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ON POLYNOMIALS APPROXIMATING THE SOLUTIONS
OF NONLINEAR DIFFERENTIAL EQUATIONS

A. BACOPOULOS AND A. G. KARTSATOS

Suppose that L(x) is a differential operator and R(t) a
continuous function, and consider the differential equation
(*) L(x) = R(t). Then a problem in approximation theory is
whether we can approximate a solution x(t) of (*) uniformly
with a sequence of polynomials Pn for which we have 11 R(t) —
L(Pn)) WS Vn, where 11 11 is a certain norm and ηn a specific
sequence of nonnegative constants. This is done here for a first
order nonlinear differential operator L and for two different
norms, the uniform norm and the Lp norm (1 ̂  p < + oo).

Consider the differential equation:

where the functions Q, R are defined and continuous on [0,1] x (— oo,
+ oo) and [0,1] respectively Suppose also that there exists a unique
solution x(t) of (1) satisfying x(0) — 0. On C[0, 1] consider the norms:

( 2 ) Il/H = sup | / ( ί ) | , H/ll, = [ T \f(t)\>db\*(p ^ 1) ,
ίe[0,l] LJo J

and let

(3) μn= inf \\L(x) - L(Pn)\\, μ* = inf \\L(x) - L(P:)\\P ,

where x(t) is the solution of (1) with x(0) — 0, and Πn is the set of
all polynomials of degree less than or equal to n, which satisfy the
condition Pn(0) = 0, (or Pί(0) = 0). By (3), if sn, (or s*), is a sequence
of positive constants such that lim^ooS^ = 0, (or lim^^εί = 0), then
there exist sequences of polynomials Pw, (or Pί), e Πn such that

(4) \\L(x) - L(P%)\\ ^μn + ε%, \\L(x) - L{Pt)\\v £ μ* + ε* ,

for every n — 1, 2 .
Our aim here is to show that, for quite a large class of equations

of the type (1), it is possible to have the polynomials satisfying the
first or the second of (4) converge uniformly, along with their deriva-
tives, to the solution x(t) and its derivative respectively.

It should be noted that if the infimum in either one of (3) is
attained for every n (and this is not always true), then we can choose
εn = 0, (or ε* = 0), n = 1, 2, , and consider in (4) only the equality
sign.
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The results of this paper are related to those of Huffstutler and
Stein [2], [3], which are taken as special cases for certain classes of
equations of the form (1).

In what follows, D — m a x ^ ^ ^ i {1, supί6[o,i] {|#0OI*}}

2* Main result* THEOREM, Let the function Q be such that

\Q(t,u) - Q(t,v)\£ A±\uk - vk\
fc = l

for every (t, u, v) e [0, 1] x (— °oy + oo) x (— oo? + oo) where

(any positive constant for m = 1

(such that AD < [m(m — I)]" 1 for m > 1 ,

and suppose further that a sequence of polynomials Pn, (or P«), satis-
fies the given initial condition and the first of (4), (the second of 4),
for every n. Then the sequence Pn, (or P*), converges uniformly to
the solution x(t) on [0.1]. In addition, the sequence Pi, (or P*f),
converges uniformly (w.r.t. the Lp norm) to the derivative x'(t).

Proof. Case I (Uniform norm). We show first that limw_>ooL(Pw(ί)) =
L(x(t)) uniformly on [0, 1]. In fact, there exists a sequence of poly-
nomials Sn, of degree less than or equal to n, such that Sn(0) = 0,
and lim^ooS^OO = x{ί)(t), i — 0,1, uniformly on [0,1]. We can take,
for example, the Bernstein polynomials

(5) SΛ = B.(x;t) = ±

Thus, by use of (3), we obtain

\\L(x) - L(Pn)\\ ίίμκ + εn^ \\L(x) - L(Sn)\\ + e.

( 6 ) ΪS | | a . ' _ s ; | | + \\Q(t, x) - Q(t, Sn)\\ + εn

m

^ \\x' -S'n\\ + AΣWx" - Sk

n\\ +εn,
n — 1

and the sequences in the last member of (6) tend to zero, which shows
the uniform convergence of L(Pn(t)).

We show next that the sequence Pn is uniformly bounded on [0, 1].
Let un(t) = x(t) - Pn(t) and Fn(t) = L(x(t)) - L(Pn(t)), te [0, 1]; then
from (1) we obtain

Fn(t) = L(x) - L(x - un) = xf + Q(t, x) - [xr - ur

n + Q(t, x - un)]

= < + [Q(t, x] - Q(ί, x - O ]

which gives
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I Fn(s) I ds + I Q(s, x(s)) - Q(s, x(s) - un{s)) \ ds
o Jo

