EXPONENTIAL SUMS OVER $G F\left(2^{n}\right)$

Kenneth S. Williams

Let $F=G F(q)$ denote the finite field with $q=2^{n}$ elements. For $f(X) \in F[X]$ we let

$$
S(f)=\sum_{x \in F} e(f(x))
$$

A deep result of Carlitz and Uchiyama states that if $f(X) \neq$ $g(X)^{2}+g(X)+b, g(X) \in F[X], b \in F$, then

$$
|S(f)| \leqq(\operatorname{deg} f-1) q^{1 / 2}
$$

This estimate is proved in an elementary way when $\operatorname{deg} f=$ $3,4,5$ or 6 . In certain cases the estimate is improved.

If $a \in F$ then $a^{2 n}=a$ and a has a unique square root in F namely $a^{2 n-1}$. We let

$$
\begin{equation*}
t(a)=a+a^{2}+a^{2^{2}}+\cdots+a^{2^{n-1}} \tag{1.1}
\end{equation*}
$$

so that $t(a) \in G F(2)$, that is $t(a)=0$ or 1 . We define

$$
\begin{equation*}
e(a)=(-1)^{t(a)} \tag{1.2}
\end{equation*}
$$

so that $e(a)$ has the following easily verified properties: for $a_{1}, a_{2} \in F$

$$
e\left(a_{1}+a_{2}\right)=e\left(a_{1}\right) e\left(a_{2}\right)
$$

and

$$
\sum_{x \in F} e\left(a_{1} x\right)=\left\{\begin{array}{l}
q, \text { if } a_{1}=0 \tag{1.3}\\
0, \text { if } a_{1} \neq 0
\end{array}\right.
$$

Let X denote an indeterminate. For $f(X) \in F[X]$ we consider the exponential sum

$$
\begin{equation*}
S(f)=\sum_{x \in F} e(f(x)) \tag{1.4}
\end{equation*}
$$

We note that $S(f)$ is a real number. Since $S(f)=e(f(0)) S(f-f(0))$ it suffices to consider only those f with $f(0)=0$. This will be assumed throughout.

If $f(X) \in F[X](f(0)=0)$ is such that

$$
\begin{equation*}
f(X)=g(X)^{2}+g(X) \tag{1.5}
\end{equation*}
$$

for some $g(X) \in F[X]$, then $f(X)$ is called exceptional over F, otherwise it is termed regular. Clearly f can be exceptional only if deg f is even. If $f(X)$ is regular over F, Carlitz and Uchiyama [2] have proved (as a special case of a more general result) that

$$
\begin{equation*}
|S(f)| \leqq(\operatorname{deg} f-1) q^{1 / 2} \tag{1.6}
\end{equation*}
$$

Their method appeals to a deep result of Weil [3] concerning the roots of the zeta function of algebraic function fields over a finite field. It is of interest therefore to prove (1.6) in a completely elementary way. That this is possible when $\operatorname{deg} f=1$ follows from (1.3) and when $\operatorname{deg} f=2$ from the recent work of Carlitz [1]. In this paper we show that (1.6) can also be proved in an elementary way when $\operatorname{deg} f=3$, 4,5 or 6 . Moreover in some cases more precise information than that given by (1.6) is obtained. Unfortunately the method used does not appear to apply directly when $\operatorname{deg} f \geqq 7$. The method depends on knowing $S(f)$ exactly, when $\operatorname{deg} f=2$ and when f is exceptional over F. These sums are evaluated in $\S 2,3$ respectively.
2. $\operatorname{deg} f=2$. In this section we evaluate $S(f)$, when $\operatorname{deg} f=2$. This slightly generalizes a result of Carlitz [1]. We prove

Theorem 1. If $f(X)=a_{2} X^{2}+a_{1} X \in F[X]$, then

$$
S(f)=\left\{\begin{array}{l}
q, \text { if } a_{1}^{2}=a_{2} \\
0, \text { if } a_{1}^{2} \neq a_{2}
\end{array}\right.
$$

