —• B\ p[: E'Q —> B') is a pullback under the map
f:Br—>B of a bundle pair (p: E —> B, p0: Eo—> B) if there is a map
f*:(E',E'0)->{E,E0) such that p(f*(e))=f(p'(e)) for all eeff, and
if (p"\E"-±Br, p" E"-+Br) is any other bundle pair over £', and
/**: (£"', EΌ') -> (E, Eo) a map such that p(f**(e)) - f(p'(e)) for all e e E',
then there is an unique map u: {Etf, E',f) —>(£", EΌ) such that /** =
f*ou, and pr(u(e)) = p"(e) for all for eeE". Any two pullbacks of
(P, Po) under / are isomorphic over Bf. Given f:B'—>B one may
always construct a pullback (p': £" —> B\ pQ: El —• 5') and a map
/ * : (#', ̂ o) - (Jί, Eo) by letting £?' = {(6', β) 6 B' x E\p(e) = /(&')},
y(6', β) = 6' and /*(&', e) = e for all (6', e) e E\ El = f*~ι{E0), and pj =

A pullback of a locally trivial (numerable) bundle pair is locally
trivial (numerable).

The main result we need from bundle theory is Theorem 2 below.
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The corresponding result for principle G bundles is proved in [5, p. 50].
The same proof carries over to the case of numerable bundles, if one
substitutes Exercise 5 on page 22 of [5] for Lemma 4.1 of [5]. The
proof for numerable bundle pairs is essentially the same as the proof
for numerable bundles. Therefore, we state the result without further
indication of proof.

THEOREM 2. Suppose (p, p0) is a numerable bundle pair over the
cartesian product B x I of a space B with the unit interval I. Let
r: B x I —+ B x I be the map defined by r(b, t) = (6, 0) for all (b, t) e
B x I. Then any pullback under r of the bundle pair (p, p0) is iso-
morphic over B x I to (p, pQ).

W e wi l l b e c o n c e r n e d w i t h p u l l b a c k s of t h e b u n d l e p a i r (q:Y x F—>
Y, q0: D(Y) —> Y) w h e r e Y i s a t o p o l o g i c a l s p a c e , D(Y) = {y, y)\y e Y}
is the diagonal in Y x F, and q: Y x F —• Y is the projection onto
the first factor. The following proposition gives a necessary and suf-
ficient condition for (q, q0) to be locally trivial (numerable). The con-
dition may be thought of as a sort of local homogeneity condition.

PROPOSITION 1. The bundle pair (q, q0) is locally trivial {numera-
ble) iff there is a (numerable) open cover {Ua \ a e A) of Y and for each
ae A a continuous family [φaxy\(x9 y) e Uax Ua} of homeomorphisms
φaxy: F—> Y such that φaxy(x) = y for every ae A and (x, y) e Ua x Ua.

(The family {φaxy \ (x, y) e Ua x Ua} is continuous if φaxy(z) is a con-
tinuous function of the triple (x, y, z).)

Proof. Suppose first that such a (numerable) covering and indexed
family of homeomorphisms exists. For each ae A choose an element
ua e Ua and let Fa = Y and Foa = {ua}. Define ha: q"ι{Ua) ->UaxFa by
ha(x, y) = (x, φaxUn(y)). Then ha is a homeomorphism, ha followed by
projection onto Ua is simply q\q~ι(Ua), and hn(x, y) = ua when x = y,
so hn(q^l(Ua)) = FOn. Thus {Ua\aeA} is a (numerable) trivializing
cover for (q,q0). Conversely, suppose {Ua\aeA} a (numerable) open
cover of Y and {(ha: q'\Un) -> Ua x Fa, hQa: q?(Un) — UaxFOn) \a e A} a
family of pairs of homeomorphisms such that hoa = ha \ Ua x Foa and
πaoha{x, y) = q(x) for each ae A and (x, y) e q~ι(Ua), where πa: UnxFn—>
Ua is the projection. For each ae A and (x, y) e Un x Un define
Φaxy- Y—> Ybγ φaxy(z) = π'noh~\y, π«oha{x, z)) where π'a: Ua x Y—> F a n d
π": Ua x Fa—+ Fa are the indicated projections. The map φaxy is illus-
trated below. Then φaxy is a homeomorphism, in fact φ~xy = φnyx, for each
ae A and (x, y)e Ua x Ua. Moreover φaxy(z) is continuous in x, y, z
simultaneously. Finally, suppose z = x. Then (x, z) e D(Y). This
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FIG. 1

implies that ha(x, z) e [x] x Fo, so π'aΌha(x, z) e Fo, and therefore

(7/, tfoha(x,z))e{y} x Fo.

Hence Λ,-1 /̂, π'ά°K{x, z)) e -D(Γ), and therefore πf

a(h~1(y1 π"oha(x, z)) = 2/.
Thus 0αa.y(ίc) = 2/ for all α e i and (&, y) e Ua x Z7α.