^ Γ \F,{s)\d8 + A ( T έ |»*(β) - (Φ) - u.(
Jo Jo L/c=i

^ An + A +

( 7 ) »|4)Ίds
A

un(s) I + (k(k - l)/2!) | un(s) | 2 +

un(s)\k)] ds

^ An + mAD Γ (1 + \un(s) \)m ds ,
Jo

where An is a constant determined by (6).
If m = 1, then the uniform boundedness follows easily from (7) by

a direct application of GronwalΓs inequality ([1], p. 8). Let m > 1,

qn{t) = Γ (1 + K(s) | ) w ds, and choose ε > 0 such that AD<[(l + ε)m~ι

Jo

m(m — l)]~ι and An<ε for every % ^ (some) i\T. Then from (7) we have

qM ^ [1 + An

j ^ [1 + ε + mADqn{tψ (n ^ ΛΓ)

which, dividing by the last member and integrating from 0 to t^ 0,
yields

( 9 ) (1 + ε) + mADqn(t) ^ [(1 + ε)1-™ - m(m - l)AD]~1 / ( m-υ ,

which shows the uniform boundedness of

Wnit)]1* - 1 = lu^Wl = \x(t) - Pu(t)\

and, consequently, the uniform boundedness of the sequence Pn.
Now, we use the uniform boundedness of Pn in order to show

their convergence to the solution x(t). From (1) we obtain

\x(t) ~ Pn{t)\ :g Γ \Fn(s)\ds + Γ \Q(s, x(s) - Q(8, Pn(s))\d8
Jo Jo

( 1 0 ) ^ j J Fn(s) I <fe + A Σ j J a - -P. 11 a*"1 + ̂ ""2 -P.

(s) I <ώ + Γ I x(8) - P%(8) I ds
Jo
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where K = m a x ^ ^ supέe[0>1] {\xk~ι{t) + xh-\t)Pn{t) + . . . + Ptι(t)\} in-
dependent of n, due to the uniform boundedness of the PΛ's. Thus,
an application of GronwalΓs inequality in (10) gives

x(t) - Pn(t)\ =g ̂  \Fn(s)\ds). e™AK ̂  Q o Fn(t) dή emAK.

Since the right side —* 0 as n —• ^o, this proves the uniform con-
vergence of the sequence Pn.

The proof of the uniform convergence of the derivatives of the
Pn's follows from

Wit) - P:(t)\ <Ξ \L(x) - L(P.)\ + \Q(t, x) - Q(t, P.)I

^\F.(t)\ + A^l&it) - Pϊ(t)\

(ID ^ IFn(t)I + 4ΣIIχ(t) - P»(ί)IIx"-1 (t) + χk

k

and the final expression —> 0 as n —> oo.
Case II (Lp norm). Suppose that PI is a sequence of polynomials

which satisfies the second of (4). Then (6) holds with Pn replaced by
P*, and || || by || | |p, since the uniform convergence of Sf, i = 0, 1,
implies their convergence w.r.t. the Lp norm. Thus, L(P*) converges
w.r.t. the Lp norm to L(x). In order to show that the P^'s are uni-
formly bounded, choose ε* > 0, N such that AD < [(1 + ε*)w~ιm(m -
I)]-1 and ||L(α?) - L{P*) \\φ < ε* for every n ^ N. Then we obtain (as
in (7))

\ut{t)\ ^ \Fi(s)\ds + mAD (\uί(s)\ + 1)- ds
Jo Jo

(12) ^ Γ ί' I Fi (s) j "(feT" + m^li) (' (I <(β) I + l ) mds
LJO J JO /

^ ε* + mAD Γ (|tt*(s)| + l)m ds,

and the proof follows as in the case of the uniform norm. The
uniform convergence of the P%*?s follows from an inequality similar
to (10), and the Lp norm convergence of the derivatives of the P^?s
from

^ \\F:\\P + \\Q(t, x) ~ Q(t, x - ui)\\p

(E is a suitable constant), and the final expression —> 0 as n
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It should be mentioned here that if l i π v ^ n2πiSiXteί0f]] | P*(t) — x(t) | —
0, then the sequence P,*' converges uniformly to x\t), and this can
be shown as in [2].

3* Example* Consider the differential equation

(*) x' + (3/37)fx2/(l + x2) - (1/16)[*Y(1 + t2)]x4/(l + x4) = (t - 1/2)1/3.

Here we have m = 4, and

ί, u) - Q(ί, v)| g (3/37)Iu2 - ^2 | + (1/16)|u4 - v4\

i e., A = 3/37. If α (ί) is a solution of (*) with a (O) = 0, then we have

I x(t) I ̂  (3/37) Γ f dί + (1/16) Γ [ί2/(l + t)2] dt + Γ (ί - l/2)^3 dί
Jo Jo Jo

< 3/37 + 1/16 < 1

and, consequently, we have D — 1. Moreover, if we suppose the ex-
istence of a second solution y(t) of (*) with y(0) — 0, then we get

\Q(t, x) - Q(t, y)\ rg A(\x2 - y2\ + \x* - y*\)

(13) ^ A | a ? - 2/ | (\x + y\ + \x\3 + ^ 2 | τ / | + \ x \ y 2 + \y\*)

^ G A \ x - y \ .

Now, integration of xf — yf = — [Q(t, x) — Q(ί, /̂)] and use of (13) and
GronwalPs inequality, shows the uniqueness of the solution x(t), te
[0, 1] of (*) with x(0) = 0. Furthermore, AD = 3/37 < [m(m - I)]" 1 =
1/12, and the theorem applies to the equation (*). This example is
not contained in any of the results in [4], since the function Q — R
is not analytic for — 1 <£ t ^ 1 and all x.

The authors wish to thank the referee for some helpful suggestions.
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