Proof. We note that the result includes the case $a_{2}=0$ in view of (1.3). If $a_{2} \neq 0$ then $S(f)=\sum_{x \in F} e\left(\left(a_{2}^{2^{n-1}} x\right)^{2}+a_{1} a_{2}^{-2^{n-1}}\left(a_{2}^{2^{n-1}} x\right)\right)=\sum_{x \in F} e\left(x^{2}+\right.$ $a_{1} a_{2}^{-2^{n-1}} x$), since $x \rightarrow a_{2}^{-2^{n-1}} x$ is a bijection on F. By Carlitz's result [1]

$$
S(f)=\left\{\begin{array}{l}
q, \text { if } a_{1} a_{2}^{-2^{n-1}}=1 \\
0, \text { if } a_{1} a_{2}^{-2^{n-1}} \neq 1
\end{array}\right.
$$

This proves the theorem as $a_{1} a_{2}^{-2^{n-1}}=1$ is equivalent to $a_{1}^{2}=a_{2}$ in F.
We remark that $a_{2} X^{2}+a_{1} X$ is exceptional over F precisely when $a_{1}^{2}=a_{2}$.
3. f exceptional over F. In this section we evaluate $S(f)$, when f is exceptional over F. We prove

Theorem 2. If $f(X) \in F[X]$ is exceptional over F then $S(f)=q$.
Proof. As f is exceptional over F there exists $g(X) \in F[X]$ such that

$$
f(X)=g(X)^{2}+g(X)
$$

Hence for $x \in F$ we have

$$
t(f(x))=t\left(g(x)^{2}+g(x)\right)=g(x)^{2 n}+g(x)=0
$$

so that $e(f(x))=1$, giving $S(f)=q$.
4. $\operatorname{deg} f=3$. We prove

Theorem 3. If $f(X)=a_{3} X^{3}+a_{2} X^{2}+a_{1} X \in F[X]$, where $a_{3} \neq 0$, then

$$
|S(f)|=K(f) q^{1 / 2}
$$

where $K(f)>0$ is such that

$$
K(f)^{2}=1+(-1)^{n} \sum_{\substack{t \in F \\ t^{3}=1 / a_{3}}} e\left(a_{2} t^{2}+a_{1} t\right) .
$$

(In particular if $t^{3}=1 / a_{3}$ has $0,1,3$ solutions t in F then $K(f)=$ $1, K(f)=0$ or $\sqrt{2}, K(f) \leqq 2$ respectively. Thus we have the CarlitzUchiyama estimate $|S(f)| \leqq 2 q^{1 / 2}$, and by arranging $K(f)=2$ in the last of the three possibilities indicated we see that it is best possible).

Proof. We have

$$
S(f)^{2}=\sum_{x, y \in F} e\left(a_{3}\left(x^{3}+y^{3}\right)+a_{2}\left(x^{2}+y^{2}\right)+a_{1}(x+y)\right),
$$

so on changing the summation over x, y into one over $x, t(=x+y)$ we obtain

$$
S(f)^{2}=\sum_{t \in F} e\left(a_{3} t^{3}+a_{2} t^{3}+a_{1} t\right) \sum_{x \in F} e\left(a_{3} t x^{2}+a_{3} t^{2} x\right)
$$