Note that if F is a topological group then we may define φxy: F—>
y by φxy(z) — yx~~λz for all (x, y, z) e Y x Y x F, so we obtain a trivi-
alizing cover for (q, q0) consisting of F alone. More important is the
case where F is a manifold.

PROPOSITION 2. // Y is a topological manifold, then (q: Y x F—>
F, g0: -D(Y) —> F) is numerable.

Proof. Let F be a topological manifold. Then there is a family
{ψa: Ua~^Rn\ae A} of charts for F such that {Ua\ae A} is numerable.
For each ae A and (x, y) e Ua x Ϊ7α define 9Λa;2/: F—> F by

, if z e F -

, if z e Un

and then apply the preceding proposition.

2* Proof of Theorem !• Throughout this section we will assume
that either the bundle pair (q: Y x F—-> F, q0: D(Y) —> F) is numerable,
or that it is locally trivial and X is a paracompact space. A necessary
and sufficient condition for the local triviality (numerability) of (g, g0)
has been given in Proposition 1. In particular, (g, g0) will be numera-
ble if F is a topological manifold.

LEMMA. Suppose that {gt: X—>Y\teI}isa homotopy. Then there
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is an isotopy {ht: X x 7 - > I x Y\tel} suoh that

ht(x, 9o(x)) = (x, 9t(x))

for all x e X and tel.

Proof. Define G: X x /-* Γ by G(x, t) = gt(x) for all (a;, t)eXxI.
Let p: X x I x Γ - > X x /be the projection and p0: Graph ( G ) - ^ I x 1
its restriction to the graph of G, i.e., the set of all triples (a?, ί, G(x, t))
with (α, ί ) e l x /. Then it is easy to verify that (p, p0) is a pullback
under G of (q, q0). (To see this, define G*: (X x / x F, Graph (G)) —
(Y x Γ, JD(Γ)) by G*(α, ί, 2/) = (G(x, t), y). Therefore, under the as-
sumptions at the beginning of this section, (p, p0) is numerable. Define
r:X x /—>Xx /by r(«, ί) = (x, 0), and let pj be the restriction of p
to the space {(x, t, y) e X x I x Y\y — 90(x)}. Then (p, p'o) is a pull-
back under r of (p, p0). (Let r*(x, t, y) — (x, 0, y).) Hence, by Theorem
2, (p, pΌ) is isomorphic to (p, p0). There is therefore a homeomorphism
HiXxIx Y->XxIx Y such that flfo t, go(x)) = (x, t, G(x, t)) for
every (x,t)eXxI, and poH = p. Thus, if we write ht(x, y) for
the projection of H(x, t, y) in X x Y we obtain the desired isotopy
{ht:Xx Y-*Xx Y\tel).

We turn now to the proof of Theorem 1. We are given maps
/, g: X—> Y and maps /', g'\ X—> Y homotopic to / and g respectively.
We are also given a specific homotopy {gt \ t e /} from g to g\ We
must find a homotopy {ft: X—± Y\ t e 1} beginning at / ' such that
Γ(ft,gi-t) = Γ(f',g>) for all tel.

Let {ht: X x Y—+Xx Y\tel} be an isotopy with the properties
given in the lemma. Let π: X x Y —> Y be the projection. Then we
define ft by

ft = πoh^toh^(x, f'(x))

for every x e l a n d ίe /. To see that {ft\te 1} is the desired homotopy
note first that fQ(x) = πoh^h^ix, f'{x)) = /'(a?) for every #eX, so
{/ί|ίe/} begins at / ' . It remains to show that /•(/, ^-0 = Γ(f0, g^),
for all tel. Let £ e /, and suppose first that x e Γ(ft, g^t)f so ft(x) =
g^tix). Then

fQ(x) = πohshTlteh^tohϊ^x, fo(x))
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so xe Γ(f0, g,). Conversely, suppose xe Γ(f0, g,) so fo(x) = g^x). Then

ft(x) = πoh^oh^ix,

= πoh^x, go(x))

= π(x, g^t{x))

so xeΓ(ft, g^t).

3* Applications to coincidence theory• In this section we use
some of the notation, definitions, and elementary results that are sum-
marized in the second section of [3]. In particular, we will regard a
homotopy F of maps from X into Y as a function from the unit inter-
val into Map(X, Y), with the proviso that F(t)(x) be continuous in
both its arguments. Throughout this section Y will be a topological
manifold (or, more generally, the bundle pair (p: Y x Y—> p0: D(Y) —•
Y) will be assumed to be numerable.) We will let /, g: X—> Y be
maps. The class of all pairs (F, G) of homotopies of maps from X
into Y will be denoted, as in [3], by Δ^ the subset of Δι consisting
of those pairs for which G is the constant homotopy at g will be denoted
by Δf. Let C be the minimum number of coincidence of / ' and gf

when / ' and g* are allowed to vary over all maps homotopic to / and
g respectively; let C* be the minimum number when just / ' is allowed
to vary but gf must remain fixed at g. Then Theorem 1 has the
following immediate corollary.