By Theorem 1 we have

$$
\sum_{x \in F} e\left(a_{3} t x^{2}+a_{3} t^{2} x\right)=\left\{\begin{array}{l}
q, \text { if } a_{3} t=\left(a_{3} t^{2}\right)^{2} \\
0, \text { if } a_{3} t \neq\left(a_{3} t^{2}\right)^{2}
\end{array}\right.
$$

so that, as $a_{3} \neq 0$, this gives

$$
\begin{aligned}
S(f)^{2} & =q \sum_{\substack{t \in F \\
a_{t} t^{\prime}-t=0\\
}} e\left(a_{3} t^{3}+a_{2} t^{2}+a_{1} t\right) \\
& =q\left\{1+(-1)^{n} \sum_{\substack{t \in F \in \\
t^{3}=1 / a_{3}}} e\left(a_{2} t^{2}+a_{1} t\right)\right\},
\end{aligned}
$$

as $e(1)=(-1)^{n}$, which completes the proof of the theorem.
5. $\operatorname{deg} f=4$. We begin by giving necessary and sufficient conditions for $f(X)=a_{4} X^{4}+a_{3} X^{3}+a_{2} X^{2}+a_{1} X \in F[X]$, where $a_{4} \neq 0$, to be exceptional.

ThEOREM 4. $f(X)=a_{4} X^{4}+a_{3} X^{3}+a_{2} X^{2}+a_{1} X \in F[X]$, where $a_{4} \neq$ 0 , is exceptional over F if and only if $a_{4}=a_{2}^{2}+a_{1}^{4}$ and $a_{3}=0$.

Proof. $f(X)$ is exceptional over F if and only if there exists $r X^{2}+s X \in F[X]$ such that

$$
a_{4} X^{4}+a_{3} X^{3}+a_{2} X^{2}+a_{1} X=\left(r X^{2}+s X\right)^{2}+\left(r X^{2}+s X\right) .
$$

This is possible if and only if

$$
a_{4}=r^{2}, a_{3}=0, a_{2}=s^{2}+r, a_{1}=s,
$$

that is, if and only if,

$$
a_{4}=r^{2}=\left(a_{2}+s^{2}\right)^{2}=a_{2}^{2}+s^{4}=a_{2}^{2}+a_{1}^{4} \text { and } a_{3}=0 .
$$

We now evaluate $|S(f)|$. We prove
Theorem 5. If $f(X)=a_{4} X^{4}+a_{3} X^{3}+a_{2} X^{2}+a_{1} X \in F[X]$, where $a_{4} \neq 0$, then $|S(f)|$ is given as follows:
(i) $a_{3}=0$

$$
S(f)=\left\{\begin{array}{l}
q, \text { if } a_{4}=a_{2}^{2}+a_{1}^{4}, \\
0, \\
\text { if }
\end{array} a_{4} \neq a_{2}^{2}+a_{1}^{4} .\right.
$$

(ii) $a_{3} \neq 0$

$$
|S(f)|=K(f) q^{1 / 2},
$$

where $K(f)>0$ is such that

$$
K(f)^{2}=1+(-1)^{n} \sum_{\substack{\sum_{t} \in F \\ t^{t}=1 / a_{3}}} e\left(a_{4} t^{4}+a_{2} t^{2}+a_{1} t\right) .
$$

(Thus in particular when f is regular we have $K(f) \leqq 2$ so the Carlitz-Uchiyama estimate $|S(f)| \leqq 3 q^{1 / 2}$ can be improved to $|S(f)| \leqq$ $\left.2 q^{1 / 2}\right)$.

Proof. (i) For $l \in F$ we define

$$
T(l)=\sum_{x \in F} e\left(\left(a_{2}^{2}+a_{1}^{4}+l\right) x^{4}+a_{2} x^{2}+a_{1} x\right) .
$$

By Theorem $4\left(a_{2}^{2}+a_{1}^{4}\right) X^{4}+a_{2} X^{2}+a_{1} X$ is exceptional over F so that by Theorem 2, $T(0)=q$. Now

$$
\begin{aligned}
T(l)^{2} & =\sum_{x, y \in F} e\left(\left(\left(a_{2}^{2}+a_{1}^{4}+l\right)\left(x^{4}+y^{4}\right)+a_{2}\left(x^{2}+y^{2}\right)+a_{1}(x+y)\right)\right. \\
& =\sum_{x, t \in F} e\left(\left(a_{2}^{2}+a_{1}^{4}+l\right) t^{4}+a_{2} t^{2}+a_{1} t\right),
\end{aligned}
$$

on setting $y=x+t$. Thus we have $T(l))^{2}=q T(l)$, so that $T(l)=0$ or q. But we have

$$
\sum_{t \in F} T(l)=\sum_{x \in P} e\left(\left(a_{2}^{2}+a_{1}^{4}\right) x^{4}+a_{2} x^{2}+a_{1} x\right) \sum_{t \in P} e\left(l x^{4}\right)=q,
$$

that is,

$$
\sum_{0 \neq l \in F} T(l)=0
$$

giving $T(l)=0$, when $l \neq 0$. This completes the proof of case (i).
(ii) We have as before

$$
S(f)^{2}=\sum_{t \in F} e\left(a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t\right) \sum_{x \in F} e\left(a_{3} t x^{2}+a_{3} t^{2} x\right)
$$

Now by Theorem 1 we have

$$
\sum_{x \in F} e\left(a_{3} t x^{2}+a_{3} t^{2} x\right)=\left\{\begin{array}{l}
q, \text { if } a_{3} t=\left(a_{3} t^{2}\right)^{2} \\
0, \text { if } a_{3} t \neq\left(a_{3} t^{2}\right)^{2}
\end{array}\right.
$$

so that, as $a_{3} \neq 0$, we obtain

$$
\begin{aligned}
S(f)^{2} & =q \sum_{\substack{t \in F \\
a_{3} t^{t}-t=0\\
}} e\left(a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t\right) \\
& =q\left\{1+(-1)^{n} \sum_{\substack{t \in F \\
t^{3}=1 / a_{3}}} e\left(a_{3} t^{4}+a_{2} t^{2}+a_{1} t\right)\right\}
\end{aligned}
$$

which completes the proof of the theorem.
6. $\operatorname{deg} f=5$. We prove the Carlitz-Uchiyama estimate in an elementary way.

Theorem 6. If $f(X)=a_{5} X^{5}+a_{4} X^{4}+a_{3} X^{3}+a_{2} X^{2}+a_{1} X \in F[X]$, where $a_{5} \neq 0$, then $|S(f)| \leqq 4 q^{1 / 2}$.

Proof. As before we have

$$
S(f)^{2}=\sum_{t \in F} e\left(a_{5} t^{5}+\cdots+a_{1} t\right) \sum_{x \in F} e\left(a_{5} t x^{4}+a_{3} t x^{2}+\left(a_{5} t^{4}+a_{3} t^{2}\right) x\right)
$$

By Theorem 5 we have

$$
\sum_{x \in F} e\left(a_{5} t x^{4}+a_{3} t x^{2}+\left(a_{5} t^{4}+a_{3} t^{2}\right) x\right)=\left\{\begin{array}{l}
q, \text { if } \alpha_{5} t=\left(a_{3} t\right)^{2}+\left(a_{5} t^{4}+a_{3} t^{2}\right)^{4} \\
0, \text { if } a_{5} t \neq\left(a_{3} t\right)^{2}+\left(a_{5} t^{4}+a_{3} t^{2}\right)^{4}
\end{array}\right.
$$

and as $a_{5}^{2} t^{26}+a_{3}^{2} t^{8}+a_{3}^{2} t^{2}+a_{5} t=0$ has at most 16 solutions t in F we have

$$
|S(f)|^{2} \leqq 16 q,|S(f)| \leqq 4 q^{1 / 2} .
$$

7. deg $f=6$. We begin by giving necessary and sufficient conditions for $f(X)=a_{6} X^{6}+\cdots+a_{1} X \in F[X]$, where $a_{6} \neq 0$, to be excep-
tional over F.