COROLLARY 1. C = C*.

We turn now to essentiality of coincidences and the Nielsen
numbers.

COROLLARY 2. xe Γ(f, g) is Δγ essential iff it is Δ* essential.

Proof. If / is Δx essential it is certainly Δf essential. Conversely,
suppose xeΓ(f,g) is Δf essential, and let F and G be homotopies
beginning at / and g respectively. According to Theorem 1, there is
a homotopy Ff beginning at .F(l) such that for any x e X and any te I
we have F'(t)(x) = G(l - t)(x) iff F(ΐ)(x). = G(ΐ)(x). Since x is Δ* es-
sential it is FF\ g related to a point x'eΓ(F'(l), g). Since F'(l)(x) =
g(x) = G(Q)(x), we have F'{1 - t){xf) = G(t)(x') for all tel. Thus x'e
Γ(F(Ϊ), G(l)) and is F'~\ G related to itself. (The constant path at
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x' is a path for which [< F'~\ xf >] = [<G, x'>]). It follows that x
is {FF')F'~\ QG related to x'. But [{FF')F'-ι\ = [F] and [gG] = [G],
so α; is F, G related to xr. It follows that x is z/ressential.

COROLLARY 3. N(f, g> A,) = N(f, g, At), i.e., the A, and Δ* Nielsen
numbers of f and g are equal.

Proof. By Corollary 2, each zif-essential coincidence class of / and
g is also Jressential and conversely.

In the study of fixed points one is interested in finding a lower
bound for the number of solutions to equations of the form f(x) = x,
where / : Y —> Y is allowed to vary throughout a homotopy class. In
the study of roots one wants a lower bound for the number of solu-
tions to equations of the form f(x) = a, where / : X—> Y is again
allowed to vary throughout a homotopy class, and a is a given point
in Y. In general coincidence theory, one wants a lower bound to the
number of solutions to an equation of the form f(x) — g(x), where
/ : X —» Y is allowed to vary throughout one homotopy class and g: X—>
Y throughout another. The first two equations are special cases of
the third (let g = lγ in the first and g be the constant map in the
second). But the first two theories are not, in general, spscial cases
of the third — since in the third g as well as / is allowed to vary by
a homotopy. Howevery our results show that when 7 is a manifold
the first two theories are indeed special cases of the third. As an
example we give an alternative proof of the following result announced
in [2].

PROPOSITION 3. Suppose f: X—* Y a map of a topologieal space
X into a topologieal manifold Y, and suppose ae Y. Then if the equa-
tion f(x) = a has at least one A2-essential solution (A2 is the class of
all pairs (F, G) of homotopies of maps from X into Y in which G is
the constant homotopy at the constant map into α), then it has at least
R{f) Δ2-essential solutions, where R(f) is the order of the cokernel of
the fundamental group homomorphism ffπ(X)—+π(Y) induced by f.

Proof. Since N(f, g, A2) > 0, there is an xoe X with f(x0) = a.
Base the fundamental groups of X and Y at x0 and a respectively.
Let g: X—* Y be the constant map into ae Y. Then J* is A2J so
Corollary 3 implies N(f, g, A,) = N(f, g, A2) > 0. Thus, according to
Theorem 1 of [3], N(f, g, A,) :> J(f, g, AJ, where, since g*\ π(X, x0) —>
π(Y, a) is trivial, J(f, g, A^ is the number of elements of the cokernel
of f% that have representatives of the form [ < F, x0 > ] [ < (?, x0 > ], where
F is a homotopy from / to itself and G is a homotopy from g to it-



52 ROBIN B. S. BROOKS

self. But since g is the constant map, every loop C in Y at a is of
the form [ < G, x0 > ] where G is a homotopy from g to itself (set
G(t)(x) = C(t) for all xeX). Thus J(f, g, A,) = order cokernel /# =
R(f), so N(f, g, A2) ^ R(f). On the other hand [3, p. 557], we always
have R(f) ^ N(f, g, A2), so R{f) = N(f, g, A2).

We may also combine our results with one due to Schirmer [6]
to provide a partial converse to Proposition 3.

PROPOSITION 4. Suppose X and Y are triangulable manifolds of
the same dimension Ξ> 3. Then there is a map f" homotopic to f such
that f"{x) = a has exactly N(f, g, A2) solutions, so, in particular, if
N(f, g, A2) > 0 then f"{x) — a has exactly R(f) solutions.

Proof. In [1, p. 109] a result of Schirmer's is translated into our
terminology to give the following result: there is a map / ' homotopic
to / and a map gr homotopic to the constant map g such that f\x) —
g'(x) has exactly N(f, g, Λ) solutions. Theorem 1 and Corollary 3
therefore imply that there is a map / " homotopic to / ' and therefore
to / such that f"(x) = a has exactly N(f, g, A2) = N(f, g, A,) solutions.
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