Theorem 7. $f(X)=a_{6} X^{6}+a_{5} X^{5}+a_{4} X^{4}+a_{3} X^{3}+a_{2} X^{2}+a_{1} X \in$ $F[X]$, where $a_{6} \neq 0$, is exceptional over F if and only if $a_{6}=a_{3}^{2}, a_{5}=$ $0, a_{4}=a_{2}^{2}+a_{1}^{4}$.

Proof. $f(X)$ is exceptional over F if and only if there exists $r X^{3}+s X^{2}+t X \in F[X]$ such that

$$
a_{6} X^{6}+\cdots+a_{1} X=\left(r X^{3}+s X^{2}+r X\right)^{2}+\left(r X^{3}+s X^{2}+t X\right)
$$

This is possible if, and only if, we can solve the equations

$$
a_{6}=r^{2}, a_{5}=0, a_{4}=s^{2}, a_{3}=r, a_{2}=t^{2}+s, a_{1}=t
$$

that is if, and only if,

$$
a_{6}=a_{3}^{2}, a_{5}=0, a_{4}=s^{2}=\left(a_{2}+t^{2}\right)^{2}=a_{2}^{2}+t^{4}=a_{2}^{2}+a_{1}^{4}
$$

We now evaluate $|S(f)|$. We prove
Theorem 8. If $f(X)=a_{6} X^{6}+a_{5} X^{5}+a_{4} X^{4}+a_{3} X^{3}+a_{2} X^{2}+a_{1} X \in$ $F[X]$, where $a_{6} \neq 0$, then $|S(f)|$ is given as follows:
(i) $a_{5}=0, a_{6}=a_{3}^{2}$

$$
S(f)=\left\{\begin{array}{l}
q, \text { if } a_{4}=a_{2}^{2}+a_{1}^{4} \\
0, \\
\text { if } a_{4} \neq a_{2}^{2}+a_{1}^{4}
\end{array}\right.
$$

(ii) $\quad a_{5}=0, a_{6} \neq a_{3}^{2}$

$$
|S(f)| \leqq \sqrt{1+n_{1}(f)} q^{1 / 2}
$$

where $n_{1}(f)$ denotes the number of solutions $t \in F$ of

$$
t^{6}=\frac{1}{a_{6}+a_{3}^{2}}
$$

(iii) $a_{5} \neq 0$

$$
|S(f)| \leqq \sqrt{1+n_{2}(f)} q^{1 / 2}
$$

where $n_{2}(f)$ denotes the number of solutions $t \in F$ of

$$
\begin{equation*}
a_{5}^{4} t^{15}+\left(a_{6}^{2}+a_{3}^{4}\right) t^{7}+\left(a_{6}+a_{3}^{2}\right) t+a_{5}=0 \tag{7.1}
\end{equation*}
$$

(Thus in particular when f is regular we have

$$
|S(f)| \leqq \sqrt{1+15} q^{1 / 2}=4 q^{1 / 2}
$$

which improves the Carlitz-Uchiyama estimate $\left.|S(f)| \leqq 5 q^{1 / 2}\right)$.

Proof. (i) For $l \in F$ we define

$$
T(l)=\sum_{x \in F} e\left(a_{3}^{2} x^{6}+\left(a_{2}^{2}+a_{1}^{4}+l\right) x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x\right) .
$$

By Theorem $7 a_{2}^{2} X^{6}+\left(a_{2}^{2}+a_{1}^{4}\right) X^{4}+a_{3} X^{3}+a_{2} X^{2}+a_{1} X$ is exceptional over F so that by Theorem 2, $T(0)=q$. Now

$$
\begin{aligned}
T(l)^{2}= & \sum_{x, y \in F} e\left(a_{3}^{2}\left(x^{6}+y^{6}\right)+\left(a_{2}^{2}+a_{1}^{4}+l\right)\left(x^{4}+y^{4}\right)+a_{3}\left(x^{3}+y^{3}\right)\right. \\
& \left.+a_{2}\left(x^{2}+y^{2}\right)+a_{1}(x+y)\right) \\
= & \sum_{x, t \in F} e\left(a_{3}^{2}\left(x^{4} t^{2}+x^{2} t^{4}+t^{6}\right)+\left(a_{2}^{2}+a_{1}^{4}+l\right) t^{4}+a_{3}\left(x^{2} t+x t^{2}\right.\right. \\
& \left.\left.+t^{3}\right)+a_{2} t^{2}+a_{1} t\right)
\end{aligned}
$$

on setting $y=x+t$. Thus we have

$$
\begin{aligned}
T(l)^{2}= & \sum_{t \in F} e\left(a_{3}^{2} t^{6}+\left(a_{2}^{2}+a_{1}^{4}+l\right) t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t\right) \\
& \sum_{x \in F} e\left(\left(a_{3}^{2} t^{2}\right) x^{4}+\left(a_{3}^{2} t^{4}+a_{3} t\right) x^{2}+\left(a_{3} t^{2}\right) x\right) .
\end{aligned}
$$

Now as $a_{6}=a_{3}^{2}$ and $a_{6} \neq 0$ we have $a_{3} \neq 0$. Hence for $t \neq 0$ by Theorem $4\left(a_{3}^{2} t^{2}\right) X^{4}+\left(a_{3}^{2} t^{4}+a_{3} t+a_{3} t\right) X^{2}+\left(a_{3} t^{2}\right) X$ is exceptional as $a_{3}^{2} t^{2} \neq 0$ and

$$
\left(a_{3}^{2} t^{4}+a_{3} t\right)^{2}+\left(a_{3} t^{2}\right)^{4}=a_{3}^{4} t^{8}+a_{3}^{2} t^{2}+a_{3}^{4} t^{8}=a_{3}^{2} t^{2}
$$

Thus for $t \neq 0$ by Theorem 2

$$
\sum_{x \in F} e\left(\left(a_{3}^{2} t^{2}\right) x^{4}+\left(a_{3}^{2} t^{4}+a_{3} t\right) x^{2}+\left(a_{3} t^{2}\right) x\right)=q
$$

This is clearly true for $t=0$ as well so that $T(l)^{2}=q T(l)$, giving $T(l)=0$ or q. But we have

$$
\sum_{l \in F} T(l)=\sum_{x \in F} e\left(a_{3}^{2} x^{6}+\left(a_{2}^{2}+a_{1}^{4}\right) x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x\right) \sum_{l \in F} e\left(l x^{4}\right)=q
$$

that is

$$
\sum_{0 \neq l \in F} T(l)=0
$$

giving $T(l)=0$, when $l \neq 0$. This completes the proof of case (i). (ii) As before we have

$$
\begin{aligned}
S(f)^{2} & =\sum_{t \in F} e\left(a_{6} t^{6}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t\right) \\
& \times \sum_{x \in F} e\left(\left(a_{6} t^{2}\right) x^{4}+\left(a_{6} t^{4}+a_{3} t\right) x^{2}+\left(a_{3} t^{2}\right) x\right) .
\end{aligned}
$$

By Theorems 1 and 5 we have

$$
\begin{aligned}
& \sum_{x \in F} e\left(\left(a_{6} t^{2}\right) x^{4}+\left(a_{6} t^{4}+a_{3} t\right) x^{2}+\left(a_{3} t^{2}\right) x\right) \\
& \quad=\left\{\begin{array}{l}
q, \text { if } a_{6} t^{2}=\left(a_{6} t^{4}+a_{3} t\right)^{2}+\left(a_{3} t^{2}\right)^{4}, \\
0, \text { if } a_{6} t^{2} \neq\left(a_{6} t^{4}+a_{3} t\right)^{2}+\left(a_{3} t^{2}\right)^{4} .
\end{array}\right.
\end{aligned}
$$

Thus

$$
S(f)^{2}=q \sum_{t \in F}^{\prime} e\left(a_{6} t^{6}+a_{4} t^{4}+a_{3} t^{3}+a_{2} t^{2}+a_{1} t\right)
$$

where the dash (') denotes that the sum is over those t such that

$$
\left(a_{6}+a_{3}^{2}\right)^{2} t^{8}+\left(a_{6}+a_{3}^{2}\right) t^{2}=0
$$

For $t \neq 0$ this becomes

$$
t^{6}=\frac{1}{a_{6}+a_{3}^{2}},
$$

as $a_{6}+a_{3}^{2} \neq 0$ in view of $a_{6} \neq a_{3}^{2}$. This completes case (ii).
(iii) As before we have

$$
\begin{aligned}
S(f)^{2}= & \sum_{t \in F} e\left(a_{6} t^{6}+\cdots+a_{1} t\right) \sum_{x \in F} e\left(\left(a_{6} t^{2}+a_{5} t\right) x^{4}+\left(a_{6} t^{4}+a_{3} t\right) x^{2}\right. \\
& \left.+\left(a_{5} t^{4}+a_{3} t^{2}\right) x\right) .
\end{aligned}
$$

By Theorems 1 and 5 we have

$$
\begin{aligned}
& \sum_{x \in F} e\left(\left(a_{6} t^{2}+a_{5} t\right) x^{4}+\left(a_{6} t^{4}+a_{3} t\right) x^{2}+\left(a_{5} t^{4}+a_{3} t^{2}\right) x\right) \\
& \quad=\left\{\begin{array}{l}
q, \text { if } a_{6} t^{2}+a_{5} t=\left(a_{6} t^{4}+a_{3} t\right)^{2}+\left(a_{5} t^{4}+a_{3} t^{2}\right)^{4}, \\
0, \text { if } a_{6} t^{2}+a_{5} t \neq\left(a_{6} t^{4}+a_{3} t\right)^{2}+\left(a_{5} t^{4}+a_{3} t^{2}\right)^{4} .
\end{array}\right.
\end{aligned}
$$

Thus

$$
S(f)^{2}=q \sum_{t \in F}^{\dagger} e\left(a_{6} t^{6}+\cdots+a_{1} t\right),
$$

where the dagger (\dagger) denotes that the sum is over those t such that

$$
a_{5}^{4} t^{16}+\left(a_{6}^{2}+a_{3}^{4}\right) t^{8}+\left(a_{6}+a_{3}^{2}\right) t^{2}+a_{5} t=0
$$

For $t \neq 0$ this becomes (7.1) which completes the proof of case (iii).
7. Conclusion. We conclude by remarking that the elementary method of this paper does not work when $\operatorname{deg} f(X)=7$, since in this case we have

$$
S(f)^{2}=\sum_{t \in F} e\left(a_{7} t^{\top}+\cdots+a_{1} t\right) \sum_{x \in F} e\left(g_{t}(x)\right)
$$

where

$$
\begin{aligned}
g_{t}(X)=\left(a_{7} t\right) X^{6} & +\left(a_{7} t^{2}\right) X^{5}+\left(a_{7} t^{3}+a_{6} t^{2}+a_{5} t\right) X^{4}+\left(a_{7} t^{4}\right) X^{3} \\
& +\left(a_{7} t^{5}+a_{6} t^{4}+a_{3} t\right) X^{2}+\left(a_{7} t^{6}+a_{5} t^{4}+a_{3} t^{2}\right) X
\end{aligned}
$$

has a nonzero coefficient of X^{5} for $t \neq 0$.

References

1. L. Carlitz, Gauss sums over finite fields of order 2^{n}, Acta Arithmetica, 15 (1969), 247-265.
2. L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J., 24 (1957), 37-41.
3. A. Weil, On the Riemann hypothesis in function fields, Proc. Nat. Acad. of Sci., 27 (1941), 345-347.

Received August 6, 1970.
Carleton University

